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The nonlinear properties of ion-acoustic (IA) waves are investigated in a relativistically degener-
ate magnetized quantum plasma, whose constituents are non-degenerate inertial ions, degenerate
electrons and immobile positively-charged heavy elements. For nonlinear studies, the well-known
reductive perturbation technique is employed to derive the Korteweg-de Vries-Burger equation in
the presence of relativistically degenerate electrons. Numerically, the amplitude, width, and phase
speed are shown to be associated with the localized IA solitons, and shocks are shown to be sig-
nificantly influenced by the various intrinsic parameters relevant to our model. The solitary and
the shock wave properties have been to be influenced in the non-relativistic, as well as the ultra-
relativistic, limits. The effects of the external magnetic field and the obliqueness are found to change
the basic properties of IA waves significantly. The present analysis can be useful in understanding
the collective process in dense astrophysical environments, like there of non-rotating white dwarfs,
neutron stars, etc.
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I. INTRODUCTION

For several decades, intense theoretical and experi-
mental research has been done on ion-acoustic waves,
which is one of the basic wave processes in plasmas [1–
16]. The ion acoustic (IA) soliton formation in an elec-
tronion (e-i) plasma has been extensively studied both
theoretically and experimentally for a long time. The
nonlinear propagation of IA waves has been investigated
both in planar and non-planar geometries. IA waves
were first predicted by Tonks and Langmuir by using
a fluid analysis [17]. To study the characteristic of ion-
acoustic solitons in an e-i plasma, Washimi and Taniuti
developed a weakly nonlinear theory [1]. A fully non-
linear theory was presented by Sagdeev [18] to investi-
gate the arbitrary amplitude ion-acoustic solitary waves
in e-i plasmas. In the presence of some sort of dissipa-
tive mechanism, the balance between nonlinearity and
dissipation is known to lead to the formation of shock
structures. Thus, the search for the source of such a
dissipation, which may responsible for the formation of
shock structures is an important issue. Several different
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mechanisms, which may be responsible for the forma-
tion of the shock waves, have been studied by a number
of authors who used different plasma models. Roy et al.
[19] studied IA shock waves that formed due to effect
of the ion kinematic viscosity in quantum pair plasmas.
The propagation of IA shock waves in an unmagnetized
collisionless plasma consisting of superthermal electrons
has been studied by Sultana et al. [20]. They inves-
tigated the stability profile of the kink-shaped solutions
of the Korteweg-de Vries (KdV)-Burger equation against
external perturbations.

In a nonlinear dispersive medium, when nonlinear and
dispersive effects have opposite signs, the wave equation
gives rarefactive (dip-like) solitons. Many KdV equa-
tions, which have negative nonlinear effect and positive
dispersive effect, result in rarefactive solitons. However,
when both the nonlinear and the dispersive effects are
positive, the KdV equation may result in a compres-
sive (hump-like) soliton. A medium with dispersive and
significant dissipative properties supports the existence
of shock waves instead of solitons. In peculiar circum-
stances, the Burgers term in the KdV-Burger (KdVB)
equation becomes negligibly small. The KdVB equation
transforms to the KdV equation, which admits soliton
solutions. This happens when the dissipation diminishes
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and the dispersion dominates. Nakamura et al. [21] ob-
served solitary shock waves in unmagnetized dusty plas-
mas. They found that the development of a shock wave
was due to the KdVB equation. The dust-ion-acoustic
shock and solitary waves in dusty electronegative plas-
mas have been studied by Mamun and Tasnim [22]. They
discussed the basic properties of the shock and solitary
waves, that are associated with the presence of positive
ion dynamics and dust charge fluctuations.

