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We investigate the host-parasite coevolution with mutation in a single-locus system. We use the
single-locus quasi-species model with a frequency-dependent fitness landscape and find the phase
diagrams for given sets of evolution parameters by means of a linear stability analysis and numerical
solutions of the coevolutionary dynamics equations. For a large mutation rate, there is only one
internal fixed point. However, for a small mutation rate, within the linear order approximation, we
find four steady equilibrium points and one oscillatory equilibrium point. All fixed points show the
polymorphism in the host and the parasite populations in the presence of mutation whereas only one
oscillatory equilibrium point shows the polymorphism in the absence of mutation. By starting from
random initial host-parasite populations, we determine the separatrix and the basins of attraction
in evolution parameter space. In comparison with results without mutation, we show that even a
very small mutation rate enhances the robustness of the oscillatory equilibrium point; therefore,
mutation is significant to maintain diversity in the evolution of finite populations. We also present
the corresponding stochastic model for the host-parasite coevolution, and by computer simulation,
we find that the stochastic simulation results are consistent with those of the quasi-species model.
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I. INTRODUCTION

Understanding the dynamics of host-parasite coevolu-
tion and its consequences on genetic diversity is a central
goal in a wide range of areas such as agriculture, epi-
demiology, and ecology. Host-parasite interactions are
recognized as a major evolutionary force producing bi-
ological diversity. Genetic variation for host resistance
reduces the probability that an individual parasite will
infect an individual host [1]. Conversely, genetic diver-
sity at parasite loci increases the range of potentially-
susceptible hosts. A spatial and temporal genetic poly-
morphism is commonly found in nature at loci involved
in host-parasite recognition, such as genes involved in
gene-for-gene relationships in plant-parasite interactions
[2], genes involved in matching allele relationships in in-
vertebrates [3], or the major histocompatibility complex
in vertebrates [4,5].

Due to the inherent complexity of host-parasite co-
evolutionary processes and the long time scales involved,
theoretical models play an important role in the under-
standing of this process. Two major theoretical models
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have been presented for the evolutionary dynamics un-
derlying infections in plants and animals. The gene-for-
gene (GFG) model is based on data from plant-parasite
interactions, especially crop plants [6]. The key feature
of the GFG model is that one parasite genotype has
universal virulence, which means that it can infect all
host genotypes. Under the GFG theory, a cost of vir-
ulence is required to keep this virulent genotype from
going to fixation. In contrast, the matching-alleles (MA)
model is based on self/non-self recognition systems in
invertebrates [3]. The key feature of the MA model is
that infection (or resistance) requires a specific match
between the host and the parasite genotypes at the corre-
sponding locus; therefore, universal virulence is not pos-
sible in the MA model. In both the GFG and the MA
models, negative indirect frequency-dependent selection
(FDS) is assumed to be responsible for the polymorphism
when the host and the parasite interact at the multiple
loci. In these multi-locus models with negative indirect
FDS, host and parasite genotypes have a selective ad-
vantage when they are rare in coevolving populations,
which leads to cyclic oscillations of diverse genotypes in
the host and the parasite populations. In regard to the
diversity of genotypes in the host-parasite coevolution,
important questions are whether multi-locus interactions
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are necessary to maintain a polymorphism, and whether
multi-locus interactions are sufficient to maintain a poly-
morphism by themselves or are ecological and biological
factors required.

