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Protein Contact Prediction by Using Information Theory
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We develop a novel method for predicting the inter-residue contacts of a protein from evolutionary
information obtained from the alignment of multiple sequences. Our method is based on information
theory, where we use conditional mutual information so that the spurious correlations coming from
indirect effects are removed. The benchmark test shows better performance than the previous
method using mutual information does, suggesting the potential of the new method.
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I. INTRODUCTION

Predicting the three-dimensional structure of a pro-
tein solely from the sequence information is an impor-
tant unsolved problem in computational biophysics [1–
3]. Information on the local structure, such as the
inter-residue contacts, provides constraints on the three-
dimensional structure, thus facilitating the prediction of
the full three-dimensional structure [3–7]. Consequently,
many efforts have been made to predict the inter-residue
contacts, which is a more tractable problem than that
of predicting the full three-dimensional structure [8–16].
Many methods predict contacts from the co-mutation
pattern obtained from an alignment of the family of se-
quences homologous to the query sequence. The idea is
that the pair of amino acid residues that are in spatial
contact with each other tends to have a correlation in
the mutation pattern.

The most rigorous measure for the mutual dependence
between two random variables X and Y comes from in-
formation theory, which is the mutual information (MI)
I(X, Y ) defined as

I(X, Y ) =
∑

x,y

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
, (1)

where PXY (x, y) is the joint probability of X and
Y taking the values of x and y simultaneously, and
PX(x)(PY (y)) is the marginal probability that X(Y )
takes the value of x(y). Several contact prediction meth-
ods based on MI have been developed [10,11].

The performance of early contact-prediction methods,
including those based in MI, have been hindered by the
existence of a co-mutation between two residues that are
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Fig. 1. Example of an indirect effect. The residues X and
Y influence each other because of their common contacts to
the residue Z, but they are not in direct contact.

not in direct contact, but are connected by a chain of
contacts (Fig. 1). Obviously, such residues influence each
other; therefore, a simple measure of the mutual depen-
dence such as MI would lead to a proliferation of false
positives. Several ideas for eliminating such indirect ef-
fects have been implemented in recent contact-prediction
methods. One such method is PSICOV, which uses a
partial correlation coefficient [13]. The partial correla-
tion coefficient is derived from the Pearson correlation
coefficient by filtering out indirect effects. However, such
correlation coefficients can be used only for linear corre-
lation, and little theoretical justification exists for using
it to describe the correlation of amino acids. Another
class of methods uses entropy maximization to infer the
probability distribution of residue contacts [14–16]. Al-
though theoretically appealing, these methods have rel-
atively large computational costs, and most rely heavily
on various approximations.
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In fact, a variation of mutual information, called condi-
tional mutual information, where the indirect effects are
removed, exists [17, 18]. The conditional mutual infor-
mation (CMI) I(X, Y |Z) is a measure of the correlation
between a pair of variables X and Y after their mutual
influence mediated by another variable Z is removed. It
is given by

I(X, Y |Z) =
∑

x,y,z

PXY Z(x, y, z) log
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)
,

(2)

where PX|Z(x|z) ≡ PXZ(x, z)/PZ(z) is a conditional
probability. Similar definition applies for the other con-
ditional probabilities. In the context of protein-contact
prediction, X and Y are the amino acids appearing at a
pair of positions. The variable Z represents the sequence
pattern of positions other than X and Y . In contrast to
mutual information, conditional mutual information has
not been used for protein-contact prediction so far. We
show that the performance of the prediction obtained
using conditional mutual information is better than that
obtained using mutual information, showing the poten-
tial for the newly developed method.

II. THE METHOD

A pair of protein residues is defined to be in con-
tact if the distance between their Cβ atoms is less than
8 Å. For a contact prediction method based on a co-
mutation pattern, the input to the algorithm is not the
single query sequence, but an alignment of homologous
protein sequences. The length of the alignment is set
to the query sequence length. Gaps in the alignment
can be present, so the gap is treated as the 21st amino
acid. The probability in Eq. (1) or Eq. (2) can be esti-
mated by using the frequencies of occurrences of amino
acids at the given position in the sequence alignment.
For example, PXi

(x) can be obtained from the frequency
P̂Xi(x) ≡ Ni(x)/

∑
x̃ Ni(x̃), where Ni(x) is the number

of sequences for which the entry on position i is amino
acid x.

