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Quantum Gravity from Noncommutative Spacetime

Jungjai Lee∗

Department of Physics, Daejin University, Pocheon 487-711, Korea

Hyun Seok Yang†

School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Received 16 September 2014)

We review a novel and authentic way to quantize gravity. This novel approach is based on the fact
that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian
geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the
equivalence principle, the most important property in the theory of gravity (general relativity), from
U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence
principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or
the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative
U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which
is also an interacting theory. As a consequence, a background-independent quantum gravity in
which the prior existence of any spacetime structure is not a priori assumed but is defined by
using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for
quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the
cosmological constant problem, to understand the nature of dark energy, and to explain why gravity
is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter
is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which
is a topological object in the defining algebra (noncommutative �-algebra) of quantum gravity.
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I. INTRODUCTION

The most important property in the theory of gravity
(general relativity) is arguably the equivalence principle.
The equivalence principle says that gravity can be in-
terpreted as an inertial force, so it is always possible to
locally eliminate the gravitational force by using a co-
ordinate transformation, i.e., in a locally inertial frame.
This immediately leads to a remarkable picture in which
gravity has to describe a spacetime geometry rather than
a force immanent in spacetime. The equivalence princi-
ple also implies that gravity is obviously a universal force
such that gravity influences and is influenced by every-
thing that carries energy. Therefore, the spacetime has
to serve as a stage for everything supported on it, as
well as an actor for the dynamical evolution of the stage
(spacetime) itself. In order to quantize gravity, we, thus,
have to cook a frying pan and a fish altogether. How?

∗E-mail: jjlee@daejin.ac.kr
†E-mail: hsyang@kias.re.kr

1. What Is Quantum Gravity?

Quantum gravity means to “quantize” gravity. Grav-
ity, according to Einstein’s general relativity, is the dy-
namics of spacetime geometry where spacetime is a Rie-
mannian manifold and the gravitational field is repre-
sented by a Riemannian metric. Thus, naively quantum
gravity is meant to quantize the Riemannian manifold.
However, how to “quantize” a Riemannian manifold is
still vague.

Quantum mechanics has constituted a prominent ex-
ample of “quantization” since its foundation. However,
quantization in this case is controlled by the Planck con-
stant �, whose physical dimension is length times mo-
mentum, i.e., (x × p). Therefore, quantization in terms
of � quantizes (or deforms in a weak sense) a particle
phase space, as we know very well. Because we consider
a classical field φ(x) ∈ C∞(M) to be a smooth func-
tion defined on a spacetime M and a many-body sys-
tem describing infinitely many particles distributed over
the spacetime M , quantum field theory is also defined
by quantization in terms of � in an infinite-dimensional
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particle phase space, as we clearly know.
Now consider “quantizing” gravity. With � again? Be-

cause gravity is characterized by its own intrinsic scale
given by the Newton constant G, where the classical
gravity corresponds to the G → 0 limit [1], we should
leave open the possibility that the quantum gravity is
defined by a deformation in terms of G instead of �.
Customarily, we have taken the same route to the quanti-
zation of gravity as that taken by conventional quantum
field theory. Thus, conventional quantum gravity also in-
tends to quantize an infinite-dimensional particle phase
space associated with the metric field gμν(x) (or its vari-
ants such as the Ashtekar variables or spin networks) of
a Riemannian geometry. However, we have to carefully
contemplate whether our routine approach to quantum
gravity is on the right track or not because gravity is
very different from other forces, such as the electromag-
netic, weak and strong forces. For a delightful journey to
quantum gravity, it is necessary to pin down the precise
object of quantization (� or G) and clearly specify cor-
rect variables for quantization (spacetime itself or fields
associated with the spacetime). For these reasons, we
pose the following two questions [2]:

Q1. Is gravity fundamental or emergent?
Q2. Which quantization defines quantum
gravity: � or G?
In Q1, we usually refer to a physical entity (force

or field) as being fundamental when it does not have
any superordinate substructure, and emergence usually
means the arising of novel and coherent structures, pat-
terns and properties through the collective interactions
of more fundamental entities: for example, the supercon-
ductivity in condensed matter system or the organization
of life in biology. Regarding to question Q1, it is quite
amazing to notice that the picture of emergent gravity
was already incoded in Cartan’s formulation of gravity
[3]. In general relativity, the gravitational force is repre-
sented by a Riemannian metric of the curved spacetime
manifold M :( ∂

∂s

)2

= gμν(y)
∂

∂yμ
⊗ ∂

∂yν
. (1)

Cartan showed that the metric in Eq. (1) could be de-
fined by the tensor product of two vector fields Ea =
Eμ

a (y) ∂
∂yμ ∈ Γ(TM) as follows:( ∂

∂s

)2

= ηabEa ⊗ Eb. (2)

Mathematically, a vector field X on a smooth manifold
M is a derivation of the algebra C∞(M). Here, the vec-
tor fields Ea ∈ Γ(TM) are smooth sections of the tan-
gent bundle TM → M which are dual to the covectors
Ea = Ea

μ(y)dyμ ∈ Γ(T ∗M); i.e., 〈Eb, Ea〉 = δb
a. The

expression in Eq. (2) glimpses the avatar of gravity that
a spin-two graviton might arise as a composite of two
spin-one vector fields. In other words, Eq. (2) can be
abstracted by using the relation (1 ⊗ 1)S = 2 ⊕ 0. Inci-

dentally, both mathematician and physicist use the same
word, vector field, in spite of a bit different meaning.

Equation (2) suggests that we need gauge fields that
take the values in the Lie algebra of diffeomorphisms
in order to realize a composite graviton from spin-
one vector fields. To be precise, the vector fields
Ea = Eμ

a (y) ∂
∂yμ ∈ Γ(TM) will be identified with “0-

dimensional” gauge fields satisfying the Lie algebra

[Ea, Eb] = −fab
cEc. (3)

Of course, the Standard Model does not have such kind
of gauge fields, but we will see later that the desired vec-
tor fields arise from the electromagnetic fields living in
noncommutative spacetime [4–7]. Thus, the noncommu-
tative spacetime will allow a novel unification between
electromagnetism and Einstein gravity in a completely
different context from the Kaluza-Klein unification.

