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Despite the considerable importance of accurately estimating the respiration regularity of a pa-
tient in motion compensation treatment, not to mention the necessity of maintaining that regularity
through the following sessions, an effective and simply applicable method by which those goals can
be accomplished has rarely been reported. The authors herein propose a simple respiration regular-
ity index based on parameters derived from a correspondingly simplified respiration model. In order
to simplify a patient’s breathing pattern while preserving the data’s intrinsic properties, we defined
a respiration model as a cos4(ω(t) · t) wave form with a baseline drift. According to this respiration
formula, breathing-pattern fluctuation could be explained using four factors: the sample standard
deviation of respiration period (sf ), the sample standard deviation of amplitude (sa) and the results
of a simple regression of the baseline drift (slope as β, and standard deviation of residuals as σr)
of a respiration signal. The overall irregularity (δ) was defined as ||−→ω ||, where −→ω is a variable
newly-derived by using principal component analysis (PCA) for the four fluctuation parameters
and has two principal components (ω1, ω2). The proposed respiration regularity index was defined
as ρ = ln(1 + (1/δ))/2, a higher ρ indicating a more regular breathing pattern. We investigated
its clinical relevance by comparing it with other known parameters. Subsequently, we applied it
to 110 respiration signals acquired from five liver and five lung cancer patients by using real-time
position management (RPM; Varian Medical Systems, Palo Alto, CA). Correlations between the
regularity of the first session and the remaining fractions were investigated using Pearson’s cor-
relation coefficient. Additionally, the respiration regularity was compared between the liver and
lung cancer patient groups. The respiration regularity was determined based on ρ; patients with ρ
< 0.3 showed worse regularity than the others whereas ρ > 0.7 was suitable for respiratory-gated
radiation therapy (RGRT). Fluctuations in the breathing cycle and the amplitude were especially
determinative of ρ. If the respiration regularity of a patient’s first session was known, it could be
estimated through subsequent sessions. Notably, the breathing patterns of the lung cancer patients
were more irregular than those of the liver cancer patients. Respiration regularity could be objec-
tively determined by using a composite index, ρ. Such a single-index testing of respiration regularity
can facilitate determination of RGRT availability in clinical settings, especially for free-breathing
cases.
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I. INTRODUCTION

In radiation therapy, delivery of an appropriate dose
to targets in the lung or the upper-abdominal regions is
complicated by respiratory motion [1,2]. In one inhale-
exhale cycle for example, a lung tumor can move as
much as 30 mm [2]. Imaging and beam-delivery tech-
niques have been developed to minimize the effects of or-
gan motion, among which modalities, respiratory-gated
radiation therapy (RGRT) and motion tracking tech-
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niques have become popular in the radiation oncology
field [3–5]. In RGRT, the beam is on only during a
pre-determined gating window interval. In the case of
motion tracking techniques, multi-leaf collimator (MLC)
leaves follow the target’s motion while the beam is on
and radiation is delivered. The newly-developed Vero
tracking system is also appropriate for motion tracking
[6], and a motion compensation technique is applied in
CyberKnife, as well. Recent studies on the Synchrony
of CyberKnife showed the possibility of margin reduc-
tion without sacrificing target coverage [7,8]. Moreover,
Ernst introduced motion prediction and compensation
methods to tackle in detail the problem of latency for
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quasi-periodic motion in robotic radiosurgery [9]. Al-
though compensation for the target’s motion is roughly
possible by using several known algorithms, prediction
still relies on breathing regularity.

Most breathing motion control techniques are based on
the assumption that during a treatment session, not only
does the breathing pattern not change [1,2] but the ini-
tial breathing pattern in the remaining fractions is main-
tained. However, if a patient’s breathing is irregular, a
dosimetric error more serious than that in conventional
treatment can be incurred. This is an especially critical
issue in stereotactic body radiation therapy (SBRT), in
that the treatment time is longer than it is in conven-
tional therapy and very high precision is required [10,
11]. Thus, the respiration regularity of a patient as well
as the probability of maintaining that regularity through
the following sessions must be estimated. However, this
issue has not yet received adequate attention, despite the
important information that is provided for treatment of
patients with tumor motion. Most studies reported since
the early 2000s, rather, have focused on overcoming the
transient changes in irregular breathing patterns [12].

In this study, we investigated the factors that can de-
termine the regularity of respiration, and then formu-
lated a respiration regularity index based on parameters
derived from a simplified respiration model. We then
evaluated the respiration regularity and validity of the
index by application to clinical cases. We determined
that the initial regularity was maintained to the end of
treatment by confirming the correlation between the reg-
ularity of the first session and the remaining fractions.