One problem in this estimate is due to the finite num-
ber of sequences in the alignment; some amino acids may
not appear at all although their actual probabilities may
not be zero. This leads to an indeterminate number in
the formulas for mutual information and conditional mu-
tual information because zeros appear both in the nu-
merator and the denominator. In order to alleviate this
problem, we add one to each N(x). This is called the
pseudocount [13, 15]. Another problem is that some of
the sequences may be overrepresented in such an align-
ment, leading to a bias. Therefore, removing redundant
sequences from such an alignment is crucial. The crite-
rion for such a redundancy is the similarity cutoff r. Any

Fig. 2. The variable Z in mutual conditional information
should be the pattern of the alignment after excluding the
pair of positions X and Y , as shown on the top. There are
21L−2 possibilities, which are highly underrepresented in the
actual data. Therefore, we choose the position with the high-
est influence on the interaction between X and Y , as the
variable Z, as shown on the bottom.

two sequences where the fraction of identical amino acid
residues is greater than r are regarded as similar. For a
given sequence, if n other similar sequences exist, then
the number of occurrences of this sequence is counted as
w = 1/(n + 1) instead of one. This procedure prevents
multiple counting of homologous sequences.

The criterion for the similarity of the sequences, r,
was determined following a previous method of contact
prediction, PSICOV [13]. First, the mean fraction of
identical residues r̄ between each pair of sequences in
the alignment was computed. Then, the cutoff was set
as r = max [0.4, 1 − 0.12/r̄]. This ensures that if the se-
quences in the alignment are quite homologous to each
other overall, a more lenient criterion for sequence sim-
ilarity is used so that excessive removal of sequences is
prevented. However, any sequences with more than 40%
sequence identity are considered as similar. The proba-
bility of an amino acid is then estimated from the mod-
ified frequency after including the pseudocount and the
sequence reweighting:

P̂X(x) ≡ (wX(x) + 1)/
∑

x̃

(wX(x̃) + 1). (3)

If the indirect effect due to residues other than the pair
of interest is to be filtered out, Z in Eq. (2) should be set
as the pattern of sequences excluding the pair under con-
sideration. If the length of the query sequence is L, then
the possible number of such patterns is 21L−2, which
is much larger than the number of sequences contained
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in any multiple-sequence alignment. Therefore, P (Z)
cannot be estimated with a reasonable accuracy from a
multiple alignment if Z includes the effect of all L − 2
residues. Therefore, instead of filtering out the indirect
effect completely, we decided to eliminate the effect from
the single residue Z that contributed most significantly
to the coupling between the pair X and Y (Fig. 2).

MI estimated by aligning a finite number of sequences,
has been argued to have a background noise. Such a non-
zero background random MI, Sij , has been modelled as
[11]

Sij ≡ Si−S−j

S−−
, (4)

where

Si− ≡
∑

j

Sij , S−j ≡
∑

i

Sij , S−− ≡
∑

i,j

Sij (5)

and Sij ≡ I(Xi, Xj) is the score function for the pair of
positions i and j, which is the mutual information of the
amino acids Xi and Xj at those positions.

After subtracting the background MI, the modified
score function Pij is given as

PCij = Sij − Si−S−j

S−−
. (6)

The correction term in Eq. (6) has been called the
average production correction (APC). The contact-
prediction method that uses MI modified by the APC
has been shown to exhibit better performance than those
using MI without APC [11]. APC has also been intro-
duced in PSICOV [13]. In a similar vein, we also test
the CMI with and without APC. We compare four score
functions: MI and CMI, each of them with and without
APC.

The test set was selected from 146 sequence families
in Pfam [19]. Biological monomers with single copies of
Pfam domains, with a crystallographic-structure resolu-
tion ≤ 1.9 Å, and with at least 1000 sequences in the
alignment, were selected.