In order to address one of the above questions, the nec-
essariness of the multi-locus interaction, we focus on the
GFG model with a single-locus interaction and investi-
gate whether a stable polymorphism can be maintained
or not in a single-locus GFG model. In the GFG model,
resistance is induced if the plant has a resistant (R) gene
enabling recognition of a specific parasite avirulent (v)
protein [7]. The parasite is not detected by the host, and
the resistance is not induced if the host has a susceptible
(r) allele or the parasite has a virulent (V ) allele. The
asymmetry of the GFG interaction implies that in the
absence of other factors, there will be an “arms race,” as
successive pairs of R and V alleles are driven to fixation
in the host and the parasite populations, respectively [8,
9]. Accounting for the observed diversity in the host and
the parasite populations is a significant challenge. Con-
ditions for the maintenance of a polymorphism in GFG
interactions have been studied in a single-locus system
with pairs of host R and r genes and parasite V and
v genes [10–12]. In the process of coevolution, the se-
lection rate of each allele depends on the frequencies of
the other alleles directly and/or indirectly. This implies
the existence of direct and/or indirect FDS. In order for
a polymorphism to be maintained, it has been reported
that there should be a negative direct FDS such as costs
of R and V alleles so that the selection rates for the R
and the V alleles decrease with increasing frequencies of
those alleles [12]. However, while the costs of R and V al-
leles are necessary to maintain a polymorphism, they are
not sufficient to do so in a single-locus GFG interaction
system. With regards to the sufficiency and the stabil-
ity of a polymorphism, we incorporate a mutation in the
single-locus GFG model. Here, we investigate whether
the existence of mutation stabilizes a polymorphism and
is sufficient to maintain a polymorphism.

In a preliminary paper, the authors proposed the
quasi-species model for the host-parasite coevolution
without mutation [13]. In this paper, we propose a
quasi-species model based on the GFG interaction for the
host-parasite coevolution with mutation to investigate
whether a single-locus system with the prey-predator-
type negative direct FDS can maintain a polymorphism
or multiple GFG loci are necessary for a polymorphism.
The effects of mutation on the stability of the polymor-
phisms was introduced in Leonard’s model by Leonard
[14] and was investigated only via computer simulations
by Segarra [11] and by Tellier and Brown [12]. We in-
vestigate the effects of mutation on the stability of the
polymorphism analytically by means of a linear stability
analysis and find that even for very small mutation rate,
the oscillatory equilibrium state, in which both alleles (R
and r alleles for hosts and V and v alleles for parasites)
co-exist, persists over a larger area in phase space and
for a longer time so that the robustness of the oscillatory

equilibrium point can be said to be enhanced. Therefore,
a mutation is significant for maintaining diversity in the
evolution of finite populations. This paper is organized
as follows: In Section II, we propose the quasi-species
model with the prey-predator-type negative direct FDS.
In the following section, a linear stability analysis and
numerical solutions are used to determine the phase di-
agram. Then, we suggest the corresponding stochastic
model for the host-parasite coevolution with mutation
and present the simulation results in Section IV. The
last section is for discussion.

II. FREQUENCY-DEPENDENT
COEVOLUTIONARY DYNAMICS

We consider a parasite population causing disease in a
host plant population. Both populations are assumed to
be haploid (having a single set of unpaired chromosomes)
and to have a point mutation. We also assume that the
host and the parasite populations are infinitely large and
mingle randomly. We propose the quasi-species model
for the host-parasite coevolutionary dynamics with a
frequency-dependent fitness landscape.

The model assumes a haploid single-locus inheritance
in host resistance and parasite virulence similar to that
in Jayakar’s model [15]. Either a susceptible allele (r) or
a resistant allele (R) can be at the host locus and either
an avirulent allele (v) or a virulent allele (V ) can be at
the parasite locus. The frequencies of susceptible and
resistant alleles in the host population are xr and xR

(xr + xR = 1), respectively. The frequencies of avirulent
and virulent alleles in the parasite population are yv and
yV (yv + yV = 1), respectively. Similar to typical GFG
interactions, the resistance is more effective when the
resistant host is attacked by an avirulent parasite than
by a virulent parasite. Taking this fact into account, we
describe the coevolution dynamics by using the evolution
equations for the frequencies of the host and the parasite
populations:

dxr

dt
= (fr − f̄)xr + μh(xR − xr),

dxR

dt
= (fR − f̄)xR + μh(xr − xR), (1)

dyv

dt
= (gv − ḡ)yv + μp(yV − yv),

dyV

dt
= (gV − ḡ)yV + μp(yv − yV ), (2)

where μh and μp are the mutation rates for the host and
the parasite populations, respectively. For simplicity, the
same μh and μp are assumed for forward and backward
mutations in both populations (μr→R

h = μR→r
h = μh and

μv→V
p = μV →v

p = μp). The frequency-dependent fitness
of the susceptible host (fr) and the fitness of the resistant
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Table 1. Equilibrium points (EPs), eigenvalues and stability conditions.