Regarding question Q2, we are willing to ponder
the possibility that the Newton constant G signifies an
intrinsic Poisson structure θ = 1

2θμν(y) ∂
∂yμ ∧ ∂

∂yν ∈
Γ(Λ2TM) of spacetime because the gravitational con-
stant G carries the physical dimension of (length)2 in
natural units. Recall that the particle phase space P has
its intrinsic Poisson structure η = �

∂
∂xi ∧ ∂

∂pi
[8] so that

the Poisson bracket on the vector space C∞(P ) is given
by

{f, g}�(x, p) = �

( ∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
, (4)

where f, g ∈ C∞(P ). Here, we have intentionally in-
serted the Planck constant � into η to make it dimen-
sionless like θ. Then, the canonical quantization can be
done by association with a commutative algebra C∞(P )
of physical observables of a classical mechanical system,
a noncommutative algebra A� of linear operators on a
suitable Hilbert space H. That is, the physical observ-
ables f, g ∈ C∞(P ) are replaced by self-adjoint operators
f̂ , ĝ ∈ A� acting on H, and the Poisson bracket in Eq.
(4) is replaced by a quantum bracket

{f, g}� → −i[f̂ , ĝ]. (5)

This completes the quantization of the mechanics of a
particle system whose phase space P is now noncommu-
tative.

In the same way, one can define a Poisson bracket
{·, ·}θ : C∞(M)×C∞(M) → C∞(M) by using the Pois-
son structure θ ∈ Γ(Λ2TM) of the spacetime manifold
M :

{f, g}θ(y) = θ(df, dg) = θμν(y)
( ∂f

∂yμ

∂g

∂yν
− ∂f

∂yν

∂g

∂yμ

)
(6)

where f, g ∈ C∞(M). In the case where θμν is a con-
stant cosymplectic matrix of rank 2n, one can apply
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the same canonical quantization to the Poisson mani-
fold (M, θ). One can associate to a commutative alge-
bra (C∞(M), {·, ·}θ) of smooth functions defined on the
spacetime M , a noncommutative algebra Aθ of linear
operators on a suitable Hilbert space H. That is, the
smooth functions f, g ∈ C∞(M) become noncommuta-
tive operators (fields) f̂ , ĝ ∈ Aθ acting on H, and the
Poisson bracket in Eq. (6) is replaced by a noncommu-
tative bracket [9,10]

{f, g}θ → −i[f̂ , ĝ]. (7)

This completes the quantization of the Poisson algebra
(C∞(M), {·, ·}θ) where spacetime M is now noncommu-
tative, i.e.,

[yμ, yν ] = iθμν . (8)

Throughout the paper, we will omit the hat for non-
commutative coordinates yμ ∈ Aθ for notational conve-
nience.

The question still remains. What is the relation be-
tween the Poisson algebra (C∞(M), {·, ·}θ) and (quan-
tum) gravity? We will not try to answer the question
right now. Instead, we want to point out that the vector
fields in Eq. (2) can be derived from the Poisson alge-
bra [4–7]. It is well-known [8] that, for a given Pois-
son algebra (C∞(M), {·, ·}θ), there exists a natural map
C∞(M) → TM : f 	→ Xf between smooth functions in
C∞(M) and vector fields in TM such that

Xf (g) = {f, g}θ (9)

for any g ∈ C∞(M). Indeed, the assignment in Eq. (9)
between a Hamiltonian function f and the corresponding
Hamiltonian vector field Xf is the Lie algebra homomor-
phism in the sense

X{f,g}θ
= [Xf , Xg], (10)

where the right-hand side represents the Lie bracket be-
tween the Hamiltonian vector fields.

Motivated by the homomorphism between the Poisson
algebra (C∞(M), {·, ·}θ) and the Lie algebra of vector
fields [8], one may venture to formulate Einstein gravity
in terms of a symplectic or a Poisson geometry rather
than a Riemannian geometry. Suppose that there is a
set of fields defined on a symplectic manifold M

{Da(y) ∈ C∞(M)|y ∈ M, a = 1, · · · , 2n}. (11)

According to the map in Eq. (9), the smooth functions
in Eq. (11) can be mapped to vector fields as follows:

Va[f ](y) ≡ {Da(y), f(y)}θ = −θμν ∂Da(y)
∂yν

∂f(y)
∂yμ

. (12)

The vector fields Va(y) = V μ
a (y) ∂

∂yμ ∈ Γ(TM) take val-
ues in the Lie algebra of volume-preserving diffeomor-
phisms because ∂μV μ

a = 0 by definition. Because the

vector fields Va need not be orthonormal though they are
orthogonal frames, it will be possible to relate the vector
fields Va ∈ Γ(TM) to the orthonormal frames (vielbeins)
Ea in Eq. (2) by Va = λEa, with λ ∈ C∞(M) to be de-
termined [7].

Our above reasoning implies that a field theory
equipped with the fields in Eq. (11) on a symplectic
or a Poisson manifold may give rise to Einstein grav-
ity. If this is the case, quantum gravity will be much
more accessible because there is a natural symplectic or
Poisson structure, so it is obvious how to quantize the
underlying system, as was already done in Eqs. (7) and
(8). Following this line of thought, we will aim to an-
swer the question what quantum gravity is by carefully
addressing the issues in Q1 and Q2.

2. Quartet of Physical Constants

The physical constants defining a theory prescribe all
the essential properties of the theory. Planck realized
that the union of three “fundamental” constants in Na-
ture, the Planck constant � in quantum mechanics, the
universal velocity c in relativity, and the Newton con-
stant G in gravity, uniquely fixed the characteristic scales
for quantum gravity:

Mpl =

√
c�

G
= 2.2 × 10−5g,

Lpl =

√
G�

c3
= 1.6 × 10−33cm, (13)

Tpl =

√
G�

c5
= 5.4 × 10−44s.

The expression in Eq. (13) holds in four dimensions, and
it has a different expression in other dimensions. Inter-
estingly, one cannot construct a dimensionless quantity
out of the three constants except in two dimensions. In
two dimensions, the combination G�/c3 is a dimension-
less quantity. This may be understood by noticing that
pure two-dimensional gravity is topological, so it should
not trigger any dynamical scale. Therefore, except for
two dimensions, each constant must play an independent
role in the theory of quantum gravity.