II. MATERIALS AND METHODS

1. Patient Selection and Acquisition of Respi-
ration Signals

We randomly selected the respiration signals of liver
cancer (Nos. 1 ∼ 5) and lung cancer patients (Nos. 6
∼ 10) that had been treated in our facility from 2007
to 2010 (Table 1). We separated the lung cancer pa-
tients from the liver cancer patients owing to the possi-
bility that the former had inferior respiration regularity
relative to that of the latter [13]. Respiration signals
were obtained using a real-time position management
(RPM; Varian Medical Systems, Palo Alto, USA) sys-
tem [14]. Although respiration signals can be acquired
during either four-dimensional computerized tomogra-
phy (4DCT) scanning or RGRT, we used only signals
from treatment sessions because the 4DCT scanning time
recorded in the exported RPM data was not long enough.
The patients breathed freely, without any visual or audio
guidance. A total of 11 respiration signals were extracted
per patient (initial session: 1 signal, early session: 4 sig-
nals, middle session: 3 signals, final session: 3 signals);
we set the first session as the reference for predicting the

Fig. 1. Simplified breathing model using Eq. 1. The
breathing pattern can be represented using a cosine4 wave
form with fluctuations in the respiration frequency, ampli-
tude, and baseline.

regularity variation thereafter. The patient information,
including planning target volume PTV, tumor length in
the cranial-caudal (CC) direction, uncontrolled and con-
trolled tumor motion in CC direction, and RGRT gating
window size, is displayed. The parameters were similar,
except that the PTV volume of the liver cancer patients
was more than twice that of the lung cancer patients.

2. Respiration-pattern Modeling

Clinically, multiple physiological factors, such as
breathing period, lung volume change, inhalation time
and exhalation time, and their ratio (exhalation-
inhalation time ratio: EI ratio), are used to explain the
breathing pattern. However, with respect to RGRT, tu-
mor motion and baseline stability are additional critical
factors that demand consideration. A respiration pat-
tern is time-series data represented as a periodic function
(i.e., in a sine or a cosine wave form), though an actual
breathing signal is more irregular and, thus, more diffi-
cult to standardize. A quasi-periodic function account-
ing for variations observed in real respiration is useful for
a relatively precise simulation of human respiration mo-
tion [9], though sometimes a more simplified respiration
form is sufficient for model-based analysis. In order to
simplify a patient’s breathing pattern while preserving
the data’s intrinsic properties, we defined the respiration
formula as

Y (t) = A(t) cos4(ϕ(t) · t) + B(t), (1)

where A, ϕ, and B indicate the amplitude, period and
baseline drift, respectively. Because each factor is a func-
tion of time, the regularity is considered to be adequate
if each parameter’s fluctuation is moderate. At the ini-
tial stage of this study, we investigated the correlations
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Table 1. Patient information used in this study: PTV, tumor length in the cranial-caudal (CC) direction, uncontrolled and
controlled tumor motion in the CC direction, and RGRT gating window size.

PTV volume Tumor length Tumor motion
Controlled

Gating
Study No. Diagnosis

(cm3) (cm) (cm)
tumor motion

window (%)
(cm)

1 Liver 651.6 9.1 0.9 0.3 38 − 62

2 Liver 2134.8 20.4 1.2 0.5 30 − 70

3 Liver 1004.8 15.6 1.3 0.4 38 − 63

4 Liver 748.5 11.1 1 0.3 40 − 70

5 Liver 189.4 8.1 1.1 0.5 30 − 70

945.8 ± 727.1 12.86 ± 5.1 1.10 ± 0.15 0.40 ± 0.10

6 Lung (L) 85.2 6.3 1.1 0.4 35 − 70

7 Lung (L) 597.2 17.8 1.4 0.5 30 − 70

8 Lung (R) 191.8 13.1 1 0.4 35 − 75

9 Lung (L) 1007.5 16.7 1.2 0.4 38 − 63

10 Lung (R) 284.2 10.4 0.6 0.2 40 − 60

433.2 ± 373.6 12.86 ± 4.7 1.06 ± 0.30 0.38 ± 0.11

among the variations in the period frequency, inhalation
time, exhalation time, EI ratio, amplitude, and marker
positions at the end of exhalation and at the end of in-
halation, then, we defined, by using a principal compo-
nent analysis (PCA), the major factors affecting respi-
ration. From the preliminary result, we found that (1)
strong correlations existed among the period, inhalation
time, exhalation time and EI ratio; (2) strong correla-
tions existed among the amplitude and marker positions
at the ends of exhalation and inhalation; (3) explaining
the respiration pattern by using variations in the period
frequency and the amplitude is reasonable. Additionally,
baseline changes in the sum had to be considered. There-
fore, the respiration model in Eq. 1 is feasible. Ruan et
al. followed a similar decomposition approach, including
additional noise, in their work [15]; they did not focus on
respiratory regularity. Fig. 1 provides a simple illustra-
tion of the model. Next, we will define the fluctuation
parameters for each component in detail.

