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Scattering States of the Schrödinger Equation with a
Position-Dependent-Mass and a Non-Central Potential
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In this paper, we study the time-independent Schrödinger equation within the formalism of a
position-dependent effective mass. By using a generalized decomposition of a non-central effective
potential, The deformed Schrödinger equation can be easily solved analytically through separation
of variables. The energy eigenvalues and the normalization constant of the radial wave functions,
as well as the scattering phase shifts are obtained.
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I. INTRODUCTION

Conceptual meanings of the dependence of the ex-
act solutions and the wave equations have been con-
sidered in [1–4]. The derived physical quantities, such
as the eigenfunctions and the eigenvalues of these equa-
tions, can be compared to either experimental results
or results obtained from other methods. The exact
solutions of the wave equations can be used as crite-
ria in other numerical and theoretical methods. The
evolutions of non-relativistic quantum particles are usu-
ally described by using the Schrödinger equation while
for relativistic quantum particles, one has to deal with
the correct equations of motion, such as the Klein-
Gordon or the Dirac Equation, depending on the par-
ticle’s spin. These equations have been investigated
via different methods. Usually, the mass parameter in
the above-mentioned wave equations has been consid-
ered to be a constant. Recently, increasing interest has
been drawn to solving the quantum wave equations with
a position-dependent mass. The Schrödinger equation
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with a position-dependent-mass distribution was initially
proposed by Von Roos [5]. In certain physical sys-
tems, the effective mass parameter should be position-
dependent to be consistent with the experimental data
[6]. In this context, the Schrödinger equation with dif-
ferent phenomenological potentials and appropriate mass
distributions has been investigated using various meth-
ods [7–10]. For some molecular Hamiltonians, the en-
ergy spectra and the eigenfunctions of particles with a
position-dependent-mass have been derived [11]. Ac-
cording to [11], particles with a position-dependent mass
are more likely to tunnel than ordinary ones. The use
of this effective mass formalism has been considered for
the dynamics of electrons in inhomogeneous crystals for
many years [12, 13]. It has been also applied in many
different fields of physics, such as helium clusters [14],
semiconductors [15–17], quantum dot [18], quantum liq-
uids [19] and atomic nuclei [20–22].

In this work, we are going to consider the three-
dimensional time-independent Schrödinger equation
within the effective mass formalism. This paper is or-
ganized as follows: In Sec. II., after some preliminar-
ies, the separation of variables is carried out for the
deformed Schrödinger equation with a non-central po-
tential in spherical coordinates. In Sec. III., we intro-
duce a new non-central potential, and we investigate the
scattering-states solutions, as well as the phase shifts,
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under this effective potential . Finally, Sec. IV., is de-
voted to the conclusion.

II. VARIABLE SEPARATION OF THE
HAMILTONIAN CONSIDERING A

NON-CENTRAL POTENTIAL IN THE
POSITION-DEPENDENT-MASS

FORMALIS

The theoretical background of the position-dependent
effective-mass formalism (PDEMF) has recently been
considered [23,24]. In the PDEMF, for the Schrödinger
equation, the mass operator m(x) and the momentum
operator �p = −i��∇ no longer commute. Therefore, sev-
eral methods can be used to generalize the usual form of
the kinetic energy operator �p2/2m0 and, consequently,
the Hamiltonian, in order to obtain a Hermitian operator
to describe the quantum state of a physical system that
is not trivial in this case. In order to avert any specific
choices, one can use the general form of the Hamiltonian
originally proposed by Von Roos [25]. In [26], by choos-
ing the position-dependent mass m(�r) = m0

f(�r)2 , where m0

is a constant mass and f(r) represents a deforming func-
tion,the authors obtain a new form of the Hamiltonian,
and in a special case, that Hamiltonian reduce to the
most common BenDaniel-Duke form [27].