Recently, studies of relativistic degenerate plasmas
have gained enormous attention due to their existence
in interstellar compact objects such as white dwarfs and
neutron stars and in intense laser plasma experiments.
A white dwarf is a real example where degenerate elec-
trons and heavy ions exist. The Pauli exclusion principle
in quantum mechanics forbids electrons (and all fermions
with half integer spin, including neutrons) occupying the
same state. Basically, each electron must have a different
energy when it is packed together with other electrons,
as in a white dwarf. The number of available low-energy
states is too small, and many electrons are forced into
high-energy states. When this happens, the electrons
are said to be degenerate. These high-energy electrons
make a significant contribution to the pressure. Because
this pressure arises from a quantum-mechanical effect, it
is insensitive to temperature, i.e., the pressure doesn’t
decrease as the star cools. This pressure is known as
the electron degeneracy pressure, and it is the pressure
that supports white dwarf stars against their own gravity
[23–26]. Notably, the basic constituents of white dwarfs
are mainly positively, and negatively-charged heavy ele-
ments like carbon, oxygen, and helium with an envelope
of hydrogen gas. Heavy elements (positive and negative)
are found to have been formed in a prestellar stage of
the evolution of the universe when all matter was com-
pressed to extremely high densities. The average number
density of heavy particles is of the order of 1029 cm−3,
where distance between heavy particles is of the order of
10−10 cm (for white dwarfs) [27]. In white dwarfs, the de-
generate number density of electrons can be of the order
of 1030 cm−3 [28]. The equation of state for the degen-
erate electrons in such interstellar compact objects has
been obtained by Chandrasekhar for two limits, namely,
the nonrelativistic and the ultrarelativistic limits. Chan-
drasekhar found that the degenerate electron equation of
state is given by (Pe ∝ ne

5/3) for nonrelativistic degen-
erate electrons and by (Pe ∝ ne

4/3) for ultrarelativistic
degenerate electrons, where Pe is the degenerate electron
pressure and ne the electron number density [29–31]. Of
note is that the degenerate electron pressure depends
only on the electron number density.

Recently, a number of authors have theoretically inves-
tigated the nonlinear propagation of electrostatic waves
in degenerate quantum plasmas. Those investigations
were mainly based on the electron equation of state,
which is only valid in the nonrelativistic limit. Some in-
vestigations have addressed the nonlinear propagation in
a degenerate dense of electrostatic waves plasma which

are mainly based on the degenerate electron equation
of state valid for ultrarelativistic limit [32–36]. Shah et
al. [37–40] studied an unmagnetized degenerate quan-
tum plasma and investigated the effects of relativistic
degenerate electrons and positrons and plasma particle
number densities on the propagation of positron-acoustic
solitary or shock waves. Sabary et al. [41] studied the
ion-acoustic waves (IAWs) in a plasma with two distinct
ion species. Gill et al. [42] discussed the properties of
IAWs in a plasma consisting of warm positive and nega-
tive ions with differences concentrations, charged states,
and nonthermal electrons. Shukla et al. [43] theoreti-
cally investigated the nonlinear propagation of electro-
static waves in degenerate quantum plasmas. They con-
sidered strongly coupled nondegenerate ions and degen-
erate electron fluids in an unmagnetized dense plasma
and studied the basic properties of solitary and shock
structures. Sultana et al. [44] investigated obliquely
propagating IA of arbitrary amplitude solitons in a mag-
netized e-i plasma with superthermal electron. Finite
amplitude IA waves, ion cyclotron waves, and IA soli-
tons have also been studied in a warm-ion magnetized
plasma by Yashvir et al. [45]. Hossen et al. [46–49] in-
vestigated the formation and propagation of shocks and
solitons in an unmagnetized, ultradense plasma by con-
sidering different models. They found that the relativis-
tic factors and degeneracy are significantly affected by
these nonlinear structures. Masood et al. [50] investi-
gated ion-acoustic shock waves in electron-positron-ion
plasmas. Pakzad [51] derived the KdVB equation, and
analyzed the properties of IA shock waves in a plasma
model. Shah and Saeed [52] derived the KdVB equa-
tion for IA shock waves in a weakly-relativistic electron-
positron-ion plasma. They found that the amplitude and
the steepness of the shock wave decreased with increasing
relativistic streaming factor and positron concentration.
They showed that increasing the coefficient of kinematic
viscosity increased the amplitude and the steepness of
shock structure.

In this paper, we investigate ion-acoustic shock waves
in a relativistically degenerate magnetized quantum
plasma containing both degenerate electron and ion flu-
ids and positively-charged static heavy elements. An an-
alytical solution of the KdVB equation is studied as a
function of plasma parameters such as the obliqueness
(via δ), the heavy-ion to ion number density ratio (via μ),
the heavy-ion charge state (via Zh), the external mag-
netic field (via B0) and the relativistic factor (via γ).