Recent developments in theoretical physics have re-
vealed in many ways that gravity may not be a funda-
mental, but rather an emergent, phenomenon, as string
theory has demonstrated in the last decade [11]. This
means that the Newton constant G can be determined by
using some of the quantities in a theory defining emer-
gent gravity. Because we want to derive gravity from
some gauge theory, it is proper to consider the quartet
of physical constants by adding a coupling constant e,
which is the electric charge. A general gauge coupling
constant sometimes will be denoted by gY M . Using the
symbol L for length, T for time, and M for mass and
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writing [X] for the dimension of some physical quantity
X, we have the following in D dimensions:

[�] = ML2T−1,

[c] = LT−1,

[e2] = MLD−1T−2, (14)
[G] = M−1LD−1T−2.

A remarkable point of the system in Eq. (14) is that
it specifies the following intrinsic scales independently of
dimensions:

M2 =
[e2

G

]
,

L2 =
[G�

2

e2c2

]
, (15)

T 2 =
[G�

2

e2c4

]
.

From the four-dimensional case where e2/�c ≈ 1/137,
one can see that the scales in Eq. (15) are not so different
from the Planck scales in Eq. (13).

Note that the first relation GM2 = e2 in Eq. (15) im-
plies that at the mass scale M , the gravitational and the
electromagnetic interactions become of equal strength.
This is a desirable property for our purpose because we
want to derive gravity from gauge theory! Also, the sys-
tem in Eq. (14) should be expected to admit a dimen-
sionless quantity because the four quantities are deter-
mined by three variables. That quantity is given by the
following combination:( ec√

G�

)D

· �
3G2

c5e2
= dimensionless. (16)

One can see from Eq. (16) that in lower dimensions, it
is possible to construct a dimensionless quantity out of
only three parameters: {�, c, G} in D = 2, {c, e,G} in
D = 3, {�, c, e} in D = 4, and {�, e,G} in D = 5. In
D ≥ 6 dimensions, we need all of the four constants in
Eq. (14) to have a dimensionless quantity. This smells of
interesting hidden physics, but we have not yet figured
out what it is [12]. However, we will clearly see what the
scales in Eq. (15) set by the system in Eq. (14) mean.
Notice that the length L in Eq. (15) is the Compton
wavelength of mass M for which the gravitational and
the electromagnetic interactions have the same strength.
It turns out to be the scale of spacetime noncommuta-
tivity where the conspiracy between gravity and gauge
theory takes place.

Equation (15) implies that, if gauge theory whose cou-
pling constant is given by e is equipped with an intrinsic
length scale L, the Newton constant G can be determined
by using field theory parameters only, i.e., G�

2

c2 ∼ e2L2,
hinting an intimate correspondence between gravity and
gauge theory [7]. For example, a noncommutative gauge
theory and a field theory on a D-brane are cases where
L2 can be identified with |θ|, the noncommutativity of

spacetime, for the former and with 2πα′, the size of a
string, for the latter [13]. As we will discuss later, a
theory of quantum gravity must be background indepen-
dent; thus, the dynamical scale for quantum gravity will
be generated by a vacuum condensate that is exactly one
in Eq. (15).

3. Noncommutative Spacetime as Quantum Ge-
ometry

We have discussed some reasons the gravitational con-
stant G dictates a symplectic or a Poisson structure to
spacetime M . Thereby, a field theory will be defined on a
symplectic manifold, and, as we argued before, Einstein
gravity may arise from the field theory. If this is the
case, quantum gravity will be defined by quantizing the
field theory in terms of the underlying Poisson structure,
which is simply a Dirac quantization such as Eq. (7) for
a canonical symplectic structure. Therefore, if all these
are smoothly working, quantum geometry can be defined
by using a field theory on a noncommutative space such
as Eq. (8). Let us briefly sketch how that is possible.

A symplectic structure B = 1
2Bμνdyμ ∧ dyν of space-

time M defines a Poisson structure θμν ≡ (B−1)μν on
M , where μ, ν = 1, . . . , 2n. The Dirac quantization
with respect to the Poisson structure θμν then leads
to the quantum phase space in Eq. (8). Because
the Poisson structure θμν defines canonical pairs be-
tween noncommutative coordinates yμ ∈ Aθ, one can
introduce annihilation and creation operators, ai and
a†

j , i, j = 1, · · · , n, by using those pairs. For example,
a1 = (y1+iy2)/

√
2θ12, a†

1 = (y1−iy2)/
√

2θ12, etc. Then,
the Moyal algebra in Eq. (8) is equal to the Heisenberg
algebra of an n-dimensional harmonic oscillator, i.e.,

[yμ, yν ] = iθμν ⇔ [ai, a
†
j ] = δij . (17)

From quantum mechanics, the representation space of
noncommutative R

2n is well-known to be given by an
infinite-dimensional, separable Hilbert space

H = {|�n〉 ≡ |n1, · · · , nn〉, ni = 0, 1, · · · } (18)

that is orthonormal, i.e., 〈�n|�m〉 = δ�n�m, and complete,
i.e.,

∑∞
�n=0 |�n〉〈�n| = 1. Note that any smooth function

on a noncommutative space can be represented by an
operator acting on an appropriate Hilbert space H, which
consists of a noncommutative �-algebra Aθ, like a set
of observables in quantum mechanics. Therefore, any
field Φ̂ ∈ Aθ in the noncommutative space in Eq. (17)
becomes an operator acting on the Fock space H and can
be expanded in terms of the complete operator basis

Aθ = {|�n〉〈�m|, ni,mj = 0, 1, · · · }, (19)

that is,

Φ̂(y) =
∑
�n,�m

Φ�n�m|�n〉〈�m|. (20)
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One may use the ‘Cantor diagonal method’ to put the
n-dimensional non-negative integer lattice in H into a
one-to-one correspondence with the infinite set of natu-
ral numbers (i.e., 1-dimensional positive integer lattice):
|�n〉 ↔ |n〉, n = 1, · · · , N → ∞. In this one-dimensional
basis, Eq. (20) can be relabeled in the following form:

Φ̂(y) =
∞∑

n,m=1

Mnm |n〉〈m|. (21)

One can regard Mnm in Eq. (21) as elements of an N×N
matrix M in the N → ∞ limit. We then get the following
important relation [9,10]:

Any field on noncommutative
R

2n ∼= N × N matrix at N → ∞. (22)

If the field Φ(y) ∈ C∞(M) was originally a real field,
then M should be a Hermitian matrix. The relation in
Eq. (22) means that a field in the noncommutative �-
algebra Aθ can be regarded as a master field of a large
N matrix.

