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The voter model has served to address the emergence of consensus within populations of individ-
uals. However, the dynamics based on the classic voter model has usually been analyzed based on
the assumption that the two states in the model are simply equivalent. In this paper, we discuss a
mathematical description of the weighted voter model and obtain a series of results for the evolu-
tionary process on complex networks. For homogeneous networks, we study the active link density
analytically and find that the opinion strength plays a crucial role in determining whether the
system can reach consensus. We also extend our research to heterogeneous networks and discover
that the network structure can affect the convergence time but has less influence on the positive
proportion. The results can be applied to various pervasive cases in which two conflicting opinions
interact with each other.
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I. INTRODUCTION

Collective behavior has recently attracted much inter-
est among the community of physicists working on com-
plex systems. The spreading of rumors, the dynamics of
opinions and the diffusion of cultural traits are all collec-
tive phenomena that start from a disordered initial con-
figuration and tend to result in an ordered state [1–10].
To analyze this kind of social dynamics from a physi-
cal viewpoint, numerous researchers have used the voter
model as an insightful starting point due to its simplicity
[11–15].

The voter model describes an evolutionary process in
which the opinion can be influenced by an individual’s di-
rect neighbors. The dynamics in a complex network can
be briefly described as follows: Each individual has an
opinion characterized by a binary variable si = ±1. Ini-
tially, all nodes are assigned to a random opinion with a
given probability. At every time step, individual i adopts
the state of a randomly chosen neighbor j; i.e., if si �= sj ,
then si is set equal to sj [11–15]. Studies of the voter
model on complex networks have mainly focused on the
influence of complex topologies on the dynamical behav-
iors [15], the relationship between the updating meth-
ods (link update or node update) or adopting methods
(direct, reverse or random) and the system’s dynamic
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behavior [16].
In the literature, traditional works have mainly as-

sumed that these two conflicting opinions have equal im-
pact and that the two opinions are merely equivalent
labels. In reality, however, voters are likely to be influ-
enced by some external factors, such as mass media, elec-
tion propaganda, racial or religious factors, etc., which
can have different influences on both sides, thus causing
the changes of opinion from one to another to have dif-
ferent probabilities. Several studies have considered the
preference for one of the two states [17, 18]. However,
those models are not straightforward and do not gave
particular attention to the parameters that are widely
concerned in the classic voter model.

In this paper, we aim to delineate this phenomenon di-
rectly and discuss some crucial parameters that were not
fully studied in the previous literature by adding weights
to the two opinions; i.e., we assign different strengths to
the two opinions to show their acceptance [19]. If one
opinion is more likely to be spread in general, we say
it has a stronger strength than the other one. Different
from the literature mentioned above, we mainly discuss
the influence of the opinion strength on the system’s sta-
tus. Firstly, we give a more precise illustration of our
model in Section II. In Section III, the basic equations
that control the dynamic behaviors of the system are es-
tablished. To investigate whether individuals with the
same opinions tend to aggregate or separate, we study
the active link density, which is the proportion of links
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that connect opposite nodes. Next, we use simulations
to extend the results to heterogeneous networks. Finally,
conclusions are presented in Section IV.

II. THE MODEL

We consider a connected, undirected network com-
posed of a set of N nodes and M links. Let σ+(t) and
σ−(t) be the density of positive nodes (nodes whose state
are +1) and the density of negative nodes (nodes whose
state are −1), respectively, at time t. Initially, nodes
are assigned values of 1 or -1 with probabilities given by
σ+(0) or σ−(0) = 1 − σ+(0). Denote the nonnegative
values f+, f− as the strengths of the positive state and
the negative state, fulfilling f+ + f− = 1. We assume
that the state strengths remain unchanged during the
process.

The weighted voter model is defined as follows:
At every time step, a node i updates its state to a

positive node with probability

f+mi+

f+mi+ + f−mi−
. (1)

Otherwise, it will be negative with probability

f−mi−
f+mi+ + f−mi−

. (2)

Here mis stands for the number of node i’s neighbors
with state s. This step is repeated until the system nec-
essarily reaches consensus or for long enough time where
it never reaches consensus.

