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Nonplanar Ion-acoustic Shock Waves in a Multi-ion Plasma with
Nonextensive Electrons and Positrons
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The basic features of ion-acoustic shock waves (IASHWs) in a multi-ion nonextensive plasma
(containing positive light ions, negative heavy ions, as well as nonextensive electrons and positrons)
have been rigorously investigated in a nonplanar geometry. The standard reductive perturbation
method has been employed to derive the Modified Burgers (MB) equation. The combined effects
of the electron and positron nonextensivity, and the ion kinematic viscosity significantly have been
found to modify the basic properties of these electrostatic shock structures. The properties of
the cylindrical and the spherical IASHWs are observed to differ significantly from those of one-
dimensional planar waves. The findings obtained from this theoretical investigation may be useful
in understanding the characteristics of IASHWs both in space and laboratory plasmas.
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I. INTRODUCTION

The so-called ion-acoustic (IA) waves are low-
frequency longitudinal plasma density oscillations. In
these oscillations, electrons and ions are propagating in
the phase space [1,2]. The IA waves were predicted first
by Tonks and Langumir based on fluid dynamics [3]. The
first experimental observation of IA waves was reported
in Ref. 4 [4]. Two models for the IA waves [5] are based
on: the continuum models, in which the plasma is treated
as a fluid and fluid dynamics is used for theoretical stud-
ies and models based on the kinetic equations in statis-
tical theory, where the distribution functions are used to
describe the properties of the IA waves.

Nowadays, research works on the nonlinear propaga-
tion of shock waves (SHWs) in electron-positron-ion (e-
p-i) plasmas have received a considerable attention be-
cause of the importance of understanding the behav-
ior of space plasmas viz. supernovas, pulsar environ-
ments, cluster explosions, and active galactic nuclei [6–8].
Some theoretical investigations [9–11] have been made
on the nonlinear propagation of ion-acoustic shock waves
(IASHWs) in e-p-i plasmas. Electron-positron (e-p) plas-
mas have been observed to behave differently as opposed
to typical electron-ion (e-i) plasmas [12,13]. An interest-
ing aspect of an e-p plasma in comparison to the usual e-i
plasma is the fact that the components of an e-p plasma
have the same mass and equal magnitude of the charge.
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Much research has been carried on e-p and e-p-i plasmas
in the last few years [14–16]. For instance, Nejoh [14]
investigated the effect of ion temperature on the large
amplitude IA waves in e-p-i plasmas. Mushtaq and Shah
[16] studied the effect of positron concentration on the
nonlinear propagation of two-dimensional magnetosonic
waves and found that the waves in an e-p-i plasma be-
haved quite differently from those in an ordinary e-i
plasma. Recently, Ferdousi et al. [17, 18] studied the
characteristics of planar and nonplanar IASHWs in an
e-p-i plasma with nonextensive electrons and positrons.

Because in many cases, the wave structures observed
in space or laboratory devices are certainly not infinite
(unbounded) in one dimension [19], one should consider
nonplanar geometries, specially cylindrical (ν = 1) and
spherical (ν = 2). The nonplanar geometries of practi-
cal interest are capsule implosion (spherical geometry),
shock tubes (cylindrical geometry), star formation, su-
pernova explosions, etc. Some of the investigations on
nonplanar IASHWs in e-p-i plasmas are reported here.
Moslem et al. [20] used cylindrical geometry to study the
propagation of nonlinear excitations in an e-p-i plasma in
the inner region of the accretion disc. Masood et al. [21]
studied the propagation of nonlinear IASHWs in planar
and nonplanar geometries and found that the strength of
IASHWs was maximum for spherical geometry, interme-
diate for cylindrical geometry, and minimum for planar
geometry. These works [22–24] are concerned with non-
planar IASHWs in e-p-i plasmas.

At the present time, significant attention has been de-
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voted to the study of wave propagation in multi-ion plas-
mas because of its (wave propagation) vital role in under-
standing different types of collective processes in space
environments [25–27] as well as in laboratory devices [28–
30]. In different situations like plasma processing reac-
tors [31], neutral beam sources [32], low-temperature lab-
oratory experiments [33], etc., positive-negative ion plas-
mas have been found to exist. The presence of negative
ions in Earth’s ionosphere [34] and cometary comae [35]
is well known. The importance of negative-ion plasmas
to the field of plasma physics is growing because nega-
tive ions have been found to outperform positive ions in
plasma etching.

The nonextensive distribution (q-distribution) [36] is
the most generalized distribution for the study of the
nonlinear properties of SHWs in different plasma sys-
tems. The study of nonextensive plasmas [36] has re-
ceived a great deal of attention from plasma physics re-
searchers due to their relevance to astrophysical and cos-
mological scenarios like protoneutron stars [37], stellar
polytropes [38], hadronic matter and quark-gluon plas-
mas [39], dark-matter halos [40], etc. Different types
of waves have been studied in nonextensive plasmas by
many authors who considered one or two components to
be nonextensive [17,41–44].