A. Regularity of respiration cycle

Figure 2 is an actual lung cancer patient (No. 10)’s
respiration signal acquired using the RPM system and
used in this study. The amplitude, breathing frequency
and baseline are unstable. Full exhalation is represented
by the upper peaks, and full inhalation by their oppo-
sites. Hereafter, upper peaks represent the end of ex-
halation (EE) in all figures unless otherwise indicated.
The frequency of the time-series data is commonly ana-
lyzed on the basis of the frequency domain spectra [16];
however, due to the wide distribution of periods, the
characteristics of the respiration period are not clearly

Fig. 2. (Color online) RPM system’s 200-second respira-
tion signal for a lung cancer patient (No. 10). The peaks at
the end of exhalation (EE: o marks) and of inhalation (EI: x
marks) are displayed.

seen. Therefore, we defined “peak-to-peak”, one EE to
the next EE, as one respiration period; thus, correctly
detecting peaks in a noisy signal is important. To deter-
mine whether each peak is significantly larger or smaller
than the data around it, we used a peak detection al-
gorithm that finds, according to a predefined threshold,
local peaks and valleys in a noisy respiration signal. The
distribution of respiration periods can then be modeled
as a Gaussian distribution [17]; in this way, the char-
acteristics of the period can be represented as sample
mean and sample standard deviation. We confirmed the
normality of this distribution by using a Q-Q plot. If
there is no variation, the sample mean is the same as the
nominal period but if the respiration cycle is not regu-
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Fig. 3. RPM system’s 11 respiration signals for a lung cancer patient (No. 10). The signals were from the 1 initial, 4 early,
3 middle, and 3 final sessions.

lar, the sample standard deviation will be increased. In
other words, the sample standard deviation is the proper
factor for explaining fluctuations in the respiration pe-
riod. We defined the sample standard deviation of the
respiration period as sf. The marker positions at the end
of inhalation (EI) and at the EE, calculated automati-
cally using in-house analysis tools with MATLAB 2011b
(MathWorks Inc., Natick, USA), are also displayed in
Fig. 2. SPSS 21 (IBM SPSS Inc., Armonk, USA) was
used for further statistical analysis.

B. Regularity of amplitude

The amplitude of the respiration pattern at the i-th
period was calculated using Eq. 2, where x is a marker
position at the EE:

Ai =
1
2
(|xEE,i − xEI,i| + |xEI,i − xEE,i+1|), (2)

he amplitude is the average of the left- (ampL) and right-
side (ampR) values for any inhalation peaks, as indicated
in Fig. 1. Points that could not be located on a complete
cycle were removed from the calculation. Figure 3 shows
all of the 11 respiration signals for a lung cancer patient
(No. 10). As indicated, the range of the amplitude varied
among sessions due to marker-position and camera-angle
variations. However, the overall magnitude of the ampli-
tude generally did not change due to the fact that the

magnitudes are absolute values normalized to the known
intervals between two reflectors on a marker block. The
distribution of amplitude ranges can be explained by us-
ing sample means and sample standard deviations of the
breathing-cycle frequency [18]. We take the sample stan-
dard deviation of the amplitude (sa) as the amplitude
irregularity parameter.

C. Evaluation of baseline changes

Baseline changes can be considered, separately, ac-
cording to either of two components: random changes
and long-term drift [9]. Baseline long-term drift, also
known as “baseline drift”, is a common phenomenon in
breathing patterns [19]. Generally, the baseline is de-
fined as the position at the EE because it is more sta-
ble than it is at the EI [20]. In this study, we consid-
ered the baseline drift for positional variance only at the
EE. The bases of the peaks varied with a simple increas-
ing/decreasing trend or an oscillating trend. The simple
increasing trend is clearly evident in Fig. 4. Although Lu
et al. claimed that the baseline drift was not sufficiently
large to affect the position of a tumor [11], it might, as
the data indicate, become larger as time elapses over a
very long session and the trend is sustained to the end
of treatment. However, for a very long monitoring time,
an oscillating pattern is more common. In those cases,
it is more realistic to model the pattern as a cubic spline
through the cycles [9]; however, we aimed to extract a
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Fig. 4. Respiration signals for a liver cancer patient (No. 5)
for a mid-term session. The baseline drift in the signal is
obvious.

single parameter that could simply explain the baseline
drift. Baseline drift, even if nonlinear, can be represented
using the simple regression formula

Ŷ = α0 + βX + ε, (3)

where β and α0 represent the slope and the intercept
of a straight line, respectively, and ε is an error term
(residuals), assuming that ε ∼N(0, σ2

r). We defined the
standard deviation of residuals as σr, which accounts
for random changes of the baseline. Thus, β and σr

were used to quantitatively analyze the baseline changes
in this study. Figure 5 shows the scatter plot and the
straight line for a liver cancer patient (No. 5), where β
= 0.012, α0 = −3.076, and the adjusted R2 = 0.967.