In the classic voter model, a node adopts its neigh-
bor’s opinion randomly. If most of its neighbors are pos-
itive nodes, it will have a higher probability to become
(or remain) positive. Consequently, the positive updat-
ing probability can be understood as mi+/(mi+ + mi−).
Therefore, we name our model the weighted voter model.
To note, this model is more suitably categorized as a ma-
jority rule model, but we still name it the weighted voter
model because this model is compared with the classic
voter model in this paper.

Naturally, the system may reach a consensus situation
in which all nodes hold the same state or may never reach
this situation. Hence, we are concerned with the condi-
tions that the system can reach a fully-ordered state. If
these conditions are met, we will focus on the mean time
to converge; otherwise, we will take ordering parameters
such as the density of positive nodes, the density of active
links and the magnetization into account. The detailed
definitions of these parameters will be provided in the
following sections.

III. RESULTS

1. The Master Equation

In order to have a basic understanding of this model,
we firstly develop the differential equation to describe
the evolution of the positive density. For simplicity, we
consider the uncorrelated Erdös − Rényi (ER) network
in this subsection.

According to the updating rule, the probability
P (− → +) that a randomly-chosen node changes state
from -1 to +1 can be approximated as (1 − σ+) ·

f+σ+
f+σ++f−σ−

. Conversely, we obtain P (+ → −) = σ+ ·
f−σ−

f+σ++f−σ−
. The number of positive nodes is N+ = Nσ+.

Therefore, the evolution equation for the number of
positive nodes in the mean-field approximation reads

dN+

dt
= N [P (− → +) − P (+ → −)], (3)

which can be rewritten as

dσ+

dt
=

Aσ+ − A(σ+)2

Aσ+ + B
, (4)

where A = 2f+−1, B = 1−f+. The stationary solutions
of this equation can be easily obtained and are σ+ = 0
or σ+ = 1 under the condition of A �= 0. Particulary,
σ+ = 1 is stable whenever f+ > 1/2, and σ+ = 0 is
stable if f+ < 1/2, which is in accord with common
sense.

However, if A = 0 (f+ = 1/2), the right-hand side of
Eq.(4) equals zero, which means that both the positive
nodes and the negative nodes keep their initial densities.
Actually, our model turns out to be the classic voter
model if A = 0. The conclusion of the classic voter
model on this network topology is σ+(t) → σ+(0) when
N → ∞, and the system never reaches the fully-ordered
state [14]. However, if the fluctuation is considered, the
system may be driven to the consensus state.

To confirm this, we plot the positive node density for
every 10 steps of one realization. The results are shown
in Fig. 1. Without loss of generality, we only need to
consider f+ ≥ f− in the following analysis. As shown
in Fig. 1, the further f+ deviates from 1/2, the eas-
ier the system converges. When f+ = 1/2, the positive
node density fluctuates around 1/2, in agreement with
the classic conclusion.

2. The Density of Active Links

Now, we discuss the density of active links. Naturally,
two types of links are included in the voter system: active
links that connect nodes of different states and inert links
that connect nodes of the same state. The density of
active links ρ = L/M measures the level of activity in
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Fig. 1. (Color online) The relationship between the pos-
itive node density and time in one realization. The initial
condition is σ+(0) = 1/2. We adopt the ER network with
N = 1000 and mean degree μ = 2.75.

the system, where L is the number of active links [14].
In this subsection, we consider networks with any given
degree distribution.

Let P (k) stand for the degree distribution of nodes. A
positive state node i with degree k is chosen. We denote
by n the number of active links connected to it before
the update. After the update, the probability of node i
remaining positive is

P+ =
f+

k−n
k

f+
k−n

k + f− n
k

, (5)

and the probability of it flipping its status is

P− =
f− n

k

f+
k−n

k + f− n
k

. (6)

The expectation for the number of active links after
updating is E(Lafter) = nP+ + (k − n)P−. Therefore,
the expectation value for the increase in the number of
active links after updating for a positive node is

E(ΔL|+) = E(Lafter) − n

=
f−n − 2f− n2

k

f+(1 − n
k ) + f− n

k

. (7)

Likewise, for a negative node,

E(ΔL|−) =
f+n − 2f+

n2

k

f−(1 − n
k ) + f+

n
k

. (8)

Assembling these factors, we can describe the change in
the number of active links in a single time interval dt =
1/N as

dL

dt
=

∑
k

Pk
dL

dt

∣∣
k
, (9)

where dL
dt

∣∣
k

is the average change in L when a node of
degree k is chosen.