Now the very notion of points in a noncommutative
space, such as the Moyal space in Eq. (8), is doomed;
instead the points are replaced by states in H. Thus, the
usual concept of geometry based on a smooth manifold
will be replaced by a theory of operator algebra, e.g., the
noncommutative geometry à la Connes [14] or the theory
of deformation quantization à la Kontsevich [15]. Fur-
thermore, through the matrix representation in Eq. (22)
of the operator algebra, one can achieve a coordinate-
free description of quantum field theory. Therefore, it
should be possible to achieve a background-independent
formulation of quantum gravity in which the interactions
between fundamental ingredients can be defined without
introducing any spacetime structure [7]. The most nat-
ural objects for that purpose are algebra-valued fields,
which can be identified with elements in a noncommuta-
tive �-algebra such as noncommutative gauge fields [16].

Several matrix models [17–19] have appeared in string
theory. They have illustrated how the matrix model can
be regarded as a nonperturbative formulation of gravity
or string theory in the sense that it describes a quan-
tized geometry with an arbitrary topology. Matrix the-
ory contains multiple branes with arbitrary topologies as
its spectrum and allows a topology change of the space-
time manifold as a sequence of the change of matrix data
[20].

4. Outline of the Paper

In this review, we will not survey other approaches
to emergent gravity because good expositions [21] al-
ready exist and our approach is quite different, although
the underlying philosophy may be the same. Our unique
clue is based on the fact that Einstein gravity can be for-
mulated in terms of a symplectic geometry [7]. Basically,

we are considering a symplectic geometry as a commuta-
tive limit of a noncommutative geometry that is regarded
as a microscopic structure of spacetime, just as classical
mechanics on a mundane scale is simply a coarse graining
of quantum mechanics in the atomic world. A Rieman-
nian geometry, thus, appears in a macroscopic world as a
coarse graining of the noncommutative geometry, as we
already briefly outlined.

Our line of thought has been motivated by several sim-
ilar ideas, mostly by the AdS/CFT correspondence [22]
and matrix models [17–19] in string theory. Also, the
work by Rivelles [23] and the following works [24] trig-
gered thoughts about a noncommutative field theory as
a theory of gravity. A series of interesting works along
this line has recently been conducted by Steinacker and
his collaborators [25–27]. See his recent review [28] and
references therein. Also, there are many closely related
works [29–37]. However, the emergent gravity based
on noncommutative field theories is relatively new, so it
would be premature to have an extensive review about
this subject because it is still in an early stage of de-
velopment. Therefore we will focus on ours. Although
this review is basically a coherent survey of recent works
[4–7,38–42] of the second author, it also contains several
new results and many clarifications, together with im-
portant pictures about quantum gravity. Early reviews
can be found in Refs. [39] and [40].

In Section II we elucidate the reason Einstein gravity
can emerge from electromagnetism as long as spacetime
admits a symplectic structure and explicitly show how
Einstein’s equations can be derived from the equations of
motion for electromagnetic fields on a symplectic space-
time. The emergent gravity we propose here actually
corresponds to a field theory realization of open-closed
string duality or large-N duality in string theory and to
a generalization of homological mirror symmetry [43] in
the sense that the deformation of the symplectic struc-
ture ω is isomorphic to the deformation of the Rieman-
nian metric g in the triple (M, g, ω). In Section II.1,
we explain the equivalence principle for the electromag-
netic force, stating that there always exists a coordinate
transformation to locally eliminate the electromagnetic
force if spacetime supports a symplectic structure. This
important property for emergent gravity originates from
the Darboux theorem [44] or the Moser lemma [45] in
symplectic geometry, which also explains how diffeomor-
phism symmetry in general relativity arises from such
a gauge theory. We explain how the equations of mo-
tion for U(1) gauge fields are mapped to those for vector
fields defined by Eq. (12). In Section II.2, we first ini-
tiate the emergent gravity by showing [4] that self-dual
electromagnetism on a symplectic 4-manifold is equiva-
lent to self-dual Einstein gravity. Although it was pre-
viously proved in Ref. [7], we newly prove it again
in a more geometric way to illustrate how elegant and
beautiful the emergent gravity is. In Section II.3, we de-
rive Einstein’s equations from the electromagnetism on
a symplectic manifold, rigorously confirming the spec-
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ulation in Section I.1. We find [7] that the emergent
gravity from electromagnetism predicts some exotic en-
ergy whose physical nature will be identified in Section
V.2.

In Section III, we discuss how to quantize Einstein
gravity in the context of emergent gravity by using the
canonical quantization in Eq. (7) of a spacetime Pois-
son manifold. We argue in Section III.1 that the equiv-
alence principle for the emergent gravity can be lifted
to a noncommutative spacetime such as Eq. (8). The
equivalence principle in a noncommutative spacetime is
realized as a gauge equivalence between star products
in the context of deformation quantization [15], and so
dubbed the “quantum equivalence principle” [5]. This
implies that quantum gravity can consistently be derived
from the quantum equivalence principle and that matter
fields can arise from the quantized spacetime. In Section
III.2, it is shown [6] that the emergent gravity from a
noncommutative �-algebra Aθ can be understood as a
large-N duality such as the AdS/CFT correspondence
and the matrix models in string theory. The gravita-
tional metric determined by large-N matrices or non-
commutative gauge fields is explicitly derived. We clar-
ify in Section III.3 how emergent gravity achieves the
background-independent formulation in which any kind
of spacetime structure is not a priori assumed, but is
defined by the theory. An important picture of emer-
gent gravity is identified. If a classical geometry is to
be described from a background-independent theory, it
is necessary to have a nontrivial vacuum defined by a
coherent condensation of gauge fields, e.g., the vacuum
defined by Eq. (17), which is also the origin of a space-
time symplectic or a Poisson structure such as Eq. (6).
In Section III.4, the emergent gravity is generalized to a
generic noncommutative spacetime such as the case with
θμν = nonconstant [5] and a general Poisson manifold
[42].

