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with Eu?" or Ce?*
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Eu®T-or Ce*T-doped gadolinium gallium aluminum garnet (GGAG), Gd3GagAl30;2, phosphors
are fabricated using solid-state reactions with Gd2O3s, Ga203, AloO3, CeO2 and EuzO3 powders.
The Eu®t-or Ce3+—doped Gd3GagAl3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours
by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning
electron microscopy studies are carried out in order to analyze the physical properties of these ma-
terials, and their luminescence properties are also measured by using UV and X-ray sources. The
Eu®t-or Ce3T-doped GdzGasAlzO12 phosphors show higher light yields in comparison to commer-
cial phosphors such as Gd202S:Tb (gadox). This indicates that Gd5GasAl;010:Eut phosphors

are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

PACS numbers: 29.40.Mc, 78.55.Hx, 81.05.Pj

Keywords: GdsGazAlzO1q2, Phosphor, Eudt, Ce3+

DOI: 10.3938/jkps.69.1110

I. INTRODUCTION

In recent years, phosphor materials have begun to
draw more research attention due to their various poten-
tial applications in the field of medical imaging. Medical
imaging techniques such as positron emission tomogra-
phy (PET) and X-ray computed tomography (CT) have
seen increased development since the X-ray was discov-
ered in 1985 [1]. While BGO (BisGe3012) has tradition-
ally been one of the most effective scintillators used in
medical imaging techniques, the use of garnet materials
has attracted more research attention in the late 20"
century [1]. In particular, yttrium silicate (Y2SiO5:Ce)
or yttrium aluminum garnet doped with Ce (YAlO3:Ce)
have been shown to be suitable for beam-index-type
cathode-ray tubes or flying spot scanner because of the
fast decay time (about 1077 to 107® s) of the 5d-4f tran-
sition [1]. Numerous studies have shown that Ce-doped
scintillators have various other advantages apart from
this fast decay time; for example, Ce?>*-doped lanthanide
phosphors are well known as efficient light-emitting ma-
terials because of the large energy band gap from °d; to
the nearest level (?F7 /5 level) [1]. Thus, the Ce* ion is
drawing more attention in the field of high-energy physics
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due to this fast decay time and efficient UV luminescence.
However, commercial Y5SiO5:Ce3t and YA1O5:Ce3t are
low-density materials, and this low density imparts con-
siderable defects in the X-ray and gamma-ray transmit-
tance onto these materials. Effective phosphor have sev-
eral required characteristics, such as strong X-ray ab-
sorption, high emission efficiency, short emission decay
time, a match between the emission spectrum and the
spectral sensitivity of the radiographic film, and the
durability and dispersion of the material [2]. Continuous
research is required to develop more efficient phosphor
as these materials minimize the X-ray radiation expo-
sure experienced by patients during medical imaging.
Because of the advantages stated above, rare-earth-
doped phosphors are seen as attractive materials for po-
tential use in this field. For example, a gadolinium-oxide
(Gda03: 7.4 g/cm?)-containing Gd3GagAl3O12 phos-
phor has shown excellent absorption efficiency for X-
ray or gamma-ray radiation compared to other similar
materials [2]. In a similar vein, the luminescence prop-
erties of Ce3*-or B3+-doped Gd3GayAl3015 phosphors
and Ce-doped Gds(Ga,Al)5012 single crystals have also
been examined [1,3,4]. This report, however, presents
what is, to the best of our knowledge, the first study of
a Eu?t-doped Gd3GagAl3015 phosphor. The Eu3t ion
is a well-known activator for commercial phosphors that
emit wavelengths of approximately 600 nm (red light),
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and a number of these emission lines are caused by 5D;
to “F; transitions [6]. In a similar manner, the Ce3"
ion shows a dipole-allowed 5d to 4f transition energy at
approximately 550 nm (yellow light). The rare-earth-
doped phosphors can be used in various other industrial
applications, such as in cathode-ray tubes, lamps, fluo-
rescent displays, X-ray fluorescent screens, and luminous
paints [1]. They can also be used for proton, electron
and heavy-ion beam position monitoring. The aim of
this study is to examine the X-ray and the UV lumines-
cence properties of Ce-or Eu-doped gadolinium gallium
aluminum garnet synthesized using solid-state reactions
with Gngg, Ga203, A1203, CGOQ and EUQ03 powders.