Therefore, in our present work, we have considered
a four-component plasma system consisting of positive
light ions, negative heavy ions, nonextensive electrons,
and nonextensive positrons. The aim of this paper is to
study the effects of a nonplanar geometry, the nonex-
tensivity of electrons and positrons, and the kinematic
viscosity of ions on the basic features (viz. polarity,
amplitude, width, speed, etc.) of IASHWs in multi-ion
nonextensive plasma systems. The manuscript is orga-
nized as follows: The governing equations are provided
in Section II. The Modified Burgers (MB) equation is
derived by using the reductive perturbation method in
Section III. A brief discussion is given in Section IV.

II. GOVERNING EQUATIONS

We consider a nonplanar (cylindrical or spherical) ge-
ometry and nonlinear propagation of the IA waves in a
four-component plasma system consisting of inertial pos-
itive light ions, negative heavy ions, noninertial nonex-
tensive electrons, and nonextensive positrons. Thus, the
equilibrium charge neutrality condition is Zini0 + np0 =
Zhnh0 + ne0, where ns0 is the unperturbed number den-
sities of the species s (here s = i, h, e, p for positive
light ions, negative heavy ions, electrons, and positrons,
respectively) and Zi (Zh) is the number of light pos-
itive ions (heavy negative ions). The electrons and the
positrons are assumed to obey nonextensive distributions
on the IA wave’s time scale, and their number densities

are given by the following expressions, respectively:

ne = ne0[(1 + (q − 1)ψ]
1+q

2(q−1) ,

np = np0[(1 − (q − 1)ψ]
1+q

2(q−1) ,

where q is the nonextensive parameter describing the
degree of nonextensivity, i.e., q = 1 corresponds to a
Maxwellian distribution and q < (> 1) denotes the
nonextensive distribution. The parameters ne and np

are the number densities of perturbed electrons and
positrons. The normalized basic equations governing the
dynamics of the IA waves in a nonplanar geometry, are
given in dimensionless variables as follows:

∂ni,h
∂t

+
1
rν

∂

∂r
(rνni,hui,h) = 0, (1)

∂ui

∂t
+ ui

∂ui

∂r
= −∂ψ

∂r
+ η

∂2ui

∂r2
, (2)

∂uh

∂t
+ uh

∂uh

∂r
= α

∂ψ

∂r
+ η

∂2uh

∂r2
, (3)

1
rν

∂

∂r

(
rν ∂ψ

∂r

)
= −ni + μe[1 + (q − 1)ψ]

(q+1)
2(q−1)

− μp[1 − (q − 1)σψ]
(q+1)
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We note that ν = 0 for a 1 dimensional (1D) pla-
nar geometry, and ν = 1(2) for a nonplanar cylindri-
cal (spherical) geometry. Here, ni,h are the number
densities of light positive ions and heavy negative ions
normalized by their equilibrium values ni0,h0, ui(uh) is
the positive (negative) ion fluid speed normalized by
Ci = (kBTe/mi)1/2, ψ is the electrostatic wave poten-
tial normalized by kBTe/e, and η is the viscosity coef-
ficient normalized by minioωpiλ

2
D. The time variable

t and the space variable r are normalized by ω−1
pi =

(mi/4πnioe
2)1/2 and λD = (kBTe/4πe2nio)1/2, respec-

tively, where kB is the Boltzmann constant, Te is the
electron temperature, and e is the magnitude of the elec-
tric charge. We have defined the following parameters:
μe = neo/nio (electron number density to ion number
density), μp = npo/nio (positron number density to ion
number density), σ = Te/Tp (electron temperature to
positron temperature), and α = Zhmi/Zimh, where mi

(mh) is the mass of light positive ions (heavy negative
ions).

III. FORMATION OF SHOCK WAVES

To study the finite amplitude electrostatic IASHWs by
analyzing the ingoing SHWs of Eqs. (1)−(4), we employ
the reductive perturbation method (RPM) [45]. The
RPM is mostly applied to small amplitude nonlinear
waves [46]. This method rescales both space and time
in the governing equations of the system in order to in-
troduce space and time variables, which are appropriate
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Fig. 1. (Color online) The A = 0 graph which represents
the variation of qc with α, where qc is the critical value of q
above or below which positive or negative shock structures
are formed.

for the description of long-wavelength phenomena. Ac-
cording to this method, the independent variables are
stretched as