In Section IV, we speculate what particles and mat-
ter fields are and how they arise from a noncommuta-
tive �-algebra Aθ. We claim that a matter field, such
as quarks and leptons, is defined by a stable localized
geometry, which is a topological object in the defining
algebra (noncommutative �-algebra) of quantum grav-
ity [7]. First we review in Section IV.1 Feynman’s view
[46–48] of the electrodynamics of a charged particle to
understand why an extra internal space is necessary to
introduce the weak and the strong forces. The extra di-
mensions appear with a Poisson structure of Lie algebra
type implemented with some localizability condition to
stabilize the internal space. In Section IV.2, we under-
stand the Feynman’s derivation of gauge forces as the
Darboux transformation in Eq. (29) between two sym-
plectic structures where one of them is a deformation of
the other in terms of external gauge fields. This beauti-
ful idea is not ours, but was noticed at Ref. [49] long
ago. In Section IV.3, we define a stable state in a large-N
gauge theory and relate it to the K-theory [50–53]. With
the correspondence in Eq. (22), the K-theory class is

mapped to the K-theory of a noncommutative �-algebra
Aθ. We argue, using the well-known, but rather myste-
rious, math, the Atiyah-Bott-Shapiro construction of K-
theory generators in terms of the Clifford module [54],
that the topological object defined by large-N matrices
or the noncommutative �-algebra Aθ describes fermions
such as quarks and leptons. It turns out that an extra
noncommutative space is essential to realize the weak
and the strong forces.

In Section V, we discuss the most beautiful aspects of
emergent gravity. Remarkably, emergent gravity reveals
a novel picture about the origin of spacetime, dubbed
as emergent spacetime, which is radically different from
any previous physical theories, all of which describe what
happens in a given spacetime. In Section V.1, we point
out that the concept of emergent time is naturally de-
fined as long as spacetime admits an intrinsic symplectic
or Poisson structure. The time evolution of a spacetime
geometry is defined by Hamilton’s equation defined by
the spacetime Poisson structure, Eq. (6). Because the
symplectic structure triggered by the vacuum condensate
in Eq. (17) not only causes the emergence of spacetime
but also specifies an orientation of spacetime manifold,
we are tempted to conceive that the emergent gravity
may explain the arrow of time in the cosmic evolution of
our Universe - the most notoriously difficult problem in
quantum gravity. We analyze in Section V.2 the anatomy
of spacetime derived from a noncommutative gauge the-
ory or large-N matrix model. We explain why there is no
cosmological constant problem in emergent gravity [41].
We point out that a vacuum energy of a Planck scale
does not gravitate, unlike Einstein gravity and that a flat
spacetime is emergent from the Planck energy condensa-
tion in vacuum. Finally, we try to identify the physical
nature of the exotic energy-momentum tensor whose ex-
istence was predicted in Section II.3. Surprisingly, it
mimics all the properties of dark energy, so we suggest
the energy as a plausible candidate for dark energy [7].
If so, the quantum gravity defined by noncommutative
gauge theory seems to resolve many notorious problems
in theoretical physics: for example, the cosmological con-
stant problem, the nature of dark energy and the reason
gravity is so weak compared to other forces.

In the final section, we try to understand why the
emergent gravity defined by a noncommutative geom-
etry resembles string theory. We conclude with several
remarks about important open issues and speculate on
a proper mathematical framework for emergent gravity
and quantum gravity.

II. EMERGENT GRAVITY

In order to argue that gravity can emerge from some
field theory, it is important to identify how the essential
properties of gravity can be realized in the underlying
field theory. If not, the emergent gravity cannot physi-
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cally be viable. Therefore, we will reasonably argue how
the equivalence principle, the most important property in
the theory of gravity (general relativity), can be realized
from U(1) gauge theory on a symplectic manifold M .
Through the realization of the equivalence principle in
the context of symplectic geometry, we can understand
how diffeomorphism symmetry arises from noncommu-
tative U(1) gauge theory and gravity can emerge from
noncommutative electromagnetism, which is also an in-
teracting theory.

1. The Equivalence Principle from Symplectic
Geometry

Consider a U(1) bundle supported on a symplectic
manifold (M,B). Physically, we are considering open
strings moving on a D-brane whose data are given by
(M, g,B), where M is a smooth manifold equipped with
a metric g and a symplectic structure B. The worldsheet
action of open strings, with a compact notation, reads as

S =
1

4πα′

∫
Σ

|dX|2 −
∫

Σ

B −
∫

∂Σ

A, (23)

where X : Σ → M is a map from an open string world-
sheet Σ to a target spacetime M and B(Σ) = X∗B(M)
and A(∂Σ) = X∗A(M) are pull-backs of spacetime gauge
fields to the worldsheet Σ and the worldsheet boundary
∂Σ, respectively.

From the compact notation in Eq. (23), it is obvious
that the string action in Eq. (23) respects the following
local gauge symmetries:
(I) Diff(M)-symmetry

X → X ′ = X ′(X) ∈ Diff(M), (24)

(II) Λ-symmetry

(B, A) → (B − dΛ, A + Λ), (25)

where the gauge parameter Λ is a one-form in M . Note
that the Λ-symmetry is present only when B �= 0, so it
is a stringy symmetry by nature. When B = 0, the sym-
metry in Eq. (25) is reduced to A → A+dλ, which is the
ordinary U(1) gauge symmetry because A is a connection
of the U(1) bundle.

The Λ-symmetry then predicts a very important re-
sult. The presence of a U(1) bundle on a symplectic
manifold (M,B) should appear only with the combina-
tion Ω = B + F , where F = dA because Ω is the only
gauge-invariant 2-form under the transformation in Eq.
(25). Because we regard B ∈ Γ(Λ2T ∗M) as a symplec-
tic structure over M , the electromagnetic force F = dA
appears only as the local deformation of the symplectic
structure Ω(x) = (B + F )(x).