Equilibrium points Eigenvalues Stability condition

(0, 0) λ1 = − 1
2
a(1 − cp)(1 + ch) + ch ch <

a(1−cp)

2−a(1−cp)

λ2 = − 1
4
a(3 − cp)(1 − ch) − dcp stable

(0, 1) λ1 = − 1
2
(a − 2ch) ch < a

2

λ2 = 1
4
a(3 − cp)(1 − ch) + dcp unstable

(1, 0) λ1 = 1
2
a(1 − cp)(1 + ch) − ch ch >

a(1−cp)

2−a(1−cp)

λ2 = − 1
4
a(3 − 4cp) − dcp cp < 3a

4(a−d)

(1, 1) λ1 = 1
2
(a − 2ch) ch > a

2

λ2 = 1
4
a(3 − 4cp) + dcp cp > 3a

4(a−d)

host (fR) are given as

fr = A − yvavr − (1 − cp)yV aV r,

fR = (1 − ch)(A − yvavR − (1 − cp)yV aV R), (3)

where A is a fitness value of the host in the absence of the
parasite and we will set A = 1 without loss of generality
because it only rescales the time. ch and cp (0 ≤ ch, cp ≤
1) are the relative cost of having the resistant allele at
the host locus and the cost of having the virulent allele
at the parasite locus, respectively. avr is the fitness loss

of the host with an r-allele due to infection by a parasite
with a v-allele, and so forth.

The mean fitness of the host population (f̄) is defined
as

f̄ = frxr + fRxR. (4)

The frequency-dependent fitness of the avirulent parasite
(gv) and the fitness of the virulent parasite (gV ) are given
as

gv = avrxr + (1 − ch)avRxR − xrbrv − (1 − ch)xRbRv − d,

gV = (1 − cp)(aV rxr + (1 − ch)aV RxR − xrbrV − (1 − ch)xRbRV − d), (5)

where d is the natural death rate of the parasite in the
absence of the host, avr is the fitness gain of the parasite
with a v-allele infecting the host with an r-allele, and brv

is the fitness loss of the parasite with a v-allele due to the
resistance of the host with an r-allele, and so forth. The
mean fitness of the parasite population (ḡ) is defined as

ḡ = gvyv + gV yV . (6)

For analytic simplicity, we set(
avr avR

aV r aV R

)
=

(
a
2 0
a a

2

)
, a = 0.8, (7)

and (
brv brV

bRv bRV

)
=

(
b
2 0
b b

2

)
, b =

a

2
. (8)

For given sets of dynamics parameters (A = 1, a =
0.8, b = a/2, and two d values of 0 and 0.1), we solve
the coevolution equations in the phase space of {cp, ch}
within the linear stability analysis for large and small

mutation region in the next section. The results for other
sets of parameters will be investigated in future studies.

III. LINEAR STABILITY ANALYSIS AND
NUMERICAL SOLUTIONS

The system of the coevolution equations of the quasi-
species model with a frequency-dependent fitness land-
scape is given as non-linear differential equations:

dxr

dt
= (fr − (frxr + fR(1 − xr))) xr + μh(1 − 2xr),

dyv

dt
= (gv − (gvyv + gV (1 − yv))) yv + μp(1 − 2yv),

(9)

where

fr = 1 − 1
2
ayv − a(1 − cp)(1 − yv),
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fR = (1 − ch)
(

1 − 1
2
a(1 − cp)(1 − yv)