II. THEORETICAL MODEL AND BASIC
EQUATIONS

We consider a three-component magnetized quantum
plasma system consisting of non-degenerate inertial ions,
both non relativistic and ultra relativistic degenerate
electrons and positively-charged immobile heavy ele-
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ments. Thus, the equilibrium condition reads ni0 −
ne0 + Zhnh0 = 0, where ns0 is the unperturbed num-
ber densitY of the species s (here s=i, e, h for inertial
positive ion, degenerate electron, and immobile heavy
element, respectively) and Zh is the number of posi-
tive ions residing on the heavy elements surface. The
positively-charged static heavy elements participate only
in maintaining the quasi-neutrality condition at equilib-
rium. The electron’s inertia can, in fact, be neglected
if we assume that the IA electrostatic waves move at a
phase velocity Vp that is much higher than the ion ther-
mal speed, but much lower than the electron thermal
speed: Vth,i << Vp << Vth,e. The dynamics of non-
linear IA waves in the presence of an external magnetic
field B = ẑB0 is governed by the momentum equation

∇φ − K

ne
∇ne

γ = 0, (1)

and the non-degenerate inertial ion equations composed
of the ion continuity and ion momentum equations are
given by

∂ni

∂t
+ ∇.(niui) = 0, (2)

∂ui

∂t
+ (ui.∇)ui = −∇φ + η∇2.ui + ωci(ui × ẑ), (3)

Poissons equation is

∇2φ = (1 + Zhμ)ne − ni − Zhμ, (4)

where ni (ne) is the ion (electron) number density nor-
malized by its equilibrium value ni0 (ne0), ui is the ion
fluid speed normalized by Ci = (mec

2/mi)1/2, with me

(mi) being the electron (ion) rest mass, c is the speed of
light in vacuum, and φ is the electrostatic wave potential
normalized by mec

2/e. Here, μ (= nh0/ni0) is the heavy
element to ion number density ratio. The nonlinear prop-
agation of usual IA waves in an electron-ion (EI) plasma
can be recovered by setting μ = 0. The time variable (t)
is normalized by ωpi = (4πni0e

2/mi)1/2, and the space
variable (x) is normalized by λs = (mec

2/4πni0e
2)1/2.

The coefficient of viscosity η is a normalized quantity
given by ωpiλ

2
smsns0. We have defined the parameter K

in Eq. (1) as K = nγ−1
e0 Ke/mec

2.

III. DERIVATION OF MAGNETIZED KDVB
EQUATION

To observe the dynamics of small-amplitude stationary
IA waves, we shall adopt stretched coordinates:

ξ = ε1/2(lxx̂ + ly ŷ + lz ẑ − Vpt), (5)

T = ε3/2t, (6)

where ε is a smallness parameter (0 < ε < 1) measuring
the amplitude of the perturbation, Vp is the wave’s phase

Fig. 1. (Color online) Variation of the phase speed Vp with
(a) the heavy ion-to-ion number density ratio μ and (b) the
number of positive ions residing on the heavy ion’s surface
Zh, for fix values U0 = 0.1, ωci = 0.5, and δ = 100. The red
dashed line represents the non relativistic case, and the blue
dashed line represents the ultra relativistic case.

velocity normalized by the IA speed (Ci), and lx, ly, and
lz are the directional cosines of the wave vector k along
the x, y, and z axes, respectively, so that l2x + l2y + l2z =
1. We note here that x, y, and z are all normalized by the
Debye length λD and that T is normalized by the inverse
of the ion plasma frequency (ω−1

pi ). We may expand ns,
us, and φ in power series of ε as

ns = 1 + εn(1)
s + ε2n(2)

s + · · ·, (7)

uix,y = 0 + ε3/2u
(1)
ix,y + ε2u

(2)
ix,y + · · ·, (8)

uiz = 0 + εu
(1)
iz + ε2u

(2)
iz + · · ·, (9)

φ = 0 + εφ(1) + ε2φ(2) + · · ·. (10)

A weak damping situation has been considered in
terms of a small ion kinematic viscosity. This leads one
to

η ≈ ε1/2η0, (11)

where η0 is a finite parameter of the order of unity.
Now substituting Eqs. (5) - (11) into Eqs. (1) - (4)
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Fig. 2. (Color online) Variation of nonlinearity coefficient
A with Zh and μ (a) for the non relativistic case and (b) for
the ultra relativistic case. The other plasma parameters are
fixed at U0 = 0.1, ωci = 0.5, and δ = 100 .

and taking the lowest order coefficient of ε, we obtain,
u

(1)
iz = lzφ

(1)/Vp, n
(1)
i = l2zφ

(1)/V 2
p , and n

(1)
e = φ(1)/K1.