Here, we assume that the distribution of the state of
a node’s neighbors is independent of the node’s state it-
self. We define B(n, k) as the probability that n of the
k links connected to a node are active (ΣkB(n, k) = 1)
and B(n, k|s) as the corresponding conditional probabil-
ity given that the node has state s. Introducing these
expressions, we can rewrite Eq. (9) as

dL

dt
=

∑
k

Pk

1/N

k∑
n=0

∑
s=±

E(ΔL|s)B(n, k|s)σs. (10)

The conditional probability B(n, k|s) is a binomial dis-
tribution with P (−s|s) as the single event probability,
where P (−s|s) is the probability that a node changes
state from s to −s. Let μ = 2M/N stand for the mean
degree of the network. The total number of active links in
the network is L = ρμN/2, among which σsμN connect
nodes with state s. Therefore, P (−s|s) = ρμN/2

σsμN = ρ
2σs

,
leading to

B(n, k|s) =
(

n

k

)
(

ρ

2σs
)n(1 − ρ

2σs
)k−n. (11)

Substituting these expressions into Eq.(10), we obtain

dL

dt
=

∑
k

Pk

1/N

∑
s=±

σs(αs〈n〉k,s − βs

k
〈n2〉k,s). (12)

We have used a Taylor expansion in the above equation.
Here, α+ = f−

f+
, β+ = f−

(f+)2 , α− = f+
f−

, β− = f+
(f−)2 and

〈n〉k,s =
k∑

n=0

B(n, k|s)n =
kL

μNσs
, (13)

〈n2〉k,s =
k∑

n=0

B(n, k|s)n2 =
kL

μNσs
+

k(k − 1)L2

μ2N2(σs)2
. (14)

The property of a binomial distribution is used when
calculating Eq. (13) and Eq. (14). Combining these
equations with Eq. (12), we find that the stationary
solutions of this equation are L1 = 0 or

L2 =
μNσ+σ−(f3

+(μf− − 1) + f3
−(μf+ − 1)

(μ − 1)(σ+f3
+ + σ−f3−)

. (15)

Using ρ = 2L/μN , we finally obtain the density of sta-
tionary active links ρ1 = 0 or

ρ2 =
2σ+σ−(f3

+(μf− − 1) + f3
−(μf+ − 1))

(μ − 1)(σ+f3
+ + σ−f3−)

. (16)

Therefore, we can easily show that ρ1 is stable if

μ < μc =
f3
+ + f3

−
f+f−(f2

+ + f2−)
, (17)
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Fig. 2. (Color online) The relationship between μc and f+

in our model. The curve is an analytical result derived from
Eq. 17. The circles and crosses stand for the convergent
state and the non-convergent state, respectively, during the
simulation. We adopt the ER network with N = 1000. The
average degrees are 7.98, 6.06, 4.15, and 2.75 (from top to
bottem).

ρ2 is stable otherwise.
Let us review the relative conclusions of the classic

voter model [14], which also has two solutions. The so-
lution ρ1 = 0 is stable if μ < μc = 2, and when μ > 2,
the stable solution is ρ2 = 4ξσ+σ−, where ξ = μ−2

2(μ−1) is
a constant value only related to the mean degree. That
is to say, if the mean degree of the network is no more
than 2, no links will be active after a long time. Other-
wise, the density of active links tends to be a constant
nonzero value 4ξσ+(0)σ−(0) in the thermodynamic limit.
Naturally, substituting f+ = f− = 1/2 into Eq. (16), we
obtain this result.

Therefore, compared with the classic voter model, the
weighted voter model can be understood as an expecta-
tion of the convergence area. From Eq. (17), we obtain
the curve in Fig. 2. This curve distinguishes the not-
convergent region (upper curve) from the convergent re-
gion. During the simulation, if the system can indicate a
convergent state (ρ is small enough after 5N steps), we
draw a circle. Otherwise, we plot a cross. As shown in
the figure, a larger mean degree indicates an increased
difficulty in obtaining a consensus. Due to fluctuation
and finite size effect, errors are unavoidable. Therefore,
Eq. (17) is a rough estimate of whether the system can
reach convergence. In Fig. 3, we consider the evolution-
ary of the active link density with time. The results are
similar to the results in Fig. 1 because ρ and σ+ can be
related by Eq. (16).