)
,

gv =
1
2
axr − 1

2
bxr − b(1 − ch)(1 − xr) − d,

gV = (1 − cp)
(

axr +
1
2
a(1 − ch)(1 − xr) − 1

2
b(1 − ch)(1 − xr) − d

)
. (10)

In the absence of mutation, Eq. (9) has four trivial equi-
librium points: (xep

r , yep
v ) = (0, 0), (0, 1), (1, 0), and (1, 1)

and a single internal equilibrium point: (xep
r , yep

v ) =
(x∗, y∗), with

x∗ =
a(3 − cp)(1 − ch) + 4dcp

a[3(cp − ch) + cpch]
,

y∗ = −a(1 − cp)(1 + ch) − 2ch

a(cp − ch + cpch)
. (11)

The stabilities of the four trivial equilibrium points are
determined by the signs of the eigenvalues (λ1 and λ2)
of the system of the coevolution equations in the linear

stability analysis:

d

dt
δx = λ1δx,

d

dt
δy = λ2δy, (12)

where δx = xr − xep
r (δy = yv − yep

v ) if xep
r = 0 or x∗

(yep
v = 0 or y∗) and δx = xep

r − xr (δy = yep
v − yv) if

xep
r = 1 (yep

v = 1). If either λ1 > 0 or λ2 > 0, then the
equilibrium points are locally unstable. The conditions
that determine the stabilities of the four trivial equilib-
rium points are shown in Table 1.

The linearized equations near the internal equilibrium
point (x∗, y∗) are given as

d

dt
δx = − [a(3 − cp)(1 − ch) + 4dcp] [a(3 − 4cp) + 4dcp] (cp − ch + cpch)

2a [3(cp − ch) + cpch]2
δy,

d

dt
δy =

(a − 2ch) [a(1 − cp)(1 + ch) − 2ch] [3(cp − ch) + cpch]
4a(cp − ch + cpch)2

δx, (13)

and the eigenvalues are

λ1,2 = ±
√

[a(3 − cp)(1 − ch) + 4dcp] [a(3 − 4cp) + 4dcp] (a − 2ch) [a(1 − cp)(1 + ch) − 2ch]
8a2 [3(cp − ch) + cpch] (cp − ch + cpch)

. (14)

The internal equilibrium point is unstable if the quan-
tity inside the square root is positive while it becomes a
center-fixed point, which is enclosed by limit cycles, when
the quantity inside the square root is negative. By ana-
lyzing the system of the linearized coevolution equations
and using the linear stability conditions, we determine
the phase diagrams in {cp, ch} space for a fixed value of
d. The phase space is divided into four regions by three
boundary equations:

ch =
a(1 − cp)

2 − a(1 − cp)
, (15)

cp =
3a

4(a − d)
, (16)

ch =
a

2
. (17)

These analytically-obtained phase diagrams are shown
in Fig. 1, along with the simulation results. The three
boundary equations are denoted by solid lines whereas
the boundaries from the stochastic simulations are de-
noted by dotted lines. Equation (15) separates region
A from regions B and D, Eq. (16) separates region
B from regions C and D, and Eq. (17) separates re-
gions C and D. Three regions (A, B, and C) show
monomorphic compositions in the host and the para-
site populations with the R-allele host and the V -allele
parasite ((xep

r , yep
v ) = (0, 0), region A), with the r-allele

host and the V -allele parasite ((xep
r , yep

v ) = (1, 0), re-
gion B), and with the r-allele host and the v-allele
parasite ((xep

r , yep
v ) = (1, 1), region C). There is no

region with the R-allele host and the v-allele parasite
((xep

r , yep
v ) = (0, 1)). In region D where the internal equi-

librium point becomes a center-fixed point, both the host
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Table 2. Unshifted and Shifted equilibrium points.