Another important result derived from the open string
action, Eq. (23), is that the triple (M, g,B) comes only

in the combination (M, g + κB), where κ ≡ 2πα′ = 2πl2s
denotes the string scale. Note that the Riemannian
metric g and the symplectic structure B in the triple
(M, g,B) can be regarded as an bundle isomorphism
from a tangent bundle TM to a cotangent bundle T ∗M
because both are nondegenerate bilinear maps on TM ,
i.e., (g,B) : TM → T ∗M . Therefore, the so-called DBI
“metric” g+κB : TM → T ∗M , which maps X ∈ TM to
ξ = (g + κB)(X) ∈ T ∗M , embodies a generalized geom-
etry [55] continuously interpolating between a symplec-
tic geometry (|κBg−1| � 1) and a Riemannian geometry
(|κBg−1| � 1). Including the excitation of open strings,
one can combine the two results to conclude that the data
of ‘D-manifold’ are given by (M, g,Ω) = (M, g + κΩ).

Consider another D-brane whose ‘D-manifold’ is de-
scribed by different data (N,G,B) = (N,G + κB).
A question is whether there exists a diffeomorphism
φ : N → M such that φ∗(g + κΩ) = G + κB on
N . In order to answer the question, let us shortly di-
gress to some important aspects of simplectic geome-
try. The symplectic geometry respects an important
property, known as the Darboux theorem [44], stat-
ing that every symplectic manifold of the same dimen-
sion is locally indistinguishable [8]. To be precise, let
(M,ω) be a symplectic manifold. Consider a smooth
family ωt = ω0 + t(ω1 − ω0) of symplectic forms join-
ing ω0 to ω1, where [ω0] = [ω1] ∈ H2(M) and ωt is
symplectic ∀t ∈ [0, 1]. A remarkable point (due to the
Moser lemma [45]) is that there exists a one-parameter
family of diffeomorphisms φ : M × R → M such that
φ∗

t (ωt) = ω0, 0 ≤ t ≤ 1. If there exist such diffeo-
morphisms as a flow generated by time-dependent vector
fields Xt ≡ dφt

dt ◦ φ−1
t , one would have for all 0 ≤ t ≤ 1

that

LXtωt +
dωt

dt
= 0 (26)

because, by the Lie derivative formula, one has

0 =
d

dt

(
φ∗

t ωt

)
= φ∗

t

(LXt
ωt

)
+ φ∗

t

dωt

dt

= φ∗
t

(
LXt

ωt +
dωt

dt

)
. (27)

Using Cartan’s magic formula, LX = dιX + ιXd, for the
Lie derivative along the flow of a vector field X, one can
see that Eq. (26) can be reduced to Moser’s equation

ιXt
ωt + A = 0, (28)

where ω1 − ω0 = dA.
In summary, there always exists a one-parameter fam-

ily of diffeomorphisms as a flow generated by a smooth
family of time-dependent vector fields Xt satisfying Eq.
(28) for the change of the symplectic structure within the
same cohomology class from ω0 to ω1, where ω1 − ω0 =
dA. The evolution of the symplectic structure is locally
described by the flow φt of Xt satisfying dφt

dt = Xt◦φt and
starting at φ0 = identity. Thus, one has φ∗

1ω1 = φ∗
0ω0 =
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ω0, so φ1 provides a chart describing the evolution from
ω0 to ω1 = ω0 + dA. In terms of local coordinates, there
always exists a coordinate transformation φ1 whose pull-
back maps ω1 = ω0 + dA to ω0, i.e., φ1 : y 	→ x = x(y)
so that

∂xa

∂yμ

∂xb

∂yν
ω1ab(x) = ω0μν(y). (29)

This can directly be applied to the open string
case, Eq. (23), by considering a local Darboux chart
(U ; y1, · · · , y2n) centered at p ∈ U and valid on an open
neighborhood U ⊂ M such that ω0|U = 1

2Bμνdyμ ∧ dyν ,
where Bμν is a constant symplectic matrix of rank 2n.
Now, consider a flow φt : U × [0, 1] → M generated
by the vector field Xt satisfying Eq. (28). Under the
action of φε with an infinitesimal ε, one finds that the
point p ∈ U whose coordinates are yμ is mapped to
φε(y) ≡ xμ(y) = yμ + εXμ(y). Using the inverse map
φ−1

ε : xμ 	→ yμ(x) = xμ − εXμ(x), the symplectic struc-
ture ω0|U = 1

2Bμν(y)dyμ ∧ dyν can be expressed as

(φ−1
ε )∗(ω0|y)

=
1
2
Bμν(x − εX)d(xμ − εXμ) ∧ d(xν − εXν)

≈ 1
2

[
Bμν − εXa(∂aBμν + ∂νBaμ + ∂μBνa)

+ ε
(
∂μ(BνaXa) − ∂ν(BμaXa)

)]
dxμ ∧ dxν

≡ B + εF, (30)

where Aμ(x) = Bμa(x)Xa(x) or ιXB+A = 0 and dB = 0
was used so that the second term vanished. Equation
(30) can be rewritten as φ∗

ε (B + εF ) = B, which means
that the electromagnetic force F = dA can always be
eliminated by a local coordinate transformation gener-
ated by the vector field X satisfying Eq. (28).

Now, let us go back to the previous question. We con-
sidered a symmetry transformation which is a combina-
tion of the Λ-transformation, Eq. (25), followed by a dif-
feomorphism φ : N → M . It transforms the DBI metric
g+κB on M according to g+κB → φ∗(g+κΩ). The crux
is that there exists a diffeomorphism φ : N → M such
that φ∗(Ω) = B, which is precisely the Darboux trans-
formation in Eq. (29) in symplectic geometry. Then, we
arrive at a remarkable fact [7] that two different DBI
metrics, g + κΩ and G + κB, are diffeomorphic to each
other, i.e.,

φ∗(g + κΩ) = G + κB, (31)

where G = φ∗(g). Because the open string theory, Eq.
(23), respects the diffeomorphism symmetry, Eq. (24),
the D-manifolds described by (M, g,Ω) and (N,G,B)
must be physically equivalent. Note that this property
holds for any pair (g,B) of a Riemannian metric g and
a symplectic structure B.