III. RESULTS

The accuracy of the prediction method, defined as the
ratio of the correct pair to that of predicted pairs in con-
tact, can be obtained by comparing the prediction results
with the actual contacts in the experimental structure.
A prediction method ranks each pair of positions with
score functions such as MI or CMI, so one has to choose
a finite number Npair of pairs with the highest scores as
the predicted contacting pairs. The value of Npair has
to be decided based on whether the sensitivity or the
specificity is more important, which in turn, depends on
the applications. Here, we will avoid the issue of fixing

Fig. 3. Prediction accuracy of the four score functions for
a protein 1JBE as functions of Npair. The results obtained
by using MI or CMI are shown, with and without APC cor-
rections.

Npair and simply examine the accuracy of our method as
a function of Npair.

As an example, we plot the prediction accuracies of
the four score functions for a protein wild-type ApoCheY
(PDB ID:1JBE, chain length 126) against Npair (Fig. 3).
As expected, although some oscillations are seen, the ac-
curacy tends to deteriorate as Npair increases due to the
increasing number false positives. We clearly see that the
graph for the CMI lies above that for the mutual infor-
mation, clearly indicating that filtering out the indirect
effect increases the accuracy of the prediction regardless
of the number of pairs used for the prediction. The re-
sults with and without APC are also compared, and we
see that APC clearly enhances the accuracy.

Similar results were obtained for a large-scale bench-
mark test on 146 sequences. The number of contacts is
expected to increase as the sequence length L increases;
therefore, choosing a size-dependent threshold Npair for
selecting the top pairs is more reasonable. Usually, Npair

is chosen to be proportional to the chain length. There-
fore, we plotted the average accuracy of these benchmark
tests as a function of Npair/L (Fig. 4). The order of
accuracy is the same as the result above, with the per-
formance of CMI being better than that of MI and the
performance using APC being better than that using MI
or CMI alone.

Because predicting the contacts of residues that
are separated far away along the sequence is more
nontrivial, we also assessed the average prediction
accuracy for residue pairs whose distances along the
sequence were more than 8, 11, and 20. We again see
that the predictions obtained using CMI with APC are
the most accurate, as shown in Table 1 for several values
of Npair/L.
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Fig. 4. Average prediction accuracy of the four score func-
tions for 146 proteins from Pfam as functions of Npair/L.
The results obtained by using MI or CMI are shown with
and without APC corrections.

Table 1. Average prediction accuracy of the non-local con-
tacts for a test set of 146 proteins for several values of Npair/L.
The results obtained by using MI or CMI are shown with and
without APC corrections.

|i − j| > 8 |i − j| > 11 |i − j| > 20

Npair/L 1/4 1/2 1 1/4 1/2 1 1/4 1/2 1

MI 0.28 0.22 0.17 0.28 0.22 0.17 0.26 0.20 0.15

CMI 0.28 0.21 0.16 0.27 0.20 0.15 0.24 0.16 0.13

MI + APC 0.43 0.35 0.28 0.45 0.37 0.29 0.42 0.34 0.26

CMI + APC 0.53 0.43 0.33 0.54 0.43 0.33 0.51 0.41 0.30

IV. CONCLUSION

We developed a novel method for protein contact pre-
diction based on information theory, where conditional
mutual information, instead of mutual information, was
used for ranking the residue pairs for the probability of
contact. The results show that filtering out the indirect
effect by using conditional mutual information, indeed,
improves the accuracy of the method compared to that
using mutual information. Although the results are
quite promising, some room for improvement still exists.
For example, in computing the conditional mutual in-
formation, we removed the effect of a single residue that
contributes most significantly to the coupling between
the pair of residues being examined, but there may be an
optimal set of sequence patterns that is to be removed,
which we will have to figure out. Also, the optimal
procedure of sequence reweighting should be developed.
If our novel method is to be a self-contained prediction
method, the number of top pair to be selected, Npair,
should be fixed. Finally, the performance of the new

method will have to be compared with those of other
prediction methods.
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