Unshifted EPs Shifted EPs : (xep
r , yep

v )

A : (0, 0) Aμ : (Axμh, Ayμp)

X : (0, 1) Xμ : (Xxμh, 1 − Xyμp)

B : (1, 0) Bμ : (1 − Bxμh, Byμp)

C : (1, 1) Cμ : (1 − Cxμh, 1 − Cyμp)

D : (x∗, y∗) Dμ : (x∗ + Dxμp, y∗ + Dyμh)

and the parasite populations show a polymorphism. In
the host population, the frequencies of the r-allele host
and the R-allele host oscillate periodically. Also, in the
parasite population, the frequencies of the v-allele para-
site and the V -allele parasite oscillate periodically with
the same periodicity as that of the host population.

In the presence of a mutation, the analysis of the
coevolutionary dynamics equations becomes very com-
plicated. Thus, we consider two extreme region: a
large mutation rate and a small mutation rate. For
a large mutation rate, there is only one fixed point:
(xep

r , yep
v ) = (1/2, 1/2) because we assumed the same mu-

tation rate for forward and backward mutations in both
populations. Otherwise, it would have been (xep

r , yep
v ) =(

μR→r
h /(μR→r

h + μr→R
h ), μV →v

p /(μV →v
p + μv→V

p

)
. Muta-

tions regularly generate both alleles in the host and the
parasite populations and make both populations poly-
morphic.

For a small mutation rate, we solve the coevolutionary
dynamics equations up to the first order in each mutation
rate and find five equilibrium points which are shifted
by the mutation rates from those for without mutation.
These five shifted equilibrium points are shown with the
unshifted ones in Table 2.

For the equilibrium point (EP) Aμ, we find

Ax =
2

a(1 − cp)(1 + ch) − 2ch
,

Ay =
4

a(3 − cp)(1 − ch) + 4dcp
. (18)

While Ay is always positive, Ax is positive only in region
A in Fig. 1. The steady state corresponding to the EP
Aμ shows the polymorphic population structures in both
populations. In the host population, the frequencies of
a susceptible allele and a resistant allele are xep

r = Axμh

and xep
R = 1−Axμh, respectively. In the parasite popula-

tion, the frequencies of an avirulent allele and a virulent
allele are yep

v = Ayμp and yep
V = 1 − Ayμp, respectively.

(In the absence of a mutation, the state corresponding
to the EP A is monomorphic in both populations.) The
polymorphism in the EP Aμ is solely due to the muta-
tion process. Mutations regularly generate rare alleles
(in this case the r-allele for the host and the v-allele for
the parasite) in the host and the parasite populations and
make both populations polymorphic. The rare-allele fre-

quency in the host (parasite) population is proportional
to the mutation rate of the host (parasite) population.
This state cannot invade regions B and D because Ax

becomes negative so that the frequency of a susceptible
allele in the host population becomes negative in regions
B, C, and D. For the EP Xμ, we find

Xx =
2

a − 2ch
,

Xy = − 4
a(3 − cp)(1 − ch) + 4dcp

. (19)

Because Xy is always negative, the frequency of an avir-
ulent allele in the parasite population becomes greater
than 1; therefore, the state corresponding to the EP Xμ

is impossible to realize in the linear stability analysis.
For the EP Bμ, we find

Bx = − 2
a(1 − cp)(1 + ch) − 2ch

,

By =
4

a(3 − 4cp) + 4dcp
. (20)

Both Bx and By are positive only in region B in Fig. 1.
The state corresponding to the EP Bμ also shows poly-
morphic population structures in both populations. (In
the absence of a mutation, the state corresponding to
the EP B is monomorphic in both populations.) Muta-
tions regularly generate an R-allele in the host popula-
tion and a v-allele in the parasite population, and the
rare-allele frequency in the host (parasite) population is
proportional to the mutation rate of the host (parasite)
population. This state cannot invade regions A, C, and
D because Bx becomes negative so that the frequency
of a susceptible allele becomes greater than 1 in region
A and By becomes negative so that the frequency of an
avirulent allele becomes negative in regions C and D.