ξ = ε(r − Vpt), τ = ε2t, (5)

where ε is a smallness parameter measuring the weakness
of the dispersion (0 < ε < 1) and Vp is the phase speed of
the IA waves. We can expand the perturbed quantities
ni,h, ui, uh, and ψ asymtotically about the equilibrium
values in power series of ε as

ni,h = 1 + εn
(1)
i,h + ε2n

(2)
i,h + · · ·, (6)

ui = 0 + εu
(1)
i + ε2u

(2)
i + · · ·, (7)

uh = 0 + εu
(1)
h + ε2u

(2)
h + · · ·, (8)

ψ = 0 + εψ(1) + ε2ψ(2) + · · ·, (9)

and develop equations in various powers of ε. To the
lowest order in ε, Eqs. (1)-(4) give

u
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ψ(1)
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, u

(1)
h = −αψ

(1)

Vp
, (10)
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, (11)

Vp =

√
2(1 + α− αμe + αμp)

(q + 1)(μe + μpσ)
. (12)

Equation (12) represents the linear dispersion relation
for the IA waves significantly modified by the electron
and the positron nonextensivity. To the next higher
order of ε, i.e., taking the coefficients of ε3 from both
sides of Eqs. (1)−(3) and ε2 from both sides of Eq. (4),
one may obtain another set of simultaneous equations
for ψ(1) = ψ, ψ(2), ni,

(2)
h , u(2)

i , and u
(2)
h . Invoking this

different set of equations which contain coupled sets of
parameters viz. as the first-order and second-order per-
turbed quantities of the ion density, as well as the ion
fluid speed, and characterizing wave potential, we finally

Fig. 2. (Color online) Numerical solution of Eq. (13) in a
planar geometry (ν = 0) for a positive potential shock profile
with q = 0.9, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1, η = 0.1,
and U0 = 0.01.

deduce the cylindrical and the spherical MB equation for
the propagation of IA waves in the considered plasma
system as

∂ψ

∂τ
+

ν

2τ
ψ +Aψ

∂ψ

∂ξ
= B

∂2ψ

∂ξ2
, (13)

where the nonlinear coefficient A and the dissipative co-
efficient B are given by
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× 1
4
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]
, (14)

B =
η

2
. (15)

Equation (13) is the MB equation modified by an extra
term (viz. ν

2τ ψ) arising due to the effect of the nonplanar
cylindrical (ν = 1) or spherical (ν = 2) geometry.

An exact analytic solution of Eq. (13) is not possi-
ble. Therefore, we have numerically solved Eq. (13) and
have studied the effects of cylindrical (ν = 1) and spher-
ical (ν = 2) geometries on the time-dependent IASHWs
in the presence of nonextensive electrons and nonexten-
sive positrons. We have already mentioned that ν = 0
corresponds to a 1D planar geometry which reduces
Eq. (13) to a standard Burgers equation. Obviously from
Eq. (13), the nonplanar geometrical effect is important
when τ → 0 and weaker for larger values of | τ |. At
first, we consider a 1D planar geometry (ν = 0) and ex-
amine the basic features of the shock wave solution of
the MB equation. The stationary shock wave solution of
Eq. (13) in a planar geometry (ν = 0) without the term
( ν
2τ ψ) is

ψ(ν = 0) = ψm[1 − tanh(ξ/Δ)], (16)
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Fig. 3. (Color online) Numerical solution of Eq. (13) in a
planar geometry (ν = 0) for a negative potential shock profile
with q = 0.4, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1, η = 0.1,
and U0 = 0.01.

Fig. 4. (Color online) Numerical solution of Eq. (13) in
a cylindrical geometry (ν = 1) for a positive potential shock
profile with q = 0.9, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1,
η = 0.1, and U0 = 0.01.

where the shock wave’s amplitude ψm = U0/A, and its
width Δ = 2B/U0. Obvious from ψm = U0/A, ψm → ∞
as A→ 0. This means that our theory is not valid when
A ∼ 0, which makes the amplitude extremely large and
breaks down the validity of the reductive perturbation
method. We note here that the nonlinearity coefficient A
is a function of μe, μp, σ, α, and q. There, the parametric
regions corresponding to A = 0, we have to express one
(viz. qc) of these parameters in terms of the other (viz.
μe, μp, α, and σ). Therefore, A leads to the critical value
of q (long expression → omitted here), where qc is the
critical value of q above (below) which the SHWs with
a positive (negative) potential exists. We have found
numerically the critical value of q (q = qc = 0.6) for μp =
0.3, μe = 0.6, σ = 0.1, and α = 0.2. The parametric
region for this set of values is shown in Fig. 1. We choose

Fig. 5. (Color online) Numerical solution of Eq. (13) in
a cylindrical geometry (ν = 1) for a negative potential shock
profile with q = 0.4, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1,
η = 0.1, and U0 = 0.01.