In the analysis above, we find that σ+(0) and f+ both
affect σ+ after a long time. In Fig. 4, we draw a contour
map to test their significance. The figure is divided by a
series of vertical lines instead of horizontal lines, which
means that f+ is the key parameter that determines the

Fig. 3. (Color online) The relationship between the den-
sity of active links and time in one realization. The initial
condition is σ+(0) = 1/2. We adopt the ER network with
N = 1000 and μ = 2.75.

Fig. 4. (Color online) The contour map of σ+(1000) as a
function of f+ and σ+(0) for the ER network. We adopt the
ER network with N = 1000 and mean degree μ = 2.75. The
results have been averaged for 102 experiments.

system’s evolution. In contrast, σ+(0) has little effect on
the system. Intuitively, high values of σ+(0) and f+ can
both increase σ+, but a high value of σ+(0) leads to an
unstable high value of σ+ in the beginning, while a high
value of f+ helps to maintain this result.

From Eq. (16), we can obtain more of the parameters,
such as the magnetization [14], that were studied in the
voter model. Magnetization is another parameter that
measures the level of order in the network. Although the
density of active link ρ is indicative of whether the system
will reach a fully-ordered state, it cannot denote which
one of the two states will be reached. For this reason, the
node magnetization m = σ+ − σ− is introduced where
m = 1 (m = −1) represents the + (−) fully-ordered
state. The link magnetization has been proven to be
simply the node magnetization [14], i.e.,

m = σ+ − σ− = ρ++ − ρ−− = 2σ+ − 1, (18)
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Fig. 5. (Color online) The positive density σ+(5000) (in-
set) and the convergence time T (main) as functions of f+

in ER and BA networks. For both networks, N = 1000 and
mean degree μ = 4.15. The results have been averaged for
102 experiments.

where ρ++ (ρ−−) is the density of links connecting two
nodes with state +1 (−1).

If Eq. (18) and Eq. (16) are combined, ρ and m are
related through

ρ =
(f3

+(μf− − 1) + f3
−(μf+ − 1))(1 − m2)

(μ − 1)[(1 + m)f3
+ + (1 − m)f3−]

. (19)

Compared with the classic result ρ = ξ(1−m2) [14], the
result here is more complicated and shows the influence
of the state strengths.

3. Simulation on Heterogeneous Networks

Next, we extend our model to a heterogeneous sub-
strate such as a BA network [21]. The degree distribu-
tion of the BA network is skewed and highly variable.
In Fig. 5, we compare the positive density σ+ and the
convergence time T as functions of f+ in ER and BA
networks. As shown in the figure, the convergence time
in the BA network is shorter than that in the ER net-
work. The reason lies in the role of hubs, which have
more neighbors than normal nodes , in the BA network.
The presence of a hub helps to accelerate the consensus
process because its many neighbors tend to become equal
to it. However, the difference in σ+ when the network
has not reached consensus is slight.

IV. CONCLUSION

To summarize, we have investigated a weighted voter
model that introduces an opinion weight into the clas-
sic voter model. It expands the application limits of the

classic voter model. The relationship among the state
density, the active link density, the mean degree and the
strength of opinion has been presented in Eq. (16). A
slight difference in the positive state strength can make
a huge difference in the system. If f+ is sufficiently close
to 0.5, achieving consensus with the system is difficult.
The results have been verified by many numerical simu-
lations. Then, we extend our research to heterogeneous
networks. The presence of hub nodes has been found to
help the consensus process accelerate, but has less influ-
ence on the positive proportion.

To note, the actual meaning of opinion strengths is not
involved in the discussion above. Therefore, this model
can be applied to various cases in which two conflicting
opinions have unequal status.

Except for all the work we have done, various topics
still attract the interest of scientists, such as the survival
probability and the conservation laws. Besides, the dy-
namical scaling laws (e.g., node update or link update)
and the degree exponent γ in the scale-free network may
influence the final results. However, to concentrate on
opinion strength, we have not discussed all these factors.
These will be investigated in the future to improve our
model.
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