For the EP Cμ, we find

Cx = − 2
a − 2ch

,

Cy = − 4
a(3 − 4cp) + 4dcp

. (21)

Both Cx and Cy are positive only in region C in Fig. 1.
The state corresponding to the EP Cμ also shows poly-
morphic population structures in both populations. (In
the absence of a mutation, the state corresponding to
the EP C is monomorphic in both populations.) Muta-
tions regularly generate an R-allele in the host popula-
tion and a V -allele in the parasite population, and the
rare-allele frequency in the host (parasite) population is
proportional to the mutation rate of the host (parasite)
population. This state cannot invade regions B and D
because Cy becomes negative so that the frequency of an
avirulent allele becomes greater than 1 in region B and
Cx becomes negative so that the frequency of a suscep-
tible allele becomes greater than 1 in region D.

For the EP Dμ, we find
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Dx =
4(cp − ch + cpch) [a − 2ch + a(1 − cp)(1 + ch) − 2ch]
[3(cp − ch) + cpch] (a − 2ch) [a(1 − cp)(1 + ch) − 2ch]

,

Dy =
2 [3(cp − ch) + cpch] [a(3 − 4cp) + 4dcp + a(3 − cp)(1 − ch) + 4dcp]

(cp − ch + cpch) [a(3 − 4cp) + 4dcp] [a(3 − cp)(1 − ch) + 4dcp]
. (22)

There is no positive-definite constraints on Dx and Dy,
and the state corresponding to the EP Dμ also shows
polymorphic, periodically-oscillating population struc-
tures in both populations just as the state corresponding
to the EP D is polymorphic and periodically oscillating
in both populations in the absence of a mutation. Un-
like the other four EP cases, there are two interesting
features for the EP Dμ. First, the frequency shift in
the host population is proportional to the mutation rate
of the parasite, and the frequency shift in the parasite
population is proportional to the mutation rate of the
host. Thus, the mutation rate of the parasite controls
the evolution of the host population and vice versa. Sec-
ond, the periodically-oscillating state of the EP Dμ can
invade regions A, B, and C. On the boundaries deter-
mined by Eqs. (15), (16), and (17), the denominators
of Dx and/or Dy vanish, and the frequency shifts look
diverging. However, that is an artifact due to the ex-
pansion of the solutions in terms of the small mutation
rate up to only the first order. If we keep all terms in
the expansion, we will have finite frequency shifts on the
boundaries. By analytic continuation of the frequency
shifts from the inside of the EP Dμ region to the outside
of the EP Dμ region, the periodically-oscillating state of
the EP Dμ can invade regions A, B, and C. The detailed
theoretical analysis around the boundaries to figure out
how far the periodically-oscillating state of the EP Dμ

can invade regions A, B, and C is very complicated.
Thus, instead of the theoretical analysis, in the next sec-
tion, we propose a stochastic model to investigate the
phase diagram around the boundaries.

IV. STOCHASTIC MODEL AND
SIMULATION RESULTS

Even for the single-locus interaction host-parasite co-
evolution, analyzing the dynamical characteristics by us-
ing direct integration of the coevolution dynamics equa-
tions in the presence of mutation, Eq. (9), is very com-
plicated. In order to analyze the dynamical character-
istics, we use a stochastic model corresponding to the
host-parasite coevolution equations, which was proposed
in our preliminary paper [13]. There, we investigated
the host-parasite coevolution without mutation by us-
ing both direct integration of the coevolution dynamics
equations and simulation of the corresponding stochas-
tic model, and we confirmed that the proposed stochas-

Fig. 1. (Color online) Phase diagrams obtained from the
linear stability analysis (solid lines) and from stochastic sim-
ulations (dotted lines) in cost space {cp, ch}. In all figures,
the horizontal axis denotes the virulent allele cost cp for par-
asites running from 0 to 1, and the vertical axis denotes the
resistent allele cost ch for hosts running from 0 to 1. Fig-
ures in the upper (lower) row are phase diagrams without
mutation (with mutation rate μ = 10−5). Figures in the left
(right) column are phase diagrams with the death rate d = 0
(d = 0.1). Other parameters are a = 0.8 and b = 0.4.

tic model was consistent with direct integration. Thus,
we modified the previous stochastic model to include the
mutation process. The stochastic model can also be used
for a multi-locus interaction system with point mutation,
recombination, and horizontal gene transfer, as well as
for a single-locus interaction system with mutation.