In spherical coordinates �r = {r = ||�r||, θ, ϕ} with
f(�r) = f(r), separation of variables is customary used to
obtain the wave function as ψ(r, θ, ϕ) = 1

r
U(r)
f(r) Y

(Λ)
(�) (θ, ϕ),

with Y
(Λ)
(�) (θ, ϕ) = Θ(θ)Φ(ϕ), and with a potential of the

form [26]

V (r, θ, ϕ) = V1(r)+
f(r)2

r2
V2(θ)+

f(r)2

r2 sin2(θ)
V3(ϕ), (1)

where V1(r), V2(θ) and V3(ϕ) are arbitrary functions de-
pending on specific arguments.
Then, the position-dependent-mass Schrödinger equa-
tion with the non-central potential defined in Eq. (1)
can be transformed into a separate system in all three
coordinates as shown in [26]:

[
d2

dr2
+

2m0

�2

(
E − V1(r)

f(r)2

)

−L2

r2
− F̄ (r, λ, δ)

]
U(r) = 0, r ∈ [0,∞], (2)

where F̄ (r, λ, δ) = (2−δ−λ)
f(r)

(
f ′′(r)

2 + f ′(r)
r

)

× ((
1
2 − δ

) (
1
2 − λ

)− 1
4

) ( f ′(r)
f(r)

)2

,

[
d2

dθ2
+ cot(θ)

d

dθ
+ L2 − Λ2

sin2(θ)

−2m0

�2
V2(θ)

]
Θ(θ) = 0, θ ∈ [0, π], (3)[

d2

dϕ2
−2m0

�2
V3(ϕ) + Λ2

]
Φ(ϕ) = 0, ϕ ∈ [0, 2π],

(4)

with Λ2 and L2 = 	(	 + 1) being real and dimensionless
separation constants. The components of the wavefunc-
tion are also constrained to satisfy the boundary con-
ditions, U(0) = U(∞) = 0 for the bound states, or
U(0) = 0 for the continuous states; Φ(ϕ) = Φ(ϕ + 2π),
while Θ(0) and Θ(π) are finite.

III. SCATTERING STATE SOLUTIONS AND
PHASE SHIFTS

In this section, we consider a particle influenced by
a new non-central potential, dubbed the double-ring-
shaped polynomial field potential, which is obtained from
Eq. (1) with

V1(r) = a + b · r + c · r2, , (5)

V2(θ) =
(

B

sin2(θ)
+

A(A − 1)
cos2(θ)

)
, (6)

V3(ϕ) =
(

α2D(D − 1)
sin2(αϕ)

+
α2C(C − 1)
cos2(αϕ)

)
, (7)

where the parameters are chosen as A,C,D > 1; a, b, B ≥
0; c = 1

2m0ω
2, α = 1, 2, 3, · · · . When a = b = 0 and

D = C = 1, the potentia reduces to a double-ring-
shaped oscillator potential. Also, when a = b = B = 0
and A = C = D = 1, it reduces to a spherical oscil-
lator potential, which is considered as one of the most
important models in classical and quantum physics. In
the subsequent subsections, we are going to study the
scattering states of the Schrödinger equation with the
double-ring-shaped polynomial field potential in spheri-
cal coordinates.

1. Exact Solutions of the First Angular Equa-
tion

We start our investigation with the angular, ϕ, part of
the Schrödinger equation. After introducing the shape
form of the potential shown in Eq. (7) into Eq. (4), we
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get[
d2

dϕ2
+ Λ2 − 2m0

�2

(
α2D(D − 1)

sin2(αϕ)

+
α2C(C − 1)
cos2(αϕ)

)]
Φ(ϕ) = 0. (8)

With a new variable x = sin(αϕ)2, this equation trans-
forms into

d2Φ(x)
dx2

+
1
2 − x

x(1 − x)
dΦ(x)

dx
+

(−ξ2
1x2 + ξ2

2x − ξ2
3)

x2(1 − x)2
Φ(x) = 0,

(9)

with

ξ2
1 =

Λ2

4α2
, (10)