The above argument reveals superb physics in gauge
theory. There “always” exists a coordinate transfor-
mation to locally eliminate the electromagnetic force

F = dA as long as a manifold M supports a sym-
plectic structure B; i.e., (M,B) defines a symplectic
manifold. That is, a symplectic structure on a space-
time manifold M admits a novel form of the equivalence
principle, known as the Darboux theorem, for the ge-
ometrization of the electromagnetic force. Because it
is always possible to find a coordinate transformation
φ ∈ Diff(M) such that φ∗(B + F ) = B, the relation-
ship φ∗(g + κ(B + F )

)
= G + κB clearly shows that the

electromagnetic fields in the DBI metric g + κ(B + F )
now appear as a new metric G = φ∗(g) after the Dar-
boux transformation in Eq. (31). One may also consider
the inverse relationship φ∗(G + κB) = g + κ(B + F ),
which implies that a nontrivial metric G in the back-
ground B can be interpreted as an inhomogeneous con-
densation of gauge fields on a ‘D-manifold’ with metric
g. We might point out that the relationship in the case
of κ = 2πα′ = 0 is the familiar diffeomorphism in a Rie-
mannian geometry, so it says nothing marvelous. See
footnote [13].

We observed that the Darboux transformation be-
tween symplectic structures immediately leads to the
diffeomorphism between two different DBI metrics. In
terms of local coordinates φ : y 	→ x = x(y), the diffeo-
morphism in Eq. (31) explicitly reads as

(g + κΩ)ab(x) =
∂yμ

∂xa

(
Gμν(y) + κBμν(y)

)∂yν

∂xb
, (32)

where Ω = B + F and

Gμν(y) =
∂xa

∂yμ

∂xb

∂yν
gab(x). (33)

Equation (32) conclusively shows how gauge fields on a
symplectic manifold manifest themselves as a spacetime
geometry. To expose the intrinsic connection between
gauge fields and spacetime geometry, let us represent the
coordinate transformation in Eq. (32) as

xa(y) = ya + θabÂb(y), (34)

with θab = (B−1)ab. Note that the coordinate trans-
formation in Eq. (34) for the case F (x) = 0 is trivial,
i.e., Âa(y) = 0 and Gab = gab as it should be, while
it is nontrivial for F (x) �= 0. The nontrivial coordi-
nate transformation can be encoded into smooth func-
tions Âa(y), which will be identified with noncommuta-
tive gauge fields. Clearly, Eq. (33) embodies how the
metric on M is deformed by the presence of noncommu-
tative gauge fields.

We showed how the diffeomorphism symmetry in Eq.
(31) between two different DBI metrics arises from U(1)
gauge theory on a symplectic manifold. Surprisingly (at
least to us), the diffeomorphism symmetry in Eq. (31) is
realized as a novel form of the equivalence principle for
the electromagnetic force [5]. Therefore, one may expect
electromagnetism on a symplectic manifold to be a the-
ory of gravity; in other words, gravity can emerge from
electromagnetism on a symplectic or Poisson manifold.
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A low-energy effective field theory deduced from the
open string action in Eq. (23) describes an open string
dynamics on a (p+1)-dimensional D-brane worldvolume
[11]. The dynamics of D-branes is described by open
string field theory whose low-energy effective action is
obtained by integrating out all the massive modes and
keeping only massless fields that are slowly varying at
the string scale κ = 2πl2s . For a Dp-brane in closed
string background fields, the action describing the re-
sulting low-energy dynamics is given by

S =
2π

gs(2πκ)
p+1
2

∫
dp+1x

√
det(g + κ(B + F ))

+O(
√

κ∂F, · · · ), (35)

where F = dA is the field strength of U(1) gauge fields.
The DBI action in Eq. (35) respects the two local sym-
metries, Eqs. (24) and (25), as expected.

Note that ordinary U(1) gauge symmetry is a special
case of Eq. (25) where the gauge parameter Λ is exact,
namely, Λ = dλ, so that B → B and A → A + dλ.
One can see from Eq. (28) that the U(1) gauge trans-
formation is generated by a Hamiltonian vector field Xλ

satisfying ιXλ
B + dλ = 0. Therefore, the gauge sym-

metry acting on U(1) gauge fields as A → A + dλ is a
diffeomorphism symmetry generated by the vector field
Xλ satisfying LXλ

B = 0, which is known to be a sym-
plectomorphism. We see here that the U(1) gauge sym-
metry on the symplectic manifold (M,B) turns into a
“spacetime” symmetry rather than an “internal” sym-
metry. This fact already implies an intimate connection
between gauge fields on a symplectic manifold and space-
time geometry.

It was shown in Eq. (32) that the strong isotopy in
Eq. (29) between symplectic structures brings in the dif-
feomorphic equivalence, Eq. (32), between two different
DBI metrics, which, in turn, leads to a remarkable iden-
tity [56] between DBI actions:∫

M

dp+1x
√

det
(
g(x) + κ(B + F )(x)

)
=

∫
N

dp+1y
√

det
(
G(y) + κB(y)

)
. (36)

The property in Eq. (36) appearing in the geometriza-
tion of electromagnetism may be summarized in the con-
text of a derived category. More closely, if M is a com-
plex manifold whose complex structure is given by J , we
see that dynamical fields on the left-hand side of Eq. (36)
act only as the deformation of the symplectic structure
Ω(x) = (B + F )(x) in the triple (M,J,Ω) while those
on the right-hand side appear only as the deformation of
the complex structure K = φ∗(J) in the triple (N,K,B)
through the metric in Eq. (33). In this notation, the
identity in Eq. (36) can, thus, be written as follows:

(M,J,Ω) ∼= (N,K,B). (37)

The equivalence, Eq. (37), is very reminiscent of the
homological mirror symmetry [43], which states the

equivalence between the category of A-branes (derived
Fukaya category corresponding to the triple (M,J,Ω))
and the category of B-branes (derived category of coher-
ent sheaves corresponding to the triple (N,K,B)).

Because the open string action in Eq. (23) basically
describes a U(1)-bundle (the Chan-Paton bundle) on a
D-brane whose data are given by (M, g,B), U(1) gauge
fields, the connections of the U(1) bundle are regarded
as dynamical fields while the metric g and the two-form
B are considered as background fields. However, Eq.
(36) clearly shows that gauge field fluctuations can be
interpreted as a dynamical metric on the brane given by
Eq. (33). In all, one may wonder whether the right-hand
side of Eq. (36) can be rewritten as a theory of gravity.
Remarkably, it is the case, as will be shown soon.