II. EXPERIMENTAL

The Eu?t-or Ce3*-doped Gd;GasAl;0;5 phosphors
were synthesized using conventional solid-state reactions
with a horizontal electric furnace. The starting materials
were gadolinium oxide (GdzOs, 99.99%), aluminum ox-
ide (Al503, 99.99%), gallium oxide (GasOs3, 99.99%), eu-
ropium oxide (EuzOs3, 99.99%) and cerium oxide (CeOq,
99.99%). The mixtures were blended via ball milling and
sintered at 1300 and 1600 °C for 5 h, respectively, under
a normal atmosphere. Powder X-ray diffraction (XRD,
Panalytical X'Pert Pro) and field-emission scanning elec-
tron microscopy (FE-SEM) were performed to analyze
these materials. For the XRD analysis, a Cu-Ka X-ray
source was used with a scan range of 20 ~ 80° (26), a
scan speed of 0.02° /s, and a step size of 0.01°. The accel-
erating voltage and the tube current were 40 kV and 30
mA, respectively. Luminescence spectra were collected
using a Xe-lamp and an X-ray source. For the photolu-
minescence spectra, a Fluorolog-3 spectrofluorimeter was
used in conjunction with a Xe-lamp. The X-ray-excited
radio-luminescence spectra were collected and analyzed
with an Ocean Optics QE-65000 spectrometer. The X-
ray tube current and the accelerating voltage were ad-
justed to 65 kV and 1 mA, respectively.

III. RESULT AND DISCUSSION

The X-ray diffraction patterns of the Gd3GasAl3Oq5
phosphors are shown in Fig. 1. In this figure, Eu*t -
or Ce?t-doped GdzGagAl3015 phosphors are compared
with the standard spectrum (PDF # 046-0448). The
results of the XRD analysis showed that no extra peaks
that corresponded to the starting materials, and all the
patterns were in agreement with the reference PDF data.

Figure 2 shows the X-ray-excited luminescence spec-
trum of the Eu3t-doped Gd3GagAl3015 phosphors. The
emission spectrum of the GdzGagAl3O15:Eut phosphor
shows 5Dj to 7Fj transitions. Among these sharp peaks,
the strongest peak is observed at 708 nm due to the °D,
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Fig. 1. (Color online) XRD patterns of Eu®*T-or Ce*'-
doped GdsGazAl3O12 phosphors and of standard PDF card
# 046—0448(Gd3Ga2A13012).
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Fig. 2. (Color online) Emission spectra of the Eu®*" doped
Gd3sGagAl3O12 phosphors excited by X-rays.

to "F, transitions. Others are observed at 590 and 594
nm due to the °D, to “F; transition, at 608, 613 and 628
nm due to the °D,, to "Fy transition, at 648 and 653 nm
due to the °D, to “F3 transition, at 682, 694, 698 and
707 nm due to the °D, to "F, transition and at 742 nm
due to the °D, to "Fj transition [6-9].

The photoluminescence emission and excitation spec-
tra of the Eut -doped Gds3GasAl30q5 phosphor
are shown in Fig. 3, and the X-ray-excited radio-
luminescence and UV-excited photoluminescence are
compared to each other. While the wavelengths of the
emission peaks are coincident for the radio-luminescence
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Fig. 3. (Color online) Photoluminescence (a) excitation
and (b) emission spectra of the GdzGazAl3012:Eu®" phos-
phor.

and the photoluminescence observations, the intensi-
ties of the luminescence peaks do not corresponded ex-
actly to each other. The UV-excited emission spectrum,
Fig. 3(b), shows several sharp peaks that arise from dif-
ferent 5Dg to 7Fj transitions, the strongest of which is
due to the °Dy to “F; transition at 590 nm. Other inci-
dent peaks from the Dy to “F, transition are observed
at 608, 613 and 628 nm, these from the °Dg to "F3 tran-
sition are observed at 648 & 653 nm, and these from the
5Dy to “F4 transition are observed at 694 and 707 nm.
The excitation spectrum, Fig. 2(a) at a wavelength of 590
nm shows sharp peaks and broad bands, the strongest of
which is located at 313 nm (associated with the "Fy to
H; transition). Others occur at 299 nm ("Fy to °Fy),
302 and 307 nm ("F to °Fa_3), 320 and 327 nm ("Fg 1to
°H;), 362 and 366 nm ("Fo 1 to 5Dy4), 380 nm (“Fo; to
°G;), 393 and 404 nm ("Fo; to 5Lg), 410 and 416 nm
("Fo,1 to °D3), and 465 nm ("Fg; to °Dg) [6-9,11,12].
The X-ray-excited luminescence spectrum of the Ce3+
-doped Gd3GasAl3Oq5 phosphor is shown in Fig. 4,
where the characteristic emission band of the Ce?* 5d-4f
transition is observed between 500 and 750 nm [15]. The
broad band of the Ce?*-doped Gd3GayAl3015 phosphor,
as caused by using 454 nm-excitation, is also shown in
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Fig. 4. (Color online) Emission spectra of the Ce®*"-doped
GdsGazAl3012 phosphors excited by X-rays.
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Fig. 5. (Color online) Photoluminescence (a) excitation
and (b) emission spectra of the Gd3GagAl;O12:Ce®T phos-
phor.