Fig. 6. (Color online) Numerical solution of Eq. (13) in
a spherical geometry (ν = 2) for a positive potential shock
profile with q = 0.9, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1,
η = 0.1, and U0 = 0.01.

our initial pulse at τ = −25 and have observed that for
a large value of time, τ = −12, the cylindrical and the
spherical SHWs are similar to 1D SHWs.

The shock structures are depicted in Figs. (2)−(7),
which show how the effects of planar (ν = 0), cylindrical
(ν = 1), and spherical (ν = 2) geometries modify the
time-dependent IA shock structures. Figures 2, 4, and
6 show the positive potential shock profiles with τ and
ξ, respectively, for planar (ν = 0), cylindrical (ν = 1),
and spherical (ν = 2) geometries with q = 0.9, μp = 0.3,
μe = 0.6, α = 0.3, σ = 0.1, η = 0.1, and U0 = 0.01.
Figures 3, 5, and 7 show the negative potential shock
profile with τ and ξ, respectively, for planar (ν = 0),
cylindrical (ν = 1), and spherical (ν = 2) geometries
with q = 0.4, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1,
η = 0.1, and U0 = 0.01. Figure 8 shows the variation of
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Fig. 7. (Color online) Numerical solution of Eq. (13) in
a spherical geometry (ν = 2) for a negative potential shock
profile with q = 0.4, μp = 0.3, μe = 0.6, α = 0.3, σ = 0.1,
η = 0.1, and U0 = 0.01.

Fig. 8. (Color online) Variation of the shock’s width (�)
with η and U0.

the width (�) of the SHWs with the kinematic viscosity
(η).

IV. DISCUSSION

We have considered a four-component plasma system
(consisting of light positive ions, heavy negative ions,
nonextensive electrons, and nonextensive positrons) and
studied the effects of the nonextensivity of electrons and
positrons on the IASHWS in nonplanar geometries. We
have derived the modified Burgers equation by using the
reductive perturbation method and have numerically an-
alyzed that equation. The results that have been found
from our investigation can be summarized as follows:

1. The nonextensive plasmas under consideration
support finite-amplitude shock structures, whose
basic features (viz. polarity, amplitude, width,

etc.) strongly depend on different plasma
parameters, particularly, the electron-number-
density to ion-number-density ratio (via μe), the
positron-number-density to ion-number-density ra-
tio (via μp), the electron-temperature to positron-
temperature ratio (via σ), the ion’s kinematic vis-
cosity η, and the nonextensive index q.

2. The critical value of q, i.e., qc, is found to be 0.6
for μp = 0.3, μe = 0.6, σ = 0.1, and α = 0.2. The
variation of qc with α is shown in Fig. 1.

3. IASHWs with a positive potential exist for q > qc
while those with a negative potential exist for q <
qc. These are obvious from Figs. 2−7.

4. The time evolution of the nonplanar IASHWs is
observed to differ from that of the 1D planar
IASHWs. The characteristics of the SHWs are also
found to be influenced by time for both cylindrical
and spherical cases.

5. Equation (13) shows that ν
2τ ψ goes to infinity when

τ → 0. Therefore, this term is singular at τ = 0.
For large values of τ , this term vanishes, and we
have the usual Burgers equation. In the direction of
time, we can start from a sufficient large τ (like τ =
−25) where the term ν

2τ ψ is negligible. Obviously
from Eq. (13), the nonplanar geometrical effect is
important when τ → 0 and weaker for larger value
of τ .

6. The numerical solutions of Eq. (13) reveal that for
a large value of τ (e.g., τ = 15), the planar and
the nonplanar IASHWs are identical, but the am-
plitudes of both cylindrical and spherical IASHWs
increase with decreasing of the value of τ . How-
ever, as τ decreases, the term ν

2τ ψ becomes dom-
inant, and cylindrical and spherical SHWs differ
from 1D planar ones. The amplitudes of cylindri-
cal IASHWs are found to be larger than those of
1D planar ones, but smaller than those of spheri-
cal ones. The amplitudes of both cylindrical and
spherical IASHWs increase with decreasing τ (dis-
played in Figs. 4-7).

7. The height and the steepness of cylindrical shock
structures are larger than those of 1D shock struc-
tures, but smaller than those of spherical shock
structures. (depicted in Figs. 2−7).

8. Figure 8 shows the variation of the width (�) with
U0 for different values of η, where � increases with
the increasing η and decreases with increasing of
U0.

The important findings of our results are applicable
in various astrophysical objects like quasars, pulsars,
and active galactic nuclei [7], which contain e-p-i plas-
mas (for example, in the form of jets) in their vicini-
ties and may lead to the form stable shock structures
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[47]. We finally emphasize that the results of our inves-
tigation should be useful in understanding the nonlinear
features of localized electrostatic disturbances in labora-
tory and space plasmas, in which positively-charged and
negatively-charged ions, as well as nonextensive electrons
and nonextensive positrons are the major plasma species.
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