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Competitive Learning Behavior in a Stochastic Neural Network
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Stochastic behavior is a natural and inevitable property of biological neurons. The effect of
stochastic behavior or thermal fluctuation in neural firings on the learning process in a neural
system is investigated. A learning model, which is derived from the stochastic differential equation
of the firing-rate model, is presented as an estimate of the gradient flow of free energy. The model
reveals that the learning process becomes competitive owing to the effect of entropy even through
the synapse modifications only follow the simple Hebbian rule.
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I. INTRODUCTION

The basic mechanism for synaptic plasticity proposed
by Hebb is that an increase in synapse efficacy arises
from the presynaptic cell’s repeated and persistent stim-
ulation of the postsynaptic cell [1]. The Hebbian the-
ory attempts to explain associative learning, in which
simultaneous activation of cells leads to a pronounced in-
creases in the synaptic strength between those cells and
provides a biological basis for errorless learning methods
for education and memory rehabilitation. The increase
is often simply described as being proportional to the
product of the pre- and the postsynaptic neural activ-
ities; however, a practical synaptic modulation rule is
expected to realize two additional mechanisms because
the simple Hebbian model cannot lead to a steady neu-
ral learning. One mechanism restricts the connection
strength, without which the synaptic weights ould in-
crease exponentially. A variety of learning rules, such
as the BCM theory and the Oja’s rule, suggest how
the synaptic strengths are restricted or normalized [2,
3]. The other is called competitive learning, in which
(output) neurons compete for the right to respond to
a subset of input patterns so that individual specializa-
tion is increased. Without the competitive learning pro-
cess, neurons would have the same connection pattern as
the input neurons in order to response to the most fre-
quent input pattern(s). Traditionally, lateral inhibitory
connections between neurons are believed be the essen-
tial mechanism for competitive learning in the brain. A
winner neuron could inhibit others by an amount pro-
portional to its activation level when neurons may have
lateral inhibitory connections. On the other hand, a se-
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ries of experiments have revealed that the change in a
synapse strength depends on the precise difference be-
tween the pre- and the postsynaptic firing timings [4,5].
The so-called spike-timing-dependent plasticity (STDP)
mechanism is known to be able to introduce competitive
learning to a neural system independently of inhibitory
connections and of the restrictions on the number of
synaptic connections [6–8].

Meanwhile, the nature of neurons is to make proba-
bilistic responses to external stimuli due to the existence
of noisy currents or chaotic behaviors in nonlinear dy-
namics. Some models, such as the Boltzmann machine,
adopt the nature into their representation of neural dy-
namics [8, 9]. The stochastic (or noise) term is often
added to a differential equation for learning dynamics in
order to escape from trapping in a local minimum during
training.

There are some suggestions that stochastic behav-
ior could be the implemental mechanism of competitive
learning in a neural system because stochastic behav-
ior has the character of preventing the elements from
staying in the same state. Even though Hebbian com-
petition is weak or lacking, stochastic competition may
allow self-organizing cortical map development because
the requisite of a maximum entropy distribution forces
neurons to avoid connecting to a common target [10].
The sparse function is also defined through a nonlinear
function rather than the entropy and is used to prevent
the number of few coefficients [11].

Here, the effect of stochastic firing dynamics on learn-
ing process is investigated. Stochastic behavior in fir-
ing dynamics should affect learning dynamics because
neurons make connections with other neurons somewhat
randomly when they fire probabilistically. Also, the
number of possible states, or the entropy, becomes a mo-
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mentous factor in the determination of the disturbed con-
nection pattern. Interestingly, the derivatives of an en-
ergy function can represent both the firing and the learn-
ing dynamics. For example, when the energy function is
given by E = −1

2

∑
�,�′ W��′φ�φ�′ , the derivative with re-

spect to neural activity, Δφ� = −∂E/∂φ� =
∑

�′ W��′φ�′ ,
refers to the increase in a neuron’s activity depending on
the propagation of other neurons’ activities via synap-
tic connections. In addition, the derivative with respect
to connection strength, ΔW��′ = −∂E/∂W��′ = φ�φ�′

refers to the increase in the synaptic connection in pro-
portional to the product of the pre- and the postsynap-
tic neural activities, as the simple Hebbian rule says. In
this view, examinable problems may be the properties of
firing and learning dynamics are represented as the gra-
dient flow of the free energy and the role of entropy in
learning dynamics.

In Section II, the correlation-based learning rule, pro-
posed as a feature map formation model in an input-
output two layer system [12], is derived from the deriva-
tive of the free energy when the system is represented
by a Monte Carlo model. The derivative of the internal
energy exactly agrees with the correlation-based model
derived by means of the firing-rate neuron model and
the simple Hebbian rule; however, the entropy does not
play any role in the case when only the output neurons
are considered to be stochastic and no backward connec-
tions are allowed. In Section III, the derivative of the
entropy is shown to endow the neural system with com-
petitive learning behavior when not only the output but
also the input neurons are considered to fire stochasti-
cally. Unfortunately, classical statistical mechanics, ig-
noring a true ‘time’ variable, is not proper for predicting
the phenomenon (see Appendix). The firing dynamics in
a neural system with unidirectional connections cannot
be represented by an energy function is also an annoying
problem. Instead, the entropy is estimated by means of
the connected two-point function in the stochastic dif-
ferential equation or by the Langevin dynamics version
of the firing-rate neuron model. Furthermore, a learn-
ing rule, named as the pseudo-stochastic learning (PSL)
model, is presented based on the result. The PSL model
allows the most probabilistic state in a stochastic neural
network to be found through a molecular dynamics sim-
ulation instead of a Monte Carlo simulation. In Section
IV, the presented learning rule is discussed from other
viewpoints and, which reveals how the PSL model re-
lates to (1) the thermodynamic behavior of a stochastic
learning model, in which not neural firing, but synaptic
plasticity, occurs stochastically, (2) the Gram-Schmidt
algorithm, and (3) the informax rule. In Section V, the
PSL model is applied to the problem of topographic map
formation.

II. PROLOGUE

We suppose that a neural network is composed of two
input-output layers, where output neurons have feedfor-
ward connections from input neurons and lateral con-
nections with other output neurons. We label input and
output neurons with indices (a, b) and (i, j), respectively,
and suppose that the continuous function φi represents
the activity of neuron i. We assume that the neural fir-
ing dynamics can be expressed as a linear version of the
firing-rate model as

dφi

dt
= −φi +

∑
j

Jijφj +
∑

a

Wiaha. (1)

Here J , a matrix of dimension N × N , stands for the
lateral connections between output neurons, and W , ma-
trices of dimension N × M , stands for the feedforward
connections from input to output neurons. N and M are
the number of output and input neurons, respectively,
and ha implies the external stimuli to input neuron a.

According to the simple Hebbian rule, the change in
the feedforward connection Wia is proportional to φiφa.
Here, the input neuron’s activity φa is given by ha. The
output neuron’s activity at the steady state dφi/dt = 0
is

φi =
∑
j,b

KijWjbhb, (2)

where with Dij = [I − J ]ij , the effective lateral inter-
action Kij = D−1

ij = [I + J + J2 + . . .]ij represents all
feasible interactions between output neurons i and j via
recursive lateral connections. Finally, if different exter-
nal inputs are considered during training, the change can
be expressed in the form

ΔWia =
∑
j,b

KijWjbQba, (3)

where Qba is the average value of φbφa over an en-
semble of input patterns in a training set. Q becomes
the correlation matrix of input patterns, and Eq. (3) is
the so-called correlation-based learning model for fea-
ture map formation [12]. The correlation-based learn-
ing model is assumed to be able to perform competitive
learning through negative variables in K originating from
inhibitory lateral connections.

Meanwhile, the same result may be derived by means
of the thermodynamics mechanism. We suppose that the
activity of neuron i is expressed in the form 〈φi〉 = f(vi),
where f is a probabilistic function, and that vi, the scaled
membrane potential of neuron i, is defined by the leaky
integration of external inputs as follows:

vi = −φi +
∑

j

Jijφj +
∑

a

Wiaha. (4)

Provided that J is a symmetric matrix, the expectation
value of neuron i’s activity can be expressed in the form

〈φi〉 =
1
Z

∫
D [φ]φi exp(−E[φ]/T ), (5)
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with a nonnegative constant T . Moreover, the energy
function E and the partition function Z are given by

E[φ] =
1
2

∑
i,j

Dijφiφj −
∑

i

hiφi, (6)

with hi =
∑

a Wiaha, and

Z =
∫

D [φ] exp(−E[φ]/T ). (7)

Provided that φi can take values in the interval (−∞,∞),
the notation

∫
D [φ] implies

∏
k

[ ∫ ∞
−∞(2πT )−1/2dφk

]
. If

φi takes only 1 or 0, the model system would correspond
with the Boltzman machine [9].

The assumption of an infinite interval allows the parti-
tion function or the free energy F = −T log Z = U −TS
to be easily calculated [13]. After performing the Gaus-
sian integral, the internal energy and the entropy are
obtained as

U = −1
2

∑
i,j

Kijhihj = −1
2

∑
i,j,a,b

KijWiaWjbhahb (8)

and

S =
1
2

log det(K). (9)

Moreover, the expectation value is obtained by taking
the derivative of the free energy as

〈φi〉 =
∂F

∂hi
=

∑
j,b

KijWjbhb, (10)

which agrees with Eq. (2). Note that 〈φi〉 becomes iden-
tical to φi when there are no thermal fluctuations.

In addition, the learning rule in Eq. (3) can be derived
from the derivative of the free energy as

ΔWia = − ∂F

∂Wia
= − ∂U

∂Wia
+ T

∂S

∂Wia
, (11)

where

− ∂U

∂Wia
=

∑
j,b

KijWjbhbha (12)

and

∂S

∂Wia
= 0. (13)

Here, the derivative of the free energy corresponds to the
correlation-based learning rule in Eq. (3), but the en-
tropy is found to be independent of feedforward connec-
tions so that the derivative of the entropy exerts no effect
on the learning rule. In the next section, the derivative
of the entropy will be demonstrated to be effective when
there are thermal fluctuations of input neurons or back-
ward connections from output to input neurons.

Fig. 1. Illustration of the output neurons’ activation in-
duced by other autonomously firing neurons. (a)

∑
n Kinηn

is the firing probability of neuron i due to the firing propaga-
tion via lateral connections from other autonomously firing
output neurons, and

∑
m,n KimKjn〈ηmηn〉 = T [KK†]ij is its

correlation. (b)
∑

a,m KimWmaηa is the firing probability of
neuron i due to the firing propagation via feedforward and
lateral connections from autonomously firing input neurons,
and

∑
a,b,m,n KimWmaKjnWnb〈ηaηb〉 = T [KWW †K†]ij is

its correlation.

III. THE MODEL

Suppose the neural firing dynamics can be expressed
in the form

τ
dφi

dt
= −φi +

∑
j

Jijφj +
∑

a

Wia(ha + ηa) + ηi.(14)

Here η�, referring to endogenous firings of output or input
neuron �, has the properties 〈η�〉 = 0, 〈haη�′〉 = 0, and
〈η�η�′〉 = Tδ��′ . At the steady state ∂φi/∂t = 0 or

φi =
∑

j

Kij

[∑
a

Wia(ha+ηa) + ηj

]
, (15)
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the expectation value of output neuron i’s activity be-
comes 〈φi〉 =

∑
j,b KijWjbhb, as in Eq. (10). Moreover, if

the synaptic plasticity rule is assumed to follow the sim-
ple Hebbian rule, the change in feedforward connections
is obtained as ΔWia = 〈φi〉〈φa〉 =

∑
j,b KijWjbhbha,

which agrres with Eq. (3) or Eq. (12).
Meanwhile, for Eq. (11), suppose that the synaptic

plasticity rule has an additional term such as

ΔWia = 〈φi〉〈φa〉 + T
∂S

∂Wia
. (16)

Here, the entropy(-like) function S is defined by

S =
1
2

log det(T−1G), (17)

and the connected two-point function Gij is defined by

Gij = 〈φiφj〉 − 〈φi〉〈φj〉. (18)

The connected two-point function relates to the corre-
lation between two neurons that are activated by other
autonomously firing neurons in the absence of external
stimuli.

At the steady state in Eq. (15), the connected two-
point function becomes

Gij = T
[
KK† + KΣK†]

ij
, (19)

with the matrix Σ = WW †. Here, T [KK†] refers to
the correlation originating from the firing propagation
via lateral connections from autonomously firing output
neurons, and T [KΣK†] refers to the correlation origi-
nating from the firing propagation via feedforward and
lateral connections from autonomously firing input neu-
rons (see Fig. 1).

The substitution of Eq. (19) into Eq. (16) produces
the learning rule

ΔWia =
[
KWQ + T (I + Σ)−1W

]
ia

. (20)

Here, a series expansion is possible and yields [I+Σ]−1 =
q[I−(I−qI−qΣ)]−1 = q[I +(I−qI−qΣ)+ . . .] when the
absolute of all the eigenvalues of I−qI−qΣ are less than 1
for a constant q. Furthermore, −q2TΣW , the most effec-
tive term in the expansion, introduces the competitive re-
lationship between feedforward connections, and the de-
gree of competition increases with the degree of endoge-
nous neural firings (or the parameter T ). Alternatively,
if the output neurons’ autonomous firings are ignored,
being not effective in the learning dynamics, the con-
nected two-point function would be Gij = T [KΣK†]ij ,
and the learning rule would become

ΔWia =
[
KWQ + TΣ−1W

]
ia

. (21)

Note that the output neurons’ autonomous firing would
affect the learning dynamics when there are backward
connections from output to input layer so that the firing
propagation from output to output neurons via input
neurons is possible. The presented learning rule is named

the pseudo-stochastic learning (PSL) model and reflects
the effect of a stochastic neural network on the learning
dynamics not through a Monte Carlo simulation but a
molecular dynamics simulation.

IV. UNDERSTANDING THE MODEL IN
OTHER VIEWS

1. Stochastic Learning Model

The PSL model is based on the learning behavior
in a stochastic dynamics model system in which (in-
put) neurons fire stochastically, but connection strengths
change determinately. Not only firing dynamics but also
learning dynamics may possibly occur stochastically in
a neural model system [8]. Consider a stochastic learn-
ing model system in which neurons fire determinately,
but synaptic connections change stochastically. Pro-
vided that Eq. (3) is the derivative of an energy function
with respect to connection strength, the energy function
would read

E[W ] = −1
2

∑
i,j,a,b

KijWiaQabWjb. (22)

Let us suppose that the connection strengths change
stochastically and their probabilities of them follow the
Boltzmann distribution

P (W ) =
e−E[W ]/T∫

D [W ′]e−E[W ′]/T
. (23)

Calculating the correlation function 〈WiaWjb〉 =∫
D [W ]WiaWjbP (W ) is helpful for understanding the

statistical behavior of the model system, where the calcu-
lation becomes convenient by adding an external source
term Esouce = −∑

i,a BiaWia to the energy function. If
Wia is assumed to be able to take a value in the inter-
val (−∞,∞) and the Gaussian integral is performed, the
calculation result can be expressed in the form

〈WiaWjb〉 = 〈Wia〉〈Wjb〉 − TK−1
ij Q−1

ab , (24)

where 〈Wia〉 =
∫

D [W ]WiaP (W ) vanishes when B = 0.
Meanwhile, the learning rule in Eq. (21) arrives at the
steady state for the condition

KijQab + TΣ−1
ij δab = 0. (25)

Here, Σij =
∑

a WiaWja would be identical to∑
a〈WiaWja〉 if the thermal fluctuation in W is ignored.

Namely, the steady state of the PSL model corresponds
to one of the most probable states in the stochastic learn-
ing model.
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2. Gram-Schmidt Algorithm

The Gram-Schmidt algorithm is a method for orthog-
onalizing a set of vectors. If the vectors are normalized
to unity, the Gram-Schmidt algorithm can be written as

ΔWia = −
i−1∑
j=1

(
∑

b

WibWjb)Wja (26)

or

ΔWia = −[lower(Σ)W ]ia. (27)

Here, lower is the function setting all matrix elements
on or above the diagonal to 0. If the lower function is
ignored, this corresponds with the most effective compe-
tition term in the PSL model, −q2TΣW . Namely, the
competition process in the PSL model relates to that
in the Gram-Schmidt algorithm. A difference is that
the Gram-Schmidt algorithm obtains the most principal
component first and finds the next principal components
successively by subtracting the vector projection onto
the more principal components. On the other hand, the
PSL model does the subtraction between the components
simultaneously without priority.

3. Informatix Rule

In the view of informatics, neural network learning
is expected to maximize the information transfer from
input to output neurons. Provided that the output
of neuron i is expressed in the form φi = g(vi), with
vi =

∑
a Wiaha and g being the (nonlinear) activation

function, the information transfer can be measured by
using the joint entropy

H(φ) = H(φ1, . . . , φN ) = −
∫

D [φ]P (φ) log P (φ).(28)

The joint entropy can be rewritten as

H(φ) =
N∑

i=1

H(φi) − I(φ), (29)

where H(φi), the marginal entropy of the output φi, is

H(φi) = −P (φ) log P (φi) (30)

and I(φ), the mutual information of the outputs, is

I(φ) =
∫

D [φ]P (φ) log
P (φ)∏N

k=1 P (φi)
. (31)

Provided that the numbers of input and output neurons
are the same, the derivative of the joint entropy is given
by

∂H(φ)
∂Wia

=
∂I(φ)
∂Wia

=
∂

∂Wia
log det(J ), (32)

where the other terms are assumed to be indepen-
dent of W . Here, Jia = P (ha)/P (φi) is the Jacobian
of the transformation from ha to φi. If ∂φi/∂ha =
Wia(∂φi/∂vi) when no lateral connections exist between
output neurons, the Jacobian can be rewritten as

Jia = Wia

N∏
i=1

∂φi

∂vi
. (33)

Finally, the learning rule, maximizing the joint entropy,
is obtained by

ΔWia =
∂

∂Wia
log det(W ) +

∂

∂Wia

N∑
i=1

log
∂φi

∂vi
. (34)

A further manipulation of this equation gives the learn-
ing informax rule [14] and is related to the algorithm
of independent component analysis (ICA), which is the
most popular model for blind source separation [15].
Note that the first term in Eq. (34) corresponds with
the second term in Eq. (21) because log det(W ) =
1
2 log det(WW †) for a square matrix W . Namely, the
competition process in the PSL model is related to the
maximization of the joint entropy or the information
transfer.

V. APPLICATION TO TOPOGRAPHIC MAP
FORMATION

The direct application of Eq. (21) requires very much
computation time in acquiring the matrix inverse per
update of weights. If the in-coming connection vectors
are constrained to be unity, i.e., |Wi|2 =

∑
a |Wia|2 = 1

for all i, the approximation Σ−1 � 2I−Σ (or [I +Σ]−1 �
I − Σ) can be adopted, and an approximated version of
the PSL model can be expressed in the form

ΔWia =
[
KWQ − T (Σ−α)W ]ia. (35)

Here, α is set to be 2 or 1, or it could be ignored because
αWia = (α/2)(∂/∂Wia)|Wi|2 becomes negligible owing
to the normalization constraint.

The formation of topographic maps between input
and output square lattices is examined in Fig. 2. The
topographic map formation problem has been studied in
the other learning model, and the conditions for a proper
map formation are presented [16]. First, both the lateral
interactions between output neurons and the input
correlations between input neurons should decrease
with increasing distance between neurons. The property
yields the metric between neurons through which close
output neurons have connections with close input
neurons. Second, both the out-going connections from
an input neuron and the in-coming connections to an
output neurons should have a competitive relationship.
In the simulations, the lateral interactions and the input
correlations are modeled by using Gaussian functions,
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Fig. 2. Emergent topographic structures between input
and output square lattices of size M=10×10 and N=10×10.
The left figures show the distribution of the output neu-
rons’ receptive field onto the input layer, and the right fig-
ures show the connections between neighboring receptive
field centers. Equation (35) was applied in the simula-
tions, where Kij= exp(−|ri−rj |2)−β, Qab= exp(−|ra−rb|2),
and α = 0. The interaction parameters are (a) (β, T ) = (0, 0),
(b) (0.02, 0), and (c) (0, 0.1).

where the competition between output-connections is
achieved by using negative lateral interactions controlled
by β, or by using stochastic competition controlled by
T . Anso, the competition between in-coming connec-
tions is achieved by using the normalization condition
|Wi| = 1 for all i. When there is no (or very small)
competition, the output neurons have the same receptive
fields covering the entire input layer (Fig. 2(a)). The
receptive fields become localized and form a proper
topographic map when the degree of negative lateral
interactions is large enough (Fig. 2(b)). Finally, the
network forms a proper topographic structure even
though the competition between out-going connections
is achieved not by lateral interactions but by stochastic
competition (Fig. 2(c)).

VI. DISCUSSION

Here, the foundation of competitive learning has been
considered in the view of statistical mechanics. The sug-
gestion based on thermal fluctuations in or probabilistic
responses of neural activities could be the origin of com-
petitive learning in a a neural system. Presented is a
learning rule, the named PSL model, which shows that
the endogenous firing of input neurons becomes the key
to stochastic competition in a two-layer neural system.
The endogenous firing of output neurons may exert a
similar effect on network learning when the firings fluctu-
ate the input neurons’ activity via backward connections
from the output to the input layer. Such random firing of
input neurons prevents output neurons from having the
same connection strengths with input neurons, and the
entropy, depending on the connection strengths, becomes
an important factor in the network structure modulation.

The model has been demonstrated to lead to the for-
mation of a proper topographic map through an effective
competition process. How the competition process of the
model is related to that of the other learning rules has
also been presented. Nevertheless, the model needs to
be improved in future by means of more advanced the-
oretical methods. The PSL model is derived from the
stochastic differential equation or the Langevin dynam-
ics version of the firing-rate neuron model. The method
provides the advantage of estimating the effect of the
entropy even though the neural interactions cannot be
represented by an energy function; however, the model
is built on the basis of the several postulates for neural
network modulation. An annoying problem is that the
derivative of the entropy bears different results depend-
ing on how the neural firing dynamics is expressed by the
energy function or the Langevan equation, where the dif-
ference originates because the energy function does not
adopt a true ‘time’ variable (see Appendix). We also
did not answer how the stochastic competition mecha-
nism is related to the learning behavior of the biological
synaptic plasticity rule, which produces different change
in a synapse depending on the exact difference between
the pre- and the postsynaptic spike timings. Finally, the
effect of stochastic neural firings on network learning af-
ter the effect of exact firing timings on neural firings is
considered needs to be studied.

In addition, we expect to develop a nonlinear version
of the PSL model in future. Some phenomena (or learn-
ing problems) cannot be explained (or solved) without
nonlinear terms. It is often difficult for a learning model
to extract proper features from an input correlation ma-
trix, so it should include terms with higher-order input
correlations. The ability of blind source separation for
the informax rule in Eq. (34) also depends on the form
of the nonlinearity in the activation function [15]. The
development of a nonlinear PSL model may require more
sophisticated methods in statistical mechanics, such as
perturbation theory or renormalization group theory.
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APPENDIX

Equation (9) becomes 1
2 log det(KK†) when there is

no ηa in Eq. (14) so that no input but only output neu-
rons fire stochastically. That this is not in accord with
Eq. (17) may be a suspect property. The leak of agree-
ment originates from the energy function in Eq. (6) not
adopting a true ‘time’ variable. Essentially, Kij relates
to the propagator K(ri, ti; rj , tj) refering to the prob-
ability of that neuron i at position ri fires at time ti
when neuron j at position rj fires at time tj . Never-
theless, the matrix K has somewhat different proper-
ties with the (time ordered) propagator. The propa-
gation from (rj , tj) to (ri, ti) may be regarded as the
result of propagation from (rj , tj) to all available inter-
mediate points r followed by propagation from (r, t) to
(ri, ti) so that the propagator usually satisfies the prop-
erty K(ri, ti; rj , tj) =

∑
r

∫
dtK(ri, ti; r, t)K(r, t; rj , tj).

However, the matrix K in Eq. (9) does not satisfy the
property [KK]ij = Kij . In addition, the matrix K in
Eq. (9) is a symmetric and real matrix so that K = K†.
However, K†

ij relates to the time-reversed propagation
via the reciprocal connection from neuron j to i. The no-
tation of the complex conjugation will be more meaning-
ful if the propagator is represented in the Fourier space.
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