Fig. 5(b). Figure 5 shows the emission and the excitation
spectra of Ce3*-doped GdzGagAlzOq5 phosphor as in-
duced by UV radiation. The ground state of Ce3T shows
two spin-orbital splitting energy levels corresponding to
?F5 /5 and *F75 [1,5,10,13-15]. The UV excitation spec-
trum, Fig. 5(a) from the 550 nm excitation shows two
broad bands, 320 to 360 nm (UV light) and 400 to 500
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Fig. 6. (Color online) Relative light yields of Eu*T-or
Ce3+-doped GdsGagAl3O12 phosphors compared with that
of commercial Gd202S:Th.

Fig. 7.

FE-SEM images of Eu®t-or Ce®*'-doped
Gd3GazAl3012 phosphors and the Gd202S:Tb phosphor (ga-
dox).

nm (blue light), due to ?F5 /5 and ?F7 /5 to °D states, re-
spectively. The energy gap from °D; to 2F; /2 is so large
that the 5d state offers efficient light emission [1].

In X-ray imaging fields, efficient light yield is the
most important property for an imaging agent. Figure
6 shows the relative light yield of the Eu?t-or Ce3*-
doped Gd3zGasAl3Oqo phosphors compared to relative
light yield of commercial Gd202S:Tbh (gadox); this ma-
terial is widely used as a green phosphor in projec-
tion CRTs and as a scintillator for X-ray imaging de-
tectors in medical diagnostics because of the high den-
sity (7.34 g/cm?®) of Gd202S:Thb [16,17]. Eudt-or Ce?*-
activated Gd3GagAl3O1o phosphors show 127% and 89%
light yields in comparison to GdsO5S:Th, respectively,
demonstrating that Eu?t activated Gd3GayAlzO15 phos-
phor is better than commercialized Gd2O5S:Tb in terms
of light yield efficiency. FE-SEM images of these mate-
rials are presented Fig. 7, comparing the Eut-or Ce3*-
activated Gd3GagAl3012 phosphors with GdyO5S:Th.
These images show the grain size and the grain shape
of the phosphors on a scale of 5 ym while the grain
sizes of the Gdy05S:Tb phosphor and the Eu*-or Ce3*-
activated Gd3GagAl3012 phosphors are measured on a
much larger scale.
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IV. CONCLUSIONS

In this research, we studied the optical properties of
Eu?t-or Ce?t-activated Gd3GayAl301o phosphors, and
to our knowledge, this is the first time such a study has
been carried out on an Eu®t-activated Gd3GasAlsOqs
phosphor. The UV-excited photoluminescence and X-
ray-excited radio-luminescence were compared to each
other. The Gd3GagAl3015:Eut phosphor shows 5Dj to
"F; transitions at approximately 550 to 750 nm. The
wavelengths of the red region are well matched with the
quantum efficiency of the typical charge coupled device
(CCD), and the Ce?T-doped Gd3GagAl3O12 phosphor
shows yellow luminescence between 500 and 750 nm due
to the 5d — 4f transition [17]. The relative light yield
was measured and comparied to that of commercially-
available gadox (Gda02S:Th). For a more detailed com-
parison between gadox and the fabricated phosphors, the
grain size was measured as it has a strong influence on
the light yield of the material [17], the Eu®-activated
Gd3GagAl30;15 phosphors were found to show greater
light efficiency than the Gd202S:Th. This indicates that
the Eu?t-activated Gd3GasAl;O15 phosphor is a promis-
ing material for X-ray imaging and beam position mon-
itoring at the beamline.
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