ξ2
2 =

m0

2�2
(D(D − 1) − C(C − 1)) +

Λ2

4α2
, (11)

ξ2
3 =

m0

2�2
D(D − 1). (12)

According to the Nikiforov-Uvarov procedure, the result-
ing energy eigenvalues are

n2
ϕ + (2nϕ + 1)

((
1
16

+
(
ξ2
1 + ξ2

3 − ξ2
2

)) 1
2

+
(

1
16

+ ξ2
3

) 1
2

+
1
2

)
+ 2

(
1
16

+
(
ξ2
1 + ξ2

3 − ξ2
2

)) 1
2
(

1
16

+ ξ2
3

) 1
2

+
(

2ξ2
3 − ξ2

2 − 1
8

)
= 0. (13)

Replacing ξ1, ξ2 and ξ3 by their expressions given in Eq. (10), Eq. (11) and Eq. (12) respectively, we finally derive
the exact formula for Λ:

Λ = ±α

⎛
⎝

√
1 + 8m0C(C−1)

�2

2
+

√
1 + 8m0D(D−1)

�2

2
+ 2nϕ + 1

⎞
⎠ , nϕ = 0, 1, 2, · · · , (14)

which exactly reproduce the result reported in [26]. The corresponding eigenfunctions of Eq. (9) read as

Φ(x) = x
1
2+( 1

16+ξ2
3)

1
2 (1 − x)

1
4+( 1

16+ξ2
1+ξ2

3−ξ2
2)

1
2

P

(
( 1

4+4ξ2
3)

1
2 ,( 1

4+4(ξ2
1+ξ2

2−ξ2
3))

1
2

)
nϕ (1 − 2x) , (15)

where P
(a,b)
n (z) is the generalized Jacobi functions.

2. Exact Solutions of the Second Angular Equa-
tion

The substitution of the potential in Eq. (5) into Eq.
(2) leads to the following differential equation:[

d2

dθ2
+ cot(θ)

d

dθ
+ L2 − Λ2

sin2(θ)

− 2m0

�2

{
B

sin2(θ)
+

A(A − 1)
cos2(θ)

}]
Θ(θ) = 0. (16)

To solve this equation, we also introduce the transforma-
tion z = cos(θ)2, and obtain

d2Θ(z)
dz2

+
1 − 3

2z

z(1 − z)
dΘ(z)

dz
+

(−χ2
1z

2 + χ2
2z − χ2

3

)
z2(1 − z)2

Θ(z) = 0,

(17)
with

χ2
1 =

L2

4
=

	(	 + 1)
4

, (18)

χ2
2 =

m0

2�2
(B − A (A − 1)) +

1
4
(
L2 + Λ2

)
, (19)

χ2
3 =

m0

2�2
B +

Λ2

4
. (20)

Like Eq. (9), the eigenfunctions of Eq. (17) are the
generalized Jacobi functions:



-1622- Journal of the Korean Physical Society, Vol. 69, No. 11, December 2016

Θ(z) = zχ3 (1 − z)
1
4+( 1

16+χ2
1+χ2

3−χ2
2)

1
2

P

(
2χ3,( 1

4+4(χ2
1+χ2

2−χ2
3))

1
2

)
nθ (1 − 2z) , (21)

and the corresponding eigenvalues are solutions of the equation

1
2
nθ + n2

θ + (2nθ + 1)

((
1
16

+ χ2
1 + χ2

3 − χ2
2

) 1
2

+ χ3 +
1
4

)
+ 2χ3

(
1
16

+ χ2
1 + χ2

3 − χ2
2

) 1
2

+ 2χ2
3 − χ2

2 = 0. (22)

Replacing χ1, χ2 and χ2 by their expressions shown in
Eq. (18), Eq. (19) and Eq. (20), respectively, we finally
obtain the full expression for 	:

	 =
1 +

√
1 + 8m0A(A−1)

�2

2
+

√
Λ2 +

2m0B

�2
+ 2nθ,

nθ = 0, 1, 2, · · · , (23)

which again coincides with the formula derived in [26] by
using the asymptotic iteration method.