We consider single-locus host and parasite populations
of size 1000 (Nh = 1000, Np = 1000). First, we prepare
random initial host and parasite populations. For the
reproduction process, we use the same expressions for
the frequency-dependent fitness values of the host and
the parasite individuals as in Eq. (10). We calculate the
fitness values for the r-allele (fr) and the R-allele (fR).
If fr > fR, we produce one r-allele host and remove
one R-allele host randomly, and if fr < fR, we produce
one R-allele host and remove one r-allele host randomly.
Similarly, we calculate the fitness values for the v-allele
(gv) and the V -allele (gV ). If gv > gV , we produce one
v-allele parasite and remove one V -allele parasite ran-
domly, and if gv < gV , we produce one V -allele parasite
and remove one v-allele parasite randomly. For the mu-
tation process, we choose one individual randomly from
the host population and mutate its allele from an r-allele
to an R-allele or vice versa with the mutation rate μh.
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Fig. 2. (Color online) Dynamics results from stochastic simulations around boundaries of region D. Figures in the upper
(lower) row are phase diagrams without mutation (with mutation rate μ = 10−5). Figures in the left (right) column are phase
diagrams with the death rate d = 0 (d = 0.1). Other parameters are a = 0.8 and b = 0.4. In all small figures, the horizontal axis
denotes the frequency of the r-allele in the host population, x, running from 0 to 1, and the vertical axis denotes the frequency
of the v-allele in the parasite population, y, running from 0 to 1. Each small figure shows the dynamic trajectory of the point
(x, y) for given cost values (cp, ch) starting from a random initial condition.

Similarly, we choose one individual randomly from the
parasite population and mutate its allele from a v-allele
to a V -allele or vice versa with the mutation rate μp.
One generation corresponds to 1000 steps of the com-
bined production and mutation processes, and we sim-
ulate the model for 1000 generations. By performing
simulations for various cost values of the resistance and
the virulence without a mutation rate and with a muta-
tion rate μh = μp = 10−5 for two values of d = 0, 0.1, we
obtained the phase diagrams in {cp, ch} space.

The phase diagrams from the stochastic simulations
are shown in Figure 1, along with those from the linear
stability analysis. Boundaries from the stochastic simu-
lations are denoted by dotted lines whereas analytically-
obtained boundaries are denoted by solid lines. The
phase diagrams obtained from the stochastic simulations
look similar to those obtained from the linear stability
analysis of the host-parasite coevolution equations. How-
ever, the boundaries around the region D from stochastic

simulations without mutation (the upper-row figures in
Fig. 1) are much rougher than those from stochastic sim-
ulations with mutation, μ = 10−5 (the lower-row figures
in Fig. 1). In the upper-left figure, which corresponds to
simulations without mutation with a death rate d = 0,
phases B and C invaded region D between regions A and
D. In addition, the phase X, which is unstable under
the linear stability analysis, invaded region D between
regions C and D. Similarly, in the upper-right figure,
which corresponds to simulations without mutation with
a death rate d = 0.1, phases B and C invaded region D.
On the contrary, in both figures in the lower row, which
correspond to simulations with a mutation rate μ = 10−5