The linear dispersion relation can be obtained from these
equations as

Vp = lz

√(
K1

1 + Zhμ

)
. (12)

To the lowest order of x- and y-component of the mo-
mentum equation (3) we get,

u
(1)
iy =

lx
ωci

∂φ(1)

∂ξ
, (13)

u
(1)
ix = − ly

ωci

∂φ(1)

∂ξ
. (14)

Now substituting Eqs. (5) - (14) into Eq. (3), we ob-
tain the following from the higher-order series in ε of the
momentum and Poisson’s equations:

Fig. 3. (Color online) Variation of dispersive coefficient B
with μ and Zh (a) for the non relativistic case and (b) for
the ultra relativistic case. The other plasma parameters are
fixed at U0 = 0.1, ωci = 0.5, and δ = 100 .

u
(2)
iy =

lyVP

ω2
ci

∂2φ(1)

∂ξ2
, (15)

u
(2)
ix =

lxVP

ω2
ci

∂2φ(1)

∂ξ2
, (16)

∂2φ(1)

∂ξ2
= (1 + Zhμ)n(2)

e − n
(2)
i . (17)

Using the same process, we get the next-higher-order
continuity equation, as well as the z-component of the
momentum equation. Now, combining these higher-
order equations together with Eqs. (13) - (17) and con-
sidering φ(1) = ψ, we obtain

∂ψ

∂T
+ Aψ

∂ψ

∂ξ
+ B

∂3ψ

∂ξ3
= C

∂2ψ

∂ξ2
, (18)

where A, B, and C represent the coefficients of nonlin-
earity, dispersion, and dissipation, respectively. These
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Fig. 4. (Color online) Variation of corresponding electric
field E with Zh (a) for the non relativistic case and (b) for
the ultra relativistic case. The other plasma parameters are
fixed at μ = 0.1, U0 = 0.1, ωci = 0.5, and δ = 100 .

coefficients are given by the relations

A =
V 3

p

2l2z

[
l2z(γ − 2)
V 2

p K11
+

3l4z
V 4

p

]
, (19)

B =
V 3

p

2l2z

[
1 +

(1 − l2z)
ω2

ci

]
, (20)

C =
η0

2
. (21)

Equation (18) represents the KdV-Burgers equation,
which describes the nonlinear evolution of obliquely
propagating IA shock waves in a magnetized plasma.
The nonlinear coefficient A and the dispersion coefficient
B are seen to be influenced by the obliqueness. We note
that in the absence of the ion kinematic viscosity, the
dissipation coefficient vanishes, and Eq. (18) reduces to
the well-known KdV equation.

IV. SOLITARY WAVE SOLUTION

In order to study the IA solitary solution of the KdV-
Burgers equation, we first consider the conservative case
(i.e., η = 0). In the absence of dissipation, Eq. (18)

Fig. 5. (Color online) Variation of the shock profile with
μ (a) for the non relativistic and (b) for the ultra relativistic
case. The other plasma parameters are fixed at Zh = 5,
U0 = 0.1, ωci = 0.5, η0 = 0.4, and δ = 200.

Fig. 6. (Color online) Variation of the shock wave am-
plitude with Zh for the fixed plasma parameters μ = 0.1,
U0 = 0.1, ωci = 0.5, η0 = 0.4, and δ = 200. The red dashed
line represents the non-relativistic case, and the blue dashed
line represents the ultra-relativistic case.

reduces to the KdV equation. Therefore, the solitary
wave solution is given by

ψ = ψmsech2

[
ξ − U0T

L

]
, (22)



Korteweg-de Vries-Burgers Equation in a Multi-Component Magnetized Plasma· · · – B. Hosen et al. -1767-

Fig. 7. (Color online) Variation of the shock profile with
the viscosity coefficient η0 (a) for the non relativistic and (b)
for the ultra relativistic case. The other plasma parameters
are fixed at μ = 0.1, Zh = 5, ωci = 0.5, U0 = 0.1, and
δ = 200.

where the maximum pulse amplitude and width of the
soliton solution in the absence of the Burger’s term are
given by ψm = 3U0/A and L = (4B/U0)1/2, respectively.
The properties of the nonlinear coefficient A and disper-
sive coefficient B represented by Eq. (19) and Eq. (21)
are shown in Figs. 2 and 3, respectively. Here, U0 is
the solitary wave speed at equilibrium. The associated
electric field is obtained from the relation

E = −∇ψ; (23)

then, the electric field is given by

E =
6U0

AL
sech2(

ξ − U0T

L
) tanh(

ξ − U0T

L
). (24)

here, E represents a bipolar electric field excitation which
are illustrated in Fig. 4.