3. SCATTERING PHASE SHIFTS

In order to study the scattering states and the phase
shifts in the problem of a position-dependent-mass
Schrödinger equation with a double-ring-shaped polyno-
mial field potential given by Eq.(1), we must define the
deformation function f(r). Thus, in this section, we use
a simple linear representation [26]

f(r) = 1 + f0r. (24)

By substituting f(r) into Eq. (2) and by using the
potential in Eq. (5), the confluent form of Heun’s differ-
ential equation show up:[

d2

dr2
+

2m0

�2(1 + f0r)2
(
E − a − cr2 − br

− �
2

2m0
P

)
− Q

r(1 + f0r)
− L2

r2

]
U(r) = 0, (25)

with

P =
[(

1
2
− λ

)(
1
2
− δ

)
− 1

4

]
f0,

Q = [2 − δ − λ] f0. (26)

This equation is not easy to solve; however because we
are dealing with scattering states, we can safely neglect
the in front of the term f0r; in Eq. (25) with f0 > 0.
Consequently, the above Heun’s equation simplifies to
the following differential equation:[

d2

dr2
+

(
−	′ (	′ + 1)

r2
+ K̄2 +

2Λ̄
r

)]
Un,�′(r) = 0, (27)

with

	′ (	′ + 1)

= 	(	 + 1) − 2m0

�2

(
E − a

f2
0

)

+
(

1
2
− δ

)(
1
2
− λ

)
− (λ + δ) +

7
4
, (28)

Λ̄ = −m0

�2

b

f2
0

, (29)

K̄2 = −m0

�2

2c

f2
0

. (30)

Notice here that the 	′ parameter plays the role of the
orbital angular momentum in problems with spherical
central potentials. Having in mind the boundary condi-
tions of the scattering states, i.e., Un,�′(r = 0) = 0, we
use the following ansatz for the asymptotic behavior of
the wave function at the origin [28]:

Un,�′(r) = A · (K̄r)�′+1eiK̄rξn,�′(r). (31)

Insertion of Eq. (31) into Eq. (27) results in[
r

d2

dr2
+

(
2	′ + 2iK̄r + 2

) d

dr

+
(
2Λ̄ + 2iK̄ (	′ + 1)

)]
ξn,�′(r) = 0. (32)

If, in addition, we introduce a new variable s = −2iK̄r,
then Eq. (32) can be alternatively written as[
s

d2

ds2
+ (2	′ + 2 − s)

d

ds
+

(
	′ + 1 − i

Λ̄
K̄

)]
ξn,�′(s) = 0,

(33)

with s = |s|e−i π
2 . Eq. (33) is just the confluent Hy-

pergeometric equation. The general form of confluent
hypergeometric can be written as

z
d2w

dz2
+ (b − z)

dw

dz
− aw = 0.

where a and b are constant, the solution to the above
equation can be written with the aid of Kummer’s func-
tions as

M (a, b, z) =
∞∑

n=0

(
a(n)zn

b(n)n!

)
= 1F1 (a, b, z) ,
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Comparing (33) with the general form of the confluent
hypergeometric differential equation results in, as r → 0,

ξn,�′(s) = 1F1

(
	′ + 1 − i

Λ̄
K̄

, 2	′ + 2,−2iK̄r

)
. (34)

Therefore, our analytical expression for the radial wave
function for the scattering states that are obtained by
substituting Eq. (34) into Eq. (31), as follows:

Un,�′(r) = A · (K̄r)�′+1eiK̄r
1F1(

	′ + 1 − i
Λ̄
K̄

, 2	′ + 2,−2iK̄r

)
. (35)

Now, we want to obtain the asymptotic behavior of
the wave function for r → 0, and then calculate the nor-
malization constant and the phase shifts. To this end,

we use the transformation formulae for the confluent hy-
pergeometric function when s → ∞:

1F1 (α, γ, s) =
Γ(γ)
Γ(α)

essα−γ +
Γ(γ)

Γ(γ − α)
e±iπαs−α, (36)

where “+” and “−” correspond to arg(s) ∈ −π/2, 3π/2
and arg(s) ∈ −3π/2, π/2, respectively. By with the sub-
stitution s = |s|e−i π

2 , Eq. (36) can be re-expressed as

1F1 (α, γ, s) =
Γ(γ)
Γ(α)

es|s|α−γe−i(α−γ)π/2

+
Γ(γ)

Γ(γ − α)
eiπα/2|s|−α, (37)

from which we obtain

1F1

(
	′ + 1 − i

Λ̄
K̄

, 2	′ + 2,−2iK̄r

)
=

Γ(2	′ + 2)

Γ(	′ + 1 − i Λ̄
K̄

)
e−2iK̄

(
2K̄r

)−(�′+1+iΛ̄/K̄)
ei(�′+1+iΛ̄/K̄)π/2

+
Γ(2	′ + 2)

Γ(	′ + 1 + i Λ̄
K̄

)

(
2K̄r

)−(�′+1−iΛ̄/K̄)
e−i(�′+1−iΛ̄/K̄)π/2. (38)

Because

Γ
(

	′ + 1 − i
Λ̄
K̄

)
=

∣∣∣∣Γ
(

	′ + 1 − i
Λ̄
K̄

)∣∣∣∣ eiδ′
, δ′� = arg

(
Γ
(

	′ + 1 − i
Λ̄
K̄

))
(39)

and

Γ
(

	′ + 1 + i
Λ̄
K̄

)
=

∣∣∣∣Γ
(

	′ + 1 − i
Λ̄
K̄

)∣∣∣∣ e−iδ′
, (40)

where δ′ is a real number, Eq. (38) becomes

1F1

(
	′ + 1 − i Λ̄

K̄
, 2	′ + 2,−2iK̄r

)
= Γ(2�′+2)

Γ(�′+1−i Λ̄
K̄

)

(
e
− Λ̄π

2K̄ ·e−iK̄r

(2K̄r)�′+1

)
× 2 sin

(
K̄r + Λ̄ ln(2K̄r)/K̄ + δ′ − 	′π/2 − π/2

)
.

By putting Eq. (41) into Eq. (35), we get

Un,�′(r → ∞) = A · Γ(2	′ + 2)

Γ(	′ + 1 − i Λ̄
K̄

)

(
e−

Λ̄π
2K̄

(2)�′+1

)
2 sin

(
K̄r + Λ̄ ln(2K̄r)/K̄ + δ′ − 	′π/2

)
. (41)

On the other hand, by using the asymptotic behavior

Un,�(r → ∞) = 2 sin
(
K̄r + Λ̄ ln(2K̄r)/K̄ + δ� − 	π/2

)
(42)

and by comparing the arguments of the sine terms in
Eqs. (41) and (42), one can derive the phase shifts

δ� =
π(	 − 	′)

2
+ δ′�, (43)

where 	′ is given by Eq. (28). The normalization con-
stant can also be evaluated by comparing the coefficients
of the sine terms in Eqs. (41) and (42) as

A =
Γ
(
	′ + 1 − i Λ̄

K̄

)
Γ(2	′ + 2)

2(�′+1)e
πΛ̄
2K̄ . (44)
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IV. CONCLUSION

In this paper, we have considered the time-
independent Schrödinger equation with a position-
dependent effective mass in a non-central potential. Us-
ing the potential form proposed in [26], we separated the
deformed Schrödinger equation in all coordinates. Then
the radial solution, as well as the exact analytical angular
solution, is obtained. We have also studied the scatter-
ing states of the deformed Schrödinger equation under
a non-central effective potential and derived the energy
eigenvalues and the normalization constant of the radial
wave functions, as well as the scattering phase shifts.
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