Here, we will use the background-independent pre-
scription [16] in which the open string metric ĝab, the
noncommutativity θab and the open string coupling con-
stant ĝs are determined by

θab =
( 1

B

)ab

, ĝab = −κ2
(
B

1
g
B
)

ab
,

ĝs = gs

√
det(κBg−1). (38)

In terms of these parameters, the couplings are related
by

1
g2

Y M

=
κ2−n

(2π)n−1ĝs
, (39)√

detĝ
ĝs

=
κn

gs|Pfθ| , (40)

where p + 1 ≡ 2n. For constant g and B, one can
rewrite the right-hand side of Eq. (36) by using the
open string variables and defining new covariant fields
Da(y) ≡ Babx

b(y) as∫
dp+1y

√
det

(
G(y) + κB

)
=

∫
dp+1y

√
det

(
κB + κ2Ĝ(y)

)
, (41)

where

Ĝμν(y) = ĝab ∂Da

∂yμ

∂Db

∂yν
. (42)

One can expand the right-hand side of Eq. (41) around
the background B in powers of κ, arriving at the follow-
ing result:∫

dp+1y

√
det

(
κB + κ2Ĝ(y)

)
=

∫
dp+1y

√
det

(
κB

)(
1 +

κ2

4
ĝacĝbd{Da, Db}θ{Dc, Dd}θ

+ · · ·
)
, (43)

where {Da, Db}θ is the Poisson bracket defined by Eq.
(6). The second part of Eq. (43) can then be written in
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a form with a constant metric ĝab = − 1
κ2 (θgθ)ab as

SD =
1

4g2
Y M

∫
dp+1y

√
detĝ ĝacĝbd{Da, Db}θ{Dc, Dd}θ,

(44)

where the gauge coupling constant gY M was recovered
after collecting all factors including the one in Eq. (35).
From now on, let us set the metric ĝab = δab for simplic-
ity.

Note that

{Da, Db}θ = −Bab + ∂aÂb − ∂bÂa + {Âa, Âb}θ

≡ −Bab + F̂ab (45)

and

{Da, {Db, Dc}θ}θ = ∂aF̂bc + {Âa, F̂bc}θ

≡ D̂aF̂bc. (46)

Therefore, the Jacobi identity for the Poisson bracket in
Eq. (6) can be written as

0 = {Da, {Db, Dc}θ}θ + {Db, {Dc, Da}θ}θ

+{Dc, {Da, Db}θ}θ

= D̂aF̂bc + D̂bF̂ca + D̂cF̂ab. (47)

Similarly, the equations of motion derived from the ac-
tion in Eq. (44) read as

{Da, {Da, Db}θ}θ = D̂aF̂ab = 0. (48)

Note that electromagnetism on a symplectic manifold is
a nonlinear interacting theory as the self-interaction in
Eq. (45) clearly shows.

Going from the left-hand side of Eq. (36) to the right-
hand side, we have eliminated the U(1) gauge field in
terms of the local coordinate transformation in Eq. (34).
Nevertheless, if one looks at the action in Eq. (44),
which was obtained by expanding the DBI action free
from gauge fields, gauge fields seem to appear again on
first look. One may thus suspect that the action in Eq.
(44) does not satisfy the equivalence principle we have
justified before. However, one has to notice that the
gauge fields in Eq. (34) should be regarded as dynami-
cal coordinates describing a fluctuating metric as in Eq.
(33). Rather an interesting point is that the fluctuation
of the emergent metric, Eq. (33), can be written in the
form of gauge theory on a symplectic spacetime. This
highlights a key feature in realizing the gauge/gravity
duality in noncommutative spacetime.

One can identify the defining fields Da(y) ∈
C∞(M), a = 1, · · · , p + 1 = 2n, in the action in Eq.
(44) with the set in Eq. (11) and, according to the map
in Eq. (12), the fields Da(y) can be mapped to vector
fields Va ∈ Γ(TM). One can immediately see by iden-
tifying f = Da and g = Db and by using the relation

in Eq. (45) that the Lie algebra homomorphism in Eq.
(10) leads to the following identity:

XF̂ab
= [Va, Vb], (49)

where Va ≡ XDa
and Vb ≡ XDb

. Similarly, using Eq.
(46), one can further deduce that

XD̂aF̂bc
= [Va, [Vb, Vc]]. (50)

Then, the map in Eq. (50) translates the Jacobi identity
in Eq. (47) and the equations of motion in Eq. (48) into
some relations between the vector fields Va defined by
Eq. (12). That is, we have the following correspondence
[7]:

D̂[aF̂bc] = 0 ⇔ [V[a, [Vb, Vc]]] = 0, (51)

D̂aF̂ab = 0 ⇔ [V a, [Va, Vb]] = 0, (52)

where [a, b, c] denotes a fully antisymmetrization of in-
dices (a, b, c) and the bracket between the vector fields
on the right-hand side is defined by the Lie bracket.

As we remarked before, the vector fields Va ∈ Γ(TM)
can be related to the vielbeins Ea ∈ Γ(TM) in Eq. (2)
by Va = λEa, with λ ∈ C∞(M) to be determined, so
the double Lie brackets in Eqs. (51) and (52) will be
related to Riemann curvature tensors because they are
involved with the second-order derivatives of the metric
in Eq. (1) or the vielbein in Eq. (2). It will be rather
straightforward to derive Einstein gravity from the set
of equations, Eqs. (51) and (52), which is the subject of
the following two subsections.

2. Warm-up with a Beautiful Example

First, let us briefly summarize some aspects in differen-
tial geometry [3] that are useful in understanding some
concepts of emergent gravity. Let Ea = Ea

μdyμ be the
basis of 1-forms dual to a given frame Ea = Eμ

a ∂μ. If we
define the local matrix of connection 1-forms by

ωa
b = ωμ

a
bdyμ = ωc

a
bE

c, (53)

the first Cartan’s structure equation

T a = dEa + ωa
b ∧ Eb (54)

describes the torsion as a 2-form in terms of the vielbein
basis, and the second structure equation

Ra
b = dωa

b + ωa
c ∧ ωc

b (55)

allows to compute the matrix-valued curvature 2-form
by using the connection.

The metric compatibility leads to the symmetry ωab =
−ωba, which, together with the torsion-free condition
T a = 0, uniquely determines the connection 1-form, Eq.
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(