V. SHOCK WAVE SOLUTION

In the presence of dissipation, i.e., when η �= 0, the to-
tal energy of the system is not conservative. To study
the stationary solution of the KdV-Burgers equation, Eq.
(18). in terms of shock excitations, we first consider the
solution in the form

Fig. 8. (Color online) Variation of the shock profile with
ion cyclotron frequency ωci (a) for the non-relativistic and (b)
for the ultra-relativistic case. The other plasma parameters
are fixed at μ = 0.1, Zh = 5, η0 = 0.4, U0 = 0.1, and δ = 200.

ψ =
N∑

n=0

an tanhn(ξ − U0T ), (25)

where the coefficients an and N have to be determined.
Now, we find the solution (omitting necessary calcula-
tions) given by

ψ(ξ, T ) =
U0

A
+

3C2

25AB
sech2(

ξ − U0T

Δ
)

− 6C2

25AB
tanh2(

ξ − U0T

Δ
), (26)

where the shock wave’s amplitude is given by

ψm =
12C2

25AB
. (27)

The amplitude variation of the shock profiles are shown
in Fig. 6 and Fig. 7. The width of the shock structure
can be represented as

Δ =
10B

C
, (28)
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Fig. 9. (Color online) Variation of the shock wave width
Δ with δ and ωci (a) for the non relativistic and (b) for the
ultra relativistic case. The other plasma parameters are fixed
at μ = 0.1, Zh = 5, U0 = 0.1, η0 = 0.4.

Fig. 10. (Color online) Variation of the shock wave width
Δ with η0 for the fixed plasma parameters μ = 0.1, Zh = 5,
U0 = 0.1, ωci = 0.5, η0 = 0.4, and δ = 200. The red dashed
line represents the non relativistic case, and the blue dashed
line represents the ultra relativistic case.

which introduces the argument of the hyperbolic func-
tion. The variations in the width Δ are depicted in Fig.
9 and Fig. 10. The shock wave speed is given by

U0 =
6C2

25B
. (29)

Here, U0 > 0, so the solution corresponds to a shock
structure traveling in the +ξ direction. The amplitude,
width, and speed of the shock waves are also seen to be
the functions of ωci, δ, η0, Zh, and μ.

Noteworthy as that, because the electric potential is
associated with an electric field E = −∇ψ, the constant
term of Eq. (26) can be omitted without the loss of
physical meaning. However, for the sake of mathemati-
cal generality, we have chosen to retain the general ex-
pression above in Eq. (26). We can now simply find the
expression for electric field from Eq. (26) as

E =
6C2

25ABΔ
sech2(

ξ − U0T

Δ
)[1 + tanh(

ξ − U0T

Δ
)], (30)

which represents an inverse-ball-shaped monopolar local-
ized excitation for the electric field [20].

V. NUMERICAL OBSERVATION AND
RESULTS

In order to study a new physical approach, we have
considered a magnetized degenerate plasma system (con-
taining non-degenerate inertial ions, both non rela-
tivistic and ultra relativistic degenerate electrons, and
positively-charged immobile heavy elements) and have
studied IA waves by deriving the KdVB equation. We
have used the well-known reductive perturbation method
to derive the partial differential equation and found two
types of solutions, viz., solitary and shock wave solu-
tions. We observed that the relativistic effect and the
degenerate pressure may be a great contributions to the
amplitude, phase velocity, and width illustrated from
the non relativistic (Pe ∝ ne

5/3) to the ultra relativistic
(Pe ∝ ne

4/3) region. The parametric values considered
here are associated with relativistic dense plasmas, espe-
cially dense astrophysical objects such as white dwarfs,
neutron stars, etc. [53]. Important to mention is that, we
find the solitary and shock profiles traveling in the +ξ di-
rection because the nonlinear wave velocities are greater
than zero. The results of our theoretical exploration are
illuminated in Figs. 1 - 10. The heavy element to ion
number density ratio (via μ), the number of positive ions
residing on the heavy element’s surface (via Zh) and the
electron degeneracy have important effects on the phase
speed (Vp) of IAWs. The variations in the phase speed
Vp with μ and Zh are depicted in Figs. 1(a) and 1(b),
respectively for both the non relativistic and ultra rel-
ativistic cases. The phase speed Vp is seen to decrease
with increasing of μ and Zh. Also, the phase speed Vp

is observed to be always greater for non relativistic case
than ultra relativistic case. The (weak) kinematic viscos-
ity η0 has no effect on the dynamics at the linear level.
Figure 2 shows the variation of nonlinearity coefficient A
with Zh for different values of μ for (a) the non relativis-
tic and (b) the ultra relativistic case. The nonlinearity of
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the plasma system is observed to increase with increas-
ing Zh and to decrease with decreasing of μ for both the
non relativistic and the ultra relativistic cases. Also, the
nonlinearity coefficient A is observed to be larger for the
ultra relativistic case than for the non relativistic case.
The effects of μ and Zh on dispersive coefficient B are
illustrated in Fig. 3 for (a) the non relativistic and (b)
the ultra relativistic case. The dispersive coefficient B
is seen to decrease with the increasing μ and Zh. For
the non relativistic case the dispersive coefficient B is
larger than this for the ultra relativistic case. Figure 4
presents the evolution of the associated electric field E
with ξ for different values of Zh for (a) the non relativis-
tic and (b) the ultra relativistic cases. The electric field
E is observed to increase sharply with increasing Zh and
the value is slightly larger for non-relativistic case. The
Shock profiles of the IAWs are affected significantly by
μ are shown in Fig. 5 for (a) the non relativistic and
(b) the ultra relativistic cases. An increasing value of μ
causes the shock profile to be taller and sharper for both
the non relativistic and ultra relativistic case. Figure 6
presents the variation of the maximum amplitude of the
shock wave, ψm, with Zh for both the non relativistic
and the ultra relativistic case. The amplitude is noticed
to decrease with the increasing of Zh and the amplitude
is smaller for the ultra relativistic case in comparison to
non-relativistic case. Figure 7 illustrates the effect of the
kinematics viscosity on the shock profile of the IAWs for
(a) the non relativistic and (b) the ultra relativistic cases.
An important note is that, as a weak damping situation
has been considered, we can stretch the viscosity coeffi-
cient η without any loss of physical meaning. A strong
(larger amplitude and sharper) shock profile is found for
a higher value of viscosity coefficient η0. The external
magnetic field B0 has an important effect on the pro-
file of the shock wave. Figure 8 illuminates the effect of
the external magnetic field B0 for (a) the non relativistic
and (b) the ultra relativistic cases. With the increasing
ion cyclotron frequency, the shock profile’s amplitude is
observed to increase for both the non relativistic and
the ultra relativistic case. The effects of the obliqueness
δ and the external magnetic field B0 (viz., ωci) on the
width of the shock excitations Δ for (a) the non rela-
tivistic and (b) the ultra relativistic cases are depicted
in Fig. 9. The shock wave width Δ is seen to increase al-
most linearly for the lower range, of δ (from 00 to about
550), but above this range Δ decreases with increasing
δ. The width goes to zero as δ −→ 900; thus, the am-
plitude goes to ∞. Again, the applied magnetic field B0

has a great influence on the width of the shock profile.
Increasing the value of ωci decreases the width of the
shock profile. Thus, the external magnetic field causes
the shock profile to become more spiky. From Fig. 9 the
width of the shock profile for the ultra relativistic case is
observed to be very much smaller than that for the non
relativistic case. Figure 10 presents the variation of the
width Δ with the viscosity coefficient η0 for both the non
relativistic and the ultra relativistic cases. The width Δ

decreases with increasing of viscosity coefficient η0.

VI. DISCUSSION

A theoretical investigation has been carried out to
study the nonlinear wave propagation in a magnetized,
collisionless dense plasma containing non degenerate in-
ertial ions, both non relativistic and ultra-relativistic
degenerate electrons, and positively-charged immobile
heavy elements by deriving the Korteweg-de Vries-
Burgers (KdVB) equation. We obtained the Korteweg-
de Vries (KdV) equation by considering the conservative
(C = 0) case. In the presence of the Burgers term (dis-
sipation) gives an exact solution via the tanh approach.
The solution shown a monotonic kink-shaped structure,
which is unstable with respect to an external perturba-
tion. In our numerical analysis, we have shown the influ-
ences of the obliqueness, the external magnetic field, the
kinematic viscosity and other plasma parameters on the
basic features (phase speed, amplitude, polarity, width,
etc.) of the IAWs, which makes our present work signifi-
cant for understanding the localized electrostatic distur-
bances in many space and astrophysical plasma environ-
ments (viz. white dwarfs, neutron stars, compact planets
like massive Jupiter, other exotic dense stars, and black
holes). We have observed that, the nonlinear wave prop-
erties for the non relativistic case are extremely different
from those for the ultra relativistic case. In conclusion,
our present investigation could be rigorously important
for global nonlinear models of astrophysical compact ob-
jects where the effects of dispersion, dissipation, degener-
ate pressure and positively-charged heavy elements play
a crucial role.
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