and with a death rate d = 0 (left) and d = 0.1 (right),
region D is much more robust against invasion by phases
B and C, as well as invasion by the unstable phase X.
In order to emphasize the behaviors around the bound-
aries of the region D, we show the simulation dynamics
results for representative points in the four regions in
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Figure 2. The phase diagrams and the dynamics results
are qualitatively consistent with the theoretical analysis,
but quantitatively they are slightly different due to the
genetic drift effect in finite-size populations. In any fi-
nite population, there will be continued stochastic varia-
tion in the frequencies of alleles. Stochastic variation will
eliminate alleles with very small frequencies by chance at
some point and eventually stop oscillations in the state of
the EP Dμ to drive the population from polymorphism
towards monomorphism. Thus, in the absence of a mu-
tation, an analytically-stable oscillating state of the EP
Dμ is driven to either the (0, 1) state of the EP B or
the (1, 1) state of the EP C near boundaries where at
least one allele becomes rare. On the other hand, in the
presence of mutation, mutations regularly generate rare
alleles to keep the state of the EP Dμ oscillating and
both population compositions polymorphic.

V. DISCUSSION

We have investigated the host-parasite coevolution by
using the quasi-species model based on the gene-for-
gene interaction with a frequency-dependent fitness land-
scape. In the model, we assumed that the host and the
parasite populations had a haploid single-locus inheri-
tance in the host resistance and the parasite virulence
and that both populations were monocyclic with and/or
without mutation.

In the absence of mutation, there are five equilibrium
points (EPs), among which four are trivial corner EPs
and one is an internal EP. Three of the four trivial cor-
ner EPs and the internal EP are stable locally for some
sets of dynamics parameters, and one of the four trivial
corner EPs is always unstable. Three of the four trivial
corner EPs result in a monomorphism in the host and
the parasite populations, and the internal EP gives a
polymorphism in both populations.

In the presence of mutation, we have also obtained five
EPs, among which four are shifted corner EPs and one
is a shifted internal EP. Again, three of the four shifted
corner EPs and the shifted internal EP are stable lo-
cally for some sets of dynamics parameters, and one of
the four shifted corner EPs is always unstable. All four
stable, shifted EPs show a polymorphism in both popula-
tions. This means that a multi-locus is not necessary to
maintain a polymorphism in host-parasite coevolution.
Contrary to the previous result for the GFG interaction
system in which a polymorphism is not possible in the
single-locus model, the polymorphism can be maintained
in the quasi-species model with a frequency-dependent
fitness landscape even for a single locus.

In the phase diagrams, states corresponding to the
three stable, shifted corner EPs cannot invade other re-
gions. However, the periodically-oscillating state corre-
sponding to the internal shifted EP can invade other
regions so that the region of the EP Dμ may expand

under the linear stability analysis as we take into ac-
count mutation. Although the phase diagrams look sim-
ilar qualitatively, the dynamics around the boundaries
of region D are quite different from those in the ab-
sence of mutation. To investigate the dynamics around
the boundaries, we proposed the stochastic model corre-
sponding to the quasi-species model for host-parasite co-
evolution with a frequency-dependent fitness landscape.
By using stochastic simulations, we determined the phase
diagrams in cost {cp, ch} space. The results from the
stochastic simulations with mutation are consistent with
those from the linear stability analysis of the quasi-
species model. However, we found some discrepancies
in the stochastic simulation without mutation along the
boundaries of the region D. In region D near the bound-
aries, the frequency of one allele becomes very small in
the oscillating state in both the host and the parasite
populations, and stochastic variations in a finite popu-
lation eliminate this rare allele to drive the population
towards a monomorphic state. In the presence of mu-
tation, mutations regularly generate rare alleles to keep
the oscillation going and populations polymorphic. This
implies that even a very small mutation rate enhances
the robustness of the oscillating polymorphic states.

Although we have analyzed single-locus monocyclic
host-parasite coevolution, extending it to multi-locus
interactions, to polycyclic interactions, and to both
is straightforward. However, the coevolution equa-
tions for the coevolution system extended to the multi-
locus and/or to the polycyclic interaction become too
formidably complicated to be analyzed analytically. On
the other hand, because the evolutionary stochastic pro-
cess is so simple, the stochastic model for the single-locus
interaction can be easily extended to the multi-locus in-
teraction, provided the proper frequency-dependent fit-
ness values are determined for all types of the host and
the parasite individuals.
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