3. Formulation of the Respiration Regularity
Index

Even though four breathing-pattern fluctuation pa-
rameters (sf , sa, σr and β) are determined for a signal,
using a single value incorporating all of them when deter-
mining respiration regularity is more convenient. How-
ever, given that these coefficients are possibly correlated,
a simple combination might overestimate the breathing
irregularity. A parameter-correlation matrix is provided
in Table 2. As is obvious, strong correlations existed
among the parameters, which fact called for considera-
tion of the covariance of each correlation. We, therefore,
implemented PCA and derived a new variable, −→ω . Gen-
erally, −→ω , as defined in Eq. 4, has fewer standardized
principal components than the parameters do (in this
case: 4):

ωi = l1,isf + l2,isa + l3,iσr + l4,iβ, (4)

where ln,i is a principal component coefficient, which is
the factor loading divided by the square root of the i-th

Fig. 5. Straight line estimated by using a simple regression
as displayed on the scatter plot of the marker positions (·) at
EE of the RPM signals shown in Fig. 4.

Table 2. Parameter-correlation matrix of the fluctuating
parameters sf , sa, σr, β.

sf sa σr β

sf 1.000 0.771** 0.255** −0.124**

sa 1.000 0.520** −0.328**

σr 1.000 −0.286**

β 1.000

** The correlation is significant at the 0.01 level (2-tailed).

eigenvalue,
√

λi. The number of principal components
can explain more than 80% of the variations of the over-
all respiration irregularity while satisfying λi > 0.7. We
applied rotation using varimax for clear observation of
the four fluctuation parameters. The overall irregular-
ity of a patient’s respiration can be explained using the
Euclidean norm of −→ω , expressed in Eq. 5 and defined as
δ:

δ = ||−→ω || (0 ≤ δ < ∞). (5)

Because our goal was to explain breathing-pattern reg-
ularity with a single number, we formulated a respiration
regularity index (ρ) that could account for a patient’s res-
piration regularity using δ. Respiration regularity can be
regarded simply as 1/δ; however, as this is very sensitive
to the variation of δ, we defined ρ as in Eq. 6 in order to
narrow the otherwise impractically wide range of ρ:

ρ = ln(1+(1/δ))/2 = ln(1+κ)/2 (0 < ρ < ∞), (6)

where κ = 1/δ. This is the final form of our proposed
respiration index. Although the interval of ρ is (0, ∞),
it rarely diverges to ∞ unless δ = 0; as such, it is not
realistic for actual patient data. Even in the case where
δ is 10−6, for example an extreme case, ρ is merely 6.91.
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4. Clinical Relevance of δ and ρ

A. Correlation between δ, ρ and tumor motion

Given the importance of confirming the clinical rele-
vance of δ and ρ, we investigated the correlation between
δ, ρ, the estimated controlled tumor motion range (θT,1)
and the over-travel range over a preset margin (upper
and lower bounds) in the superior and the inferior direc-
tions (ξU and ξL) only within the RGRT gating period
because we focused only on how target motion control
was maintained during RGRT. Because we were already
aware of the uncontrolled tumor motion range (θT,0) and
the gating window size (Δ), extracting signals inside the
gating window by using the phase information recorded
in the RPM data file. Each signal was cut off and then
rescaled for overlapping. We assumed that the external
marker signal was perfectly correlated with the internal
target motion. Figures 6 and 7 show (a) respiration sig-
nals, (b) superposed respiration cycles, and (c) cropped
signals based on . The respective normalized histograms
for the patients’ cropped respiration signals are displayed
in Fig. 6(d) and 7(d). Figure 6 is an example of a rel-
atively regular case while Fig. 7 shows an instance of
irregular breathing and, consequently, of failure to track
regularly through each cycle. Inside the gating interval,
the lower bound (BL) is the same as the baseline, and the
upper bound (BU ) is BL + θ∗T,1, where θ∗T,1 is the nomi-
nal controlled tumor motion, that is, the internal target
volume (ITV) margin for treatment. BL was determined
based on the median value of signals at the 50% phases
and maximum travel ranges of the tumor for both cy-
cles, and the cropped gated regions were determined to
encompass signals in the 95% confidence interval (CI).

B. Correlation between δ, ρ and dosimetric error due
to irregular breathing

We also investigated the correlation between δ, ρ and
the dosimetric error due to irregular breathing pattern,
considering only the phase-based gated RT. First, we
needed to make a few assumptions for a RGRT dose
simulation: (1) The external marker signal is perfectly
correlated with the internal target motion; (2) the target
is modeled simply as an elliptical shape, and we already
know the length and motion range; (3) the target is con-
formal and fully covered by the prescribed isodose line;
(4) radiation is delivered from beams arranged on the
coplanar plane, and they contribute to the total dose
evenly (thus, we can simplify the situation further: one
beam is irradiated perpendicular to the target motion,
as shown in Fig. 8); (5) no setup margin is considered;
thus, the PTV is the same as the ITV, and each beam is
exactly irradiated into the ITV volume; (6) each beam
is delivered during the entire time recorded in the RPM

Fig. 6. Example of a regular breathing pattern (patient
No. 1, session 1): (a) respiration signals, (b) superposed res-
piration cycles based on phase information in the RPM data
file, (c) cropped signals within the RGRT gating window and
(d) normalized histogram for the cropped respiration signal.

data file. If there are no variations in respiration, the
controlled tumor motion range will be within the preset
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Fig. 7. Example of an irregular breathing pattern (patient
No. 4, session 6): (a) respiration signals, (b) superposed res-
piration cycles based on phase information in the RPM data
file, (c) cropped signals within the RGRT gating window and
(d) normalized histogram for the cropped respiration signal.

interval, which is usually less than 0.5 cm; however, if
variations increase during marker tracking, the system

Fig. 8. Diagram of the beam irradiation to the target for
the dose simulation. One beam is irradiated in a direction
perpendicular to the target’s motion.

might fail to deliver the correct dose to the target. Dosi-
metric error in terms of the missing volume, , is defined
as

ε = (VPTV − Vpres)/VPTV , (7)

where VPTV and Vpres stand for the total PTV volume
and the PTV volume covered by the prescribed isodose
line.

C. Comparison with Root-mean-Square (RMS) of Pre-
diction Algorithms

To test the reliability of the proposed index, we com-
pared the result with the relative RMS value from the
Graphical Prediction Toolkit [21] using the MULIN [22]
and SVRpred [23] algorithms. We employed the default
setting in the toolkit. Relative RMS value (RMSrel) is an
index of the extent of improvement that can be achieved
by using a prediction algorithm and is defined as the
RMS value from predicted signals (RMSpred) divided by
the RMS value from non-predicted signals (RMSorig) [9].
If RMSrel is large, the evaluated respiration signal will
be too irregular for feasible prediction. We compared δ,
ρ, RMS and RMSrel by utilizing the MULIN and the
SVRpred algorithms.
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Table 3. Regularity indices (ρ) and fluctuation-explaining factors (sf , sa, σr, β, δ) of patients’ breathing patterns (patients
No.1 and 10). The indices and factors pertaining to the initial session are indicated in bold font.

Liver Lung

Pt # sf sa σr β δ ρ Pt # sf sa σr β δ ρ

0.345 0.086 0.028 0.001 0.280 0.760 2.357 0.290 0.066 0.000 1.680 0.233

0.384 0.078 0.043 0.001 0.305 0.727 1.562 0.161 0.074 0.002 1.104 0.322

0.334 0.098 0.025 0.001 0.280 0.760 1.854 0.300 0.079 0.000 1.376 0.273

0.311 0.074 0.026 0.003 0.250 0.805 2.775 0.311 0.039 −0.001 1.947 0.207

0.350 0.075 0.033 0.004 0.277 0.764 1.254 0.145 0.063 0.006 0.897 0.375

1 0.252 0.075 0.020 0.003 0.212 0.872 10 1.264 0.154 0.043 0.005 0.902 0.373

0.527 0.105 0.047 0.001 0.412 0.616 0.837 0.115 0.056 0.002 0.615 0.483

0.425 0.109 0.049 0.004 0.352 0.673 1.032 0.190 0.047 0.000 0.781 0.412

0.216 0.073 0.033 0.002 0.194 0.910 0.972 0.147 0.051 0.004 0.718 0.436

0.286 0.109 0.028 0.002 0.258 0.792 0.861 0.177 0.049 0.009 0.666 0.459

0.328 0.096 0.028 0.004 0.275 0.767 0.872 0.168 0.036 0.004 0.663 0.460

5. Comparison of Respiration Regularity be-
tween Lung and Liver Cancer Patient Groups

For each patient and session, sf , sa, σr, β, δ and ρ
were calculated to evaluate the regularity of each of the
factors and the composite index. Then, we calculated
the Pearson’s correlation coefficient between the ρ of the
reference session (ρ0) and the mean ρ of the remaining
sessions (ρ∗) to determine any correlation between the
two indices. A close correlation indicated a trend of
respiration-pattern variation from the initial breathing
pattern. We used an independent-samples t-test (Stu-
dent’s t-test) to determine whether differences in respi-
ration regularity existed between the liver (Gliver) and
the lung (Glung) cancer patient groups. Only ρ was con-
sidered as a regularity factor, and a total of 55 cases per
group were examined.

III. RESULTS

1. Respiration Regularity Index for Patients

From the PCA for the dataset used in this study, the
estimated number of principal components was 2. This
means that two principal components could explain 79%
of the total variance. Each of the standardized principal
components for −→ω = (ω1, ω2) are included in Eq. 8:

ω1 = 0.63sf + 0.59sa + 0.27σr,

ω2 = 0.36sa + 0.65σr − 0.92β, (8)

where ω1 is the positive combination of all parameters ex-
cept β; the fluctuations in the period and the amplitude
are dominant while all parameters except β are strongly
correlated. Contrastingly, in ω2, β is a dominant factor;

Fig. 9. Component plot in rotated space. β is less corre-
lated with the others; therefore, a reverse relationship exists
between {sf , sa, σr} and β.

ω2 mainly considers the baseline drift. However, the con-
tribution of ω2 to δ is relatively small. Figure 9 shows
a component plot in rotated space. As can be seen, β
is less correlated with the others; correspondingly, a re-
verse relationship exists between them. Although the
coefficients in Eq. 4 can be changed based on popula-
tion data, δ did not vary significantly as we tested and
obtained different ln,i for different datasets; therefore,
Eq. 8 can be considered to be robust for routine clinical
purposes of respiration-irregularity estimation. Fig. 10
shows the ρ (sorted in ascending order) for the patient
data used in this study: 2 < ρ < 1.1. It was stable, and
accordingly, intuitively guessing a patient’s respiration
regularity was easy. Table 3 shows the sf , sa, σr, β, δ
and ρ values for patients No. 1 and 10 and treatment
session. The respiration regularity could be determined
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Fig. 10. Sorted ρ (in ascending order) for the patient data
used in this study. The range of ρ is (0.2, 1.1).

Table 4. Correlation among δ, ρ, ε, the estimated con-
trolled tumor motion range (θT,1), and the over-travel range
over preset margin in the superior and the inferior directions
(ξU and ξL) only within the RGRT gating period.

ρ δ ε θT,1 ξU ξL

ρ 1.000 −0.898** −0.214* −0.216* −0.594** −0.285**

δ 1.000 0.262** 0.233* 0.623** 0.350**

ε 1.000 0.449** 0.622** 0.748

θT,1 1.000 0.486** 0.604**

ξU 1.000 0.528**

ξL 1.000

* The correlation is significant at the 0.05 level (2-tailed).
** The correlation is significant at the 0.01 level (2-tailed).

based on ρ; fluctuations in the breathing cycle and the
amplitude, moreover, were especially determinative of ρ
[18].

2. Clinical Relevance of δ and ρ

Table 4 lists the correlations among β, δ, ε, θT,1, ξU

and ξL for the data on patients Nos. 1 ∼ 9. The last
patient’s data were not used for this analysis because
θT,0 and θT,1 were relatively small compared those for
to the other patients and would have skewed the trend
for the entire population. A strong inverse correlation
existed between δ and ρ, as is easily understood. Al-
though the correlation between ρ and ε was not strong,
the proposed index was correlated with the dosimetric
error. This is clearer in the stronger correlation between
δ and the other parameters. Standardized distributions
of δ and ε are displayed in Fig. 11. Figure 12 shows
the correlation between δ and ε in the form of simple

Fig. 11. Standardized distributions of the overall irregu-
larity (δ) and the dosimetric error (ε). The two distributions
show similar patterns.

regression data. Most of the values of the dosimetric er-
ror are located near y = 0 because the estimated error
inside a gating interval was quite small. The estimated
regression slope was very small as well, indicating that
the probability of the PTV escaping the margin, corre-
spondingly, were sufficiently small. However, when we
considered the worst case, as represented by the values
on the upper side of the graph, the probability increased.
If we were to calculate the slope of a line passing through
these large values, δ would be less than 2: in the present
case, ρ = 0.2. However, we set ρ = 0.3 as the minimum
condition for application of the RGRT safety margins.
Moreover, ρ > 0.7 or δ < 0.35 also would be regarded
as suitable for RGRT. On the basis of the data in Ta-
ble 4, we can say that if the breathing pattern is not
good enough, the probability of the target’s escape from
the determined upper and lower bounds increases, and
the missing target volume that cannot receive the proper
dose increases.

3. Comparison with RMS of Prediction Algo-
rithms

The correlations between δ and multiple RMS indices
were not strong; however, a relatively strong correlation
existed between RMSSV R, (RMSSV R)Rel and ρ or δ/
Figure 13 shows the standardized distributions of δ and
(RMSSV R)Rel. Although the matching was not good, we
can see a similar trend through the data, indicating that
the proposed ρ and δ are useful and applicable to the
evaluation of patients’ respiration regularity.
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Fig. 12. Relationship between the overall irregularity (δ)
and the dosimetric error (ε, x marks) as a simple regression.

Fig. 13. Standardized distribution of the overall irregular-
ity (δ) and the relative (RMSSV R)Rel. Although the match-
ing is not good, we can see a similar trend through the data.

4. Prediction of Patients’ Respiration Regular-
ity

The ρ0 and the ρ∗ for each patient are listed in Table
5. The Pearson’s correlation coefficient (R) for the two
datasets was 0.951, p < 0.01, reflecting a very strong,
positive correlation between them. This indicated that
if the ρ0 for a patient is known, the respiration regu-
larity of that patient through subsequent sessions can
be predicted. Patients with a high ρ0 tended to sus-
tain breathing regularity. Nonetheless, there were ab-
normal cases showing very irregular patterns even with
ρ0 of more than 1 [24]. Figure 6 plots examples of these
cases (No. 5): the initial (Fig. 14(a)) and the mid-term
(Fig. 14(b)) breathing and ρ are displayed (ρ0 = 0.669
and ρ4 = 0.259); however, the abnormally irregular pat-
terns in Fig. 14(b) seemed to be due to coughing; thus,
they were manually removed, and the estimation was re-

Table 5. Respiration regularity index (ρ) for the initial
session (ρ0), mean (ρ∗), and standard deviation (sρ∗) of ρ for
all sessions except the initial session

ρ0 ρ∗ sρ∗

Patient 1 0.760 0.769 0.086

Patient 2 0.839 0.802 0.093

Patient 3 0.529 0.625 0.068

Patient 4 0.654 0.720 0.118

Patient 5 0.669 0.634 0.183

Patient 6 0.900 0.862 0.111

Patient 7 0.631 0.744 0.169

Patient 8 0.353 0.488 0.083

Patient 9 0.754 0.671 0.090

Patient 10 0.233 0.380 0.089

Table 6. Mean (ρ), median (ρ̃), and standard deviation
(sρ) of ρ for the liver and the lung cancer patient groups

Group No of signals Mean (ρ) Median (ρ̃) SD (sρ)

Liver 55 0.708 0.719 0.130

Lung 55 0.624 0.631 0.211

peated (Fig. 14(c)). In this case, ρ4,mod was increased to
0.476.

5. Comparison of Respiration Regularity be-
tween Lung and Liver Cancer Patient Groups

Table 6 provides a basic statistical summary of the two
patient groups. The sample mean and median ρ of Gliver

were larger than those of Glung. Fig. 15’s boxplots of the
two groups also show this obvious discrepancy. The me-
dian ρ (ρ̃) for Gliver was 0.719, but for Glung, it was
0.631. The interquartile range (IQR) for Gliver was nar-
rower than that for Glung; the IQR of Glung was wider
for the larger values, indicating that the breathing pat-
terns of the lung cancer patients were more irregular than
those of the liver cancer patients. In the independent-
samples t-test results, a significant difference existed in
the mean values (p < 0.001, 2-tailed); thus, we can say
that the respiration regularity between the two groups
was quite different. In fact, some patients, due to their
severe breathing irregularity, would be deemed unsuit-
able for RGRT. Shirato et al. showed that tumor mo-
tions within the lungs and the liver differ according to
the corresponding anatomical dissimilarities [13]. Lu et
al., however, reported no significant differences between
the lung-cancer and the upper-abdomen-cancer patient
groups [11].
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Fig. 14. (Color online) Respiration signals in (a) the initial
and (b) the middle sessions of a liver cancer patient (No.
5), whose breathing pattern was estimated as regular in the
initial session but became very irregular in the middle session.
ρ0 = 0.669, ρ4 = 0.259. (c) Abnormally irregular pattern that
was manually removed from the signal. ρ4,mod = 0.476. The
peaks at the end of exhalation (EE: o marks) and at the end
of inhalation (EI: x marks) are also displayed.

IV. DISCUSSION

In this study, we defined a respiration regularity in-
dex (ρ) based on a breathing-pattern model. Fluctua-
tions in the breathing cycle (sf ), amplitude (sa), and
baseline-drift residuals of the simple regression (σr) and

Fig. 15. Boxplots of the liver (Gliver) and the lung (Glung)
cancer patient groups showing obvious discrepancies. These
results indicate that the respiration regularities of the two
groups were quite different; specifically, the regularity of
Gliver was better than that of Glung.

the baseline-drift slope (β) were used to formulate the in-
dex. The fluctuation of each factor was distributed in a
Gaussian form, and the range of the fluctuation could be
explained using a sample standard deviation. The pro-
posed index showed good validity as an explanatory tool
for respiration regularity (indeed, the numerical informa-
tion it provided will be applied to an upcoming respira-
tion study). We did not employ the sample mean values
of the respiration period or the amplitude in the evalu-
ation because their differences are not critical factors in
estimating the respiration regularity. For example, sup-
pose that a patient has a breathing cycle of 3 seconds in
the initial session, which is then lengthened to 5 seconds
in the following session: RGRT can be said to be avail-
able for both cases, provided that the breathing cycle is
maintained regularly during the session because RPM’s
respiration prediction utility is based only on the regu-
larity of the signal of the given session. This, in fact, is
shown in Figs. 6 and 7. Especially for severely, irregular
breathing patterns, one respiration cycle cannot be accu-
rately determined and will invoke target positional and
dosimetric errors. This is why we focused on factor fluc-
tuations in the present study. However, the dosimetric
error was insignificant in all cases except the extremely
irregular ones. This probably can be ascribed to the
very small residual motion (on the order of a few mil-
limeters) relative to the total target length. In Fig. 6(c),
we can see that the cropped cycles are collected around
the baseline. However, in Fig. 7(c), a more irregular
pattern is shown. These trends were also clearly rep-
resented in each normalized histogram. The histogram
indicates the probable means by which the target escapes
the bounds. Obviously, the target in Fig. 7(d) can move
over the upper bound even though the patient is under-
going RGRT. This is the reason we are interested in ξU
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and ξL. One other issue concerns the baseline. Gener-
ally, baseline drift is ignored; therefore, no margins are
applied to compensate for baseline changes, even when
the drift is dominant inside a gating window, because
the effects of amplitude and period fluctuations are rel-
atively small. The interval of the baseline for the 95%
CI will be a hint to the margins needed to compensate
for baseline changes and prevent moving above BL. On
the other hands, β simply can be a predictor for baseline
drift for less than 10 minute’s monitoring.

Acquiring a respiration signal (sample) is a kind of
sampling process that selects signals within a certain
time period of a patient’s overall breathing cycle (pop-
ulation); indeed, relative to an entire breathing cycle,
an obtained respiration signal is very short. Although
a breathing pattern is assumed to be repeated continu-
ously, we cannot ascertain with complete certainty that
the signal represents the patient’s breathing pattern.
Therefore, recording data sufficient to cover the entire
treatment time is recommended. Moreover, the uncer-
tainties of the fluctuation parameters also depend on the
number of detected peaks at EI and EE. For example,
when we calculate sf , at least 30 EE positions are nec-
essary, and the required recording time is a minimum of
30·Xf , where Xf is a sample mean period of a respiration
signal X. If Xf = 5 seconds, > 150 seconds of recording
is recommended. In the present study, we used around
300 seconds of data. The sampling time also affects the
slope (β) of the line in a simple regression. Even though
β, owing to its very small value, does not affect ρ much,
σr strongly depends on it. Therefore, the respiration
signal should be investigated before calculating ρ.

The respiration regularity index can be estimated after
4DCT acquisition or during RGRT. If the respiration
signals obtained during 4DCT acquisition are used to
estimate ρ, a recording time long enough to minimize the
uncertainties is recommended. The respiration regularity
index also can be used to estimate breathing patterns
for other modalities such as fluoroscopy, spirometry, or
Cyberknife. Generally, tumor-motion data are provided
in a time-series format, which is suitable for evaluation
of motion trends.

The proposed index, it should be noted, is sensitive to
the peaks in the respiration signals. In the present anal-
ysis, whereas the exported RPM signals provided phase-
angle-based peak and valley information, this could not
be used because for patients with an irregular breathing
cycle, the peaks were located at unexpected positions.
Given the importance of finding the proper positions of
the peaks at the EE and the EI, we employed our own
peak detection algorithm.

Kissick et al. [17] analyzed longitudinal breathing mo-
tion in a simulation study. They used mean (μ) and δ
terms (different terms from this study) to explain the
distributions and the breathing-induced variations of the
period, amplitude and baseline offset. They processed δ
merely as a limiting factor in their simulations, specif-

ically by assigning maximal values to each parameter.
Wu et al. [25] reported tumor respiratory motion as de-
termined in various statistical analyses; they used the
concepts of state duration, cycle and state distance to
model respiration signals. This approach, whereas it can
yield useful information about the respiration pattern of
a patient, does not provide intuitive parameters. In the
present study, the actual respiration signal did not man-
ifest itself in the cos4(ω(t) · t) wave form, but rather in
a “saw tooth” pattern. The parameters that we needed,
though, were calculated in the peak-to-peak manner, as
detailed in Section II.2. Thus, the actual breathing pat-
tern was not a critical issue: the parameters were almost
the same, even when the actual signals were simplified in
the sine wave form by using Eq. 1, and a patient’s respi-
ration pattern represented in that form using sf , sa, σr

and β. Although we emphasized the respiration regular-
ity index ρ, both ρ and δ can be useful single parameters
for estimating the regularity or irregularity of breathing
patterns.

Prediction of inter-fractional respiration regularity
from a macroscopic point of view is also important to any
determination of RGRT suitability. Notwithstanding,
most prediction studies have emphasized intra-fractional
forecasting, even when future breathing patterns could
be predicted only a few seconds in advance [5,12,26,27].

The RMS index in Section II.5 as applied to the eval-
uation of the prediction ability is not intended for res-
piration regularity estimates; however, we compared ρ
and δ with them simply because RMS values are corre-
lated with the repeatability of a respiration signal’s unit
cycle. Whereas we attempted to investigate the clinical
relevance of ρ and δ, the quantitative evidence remains
relatively lacking; moreover, the ρ > 0.3 criterion for
RGRT needs to be confirmed with larger populations in
further studies. Nonetheless, despite the small number
of patients reviewed in our statistical analysis, we were
able to derive a regularity index from the data and prop-
erly apply it to clinical cases. Moreover, we were able to
detect breathing-pattern transitions as the session pro-
ceeded by selecting a total of 11 sets from the initial,
early, middle, and final sessions rather than randomly.

V. CONCLUSION

We were able to objectively determine the respira-
tion regularity by using a composite index by which
the breathing-cycle characteristics could be effectively
explained. Additionally, we showed that by means of
estimating ρ0, a patient’s future respiration regularity
could be predicted. Single-index testing of respiration
regularity can significantly facilitate determination of
RGRT availability in clinical settings, especially for free-
breathing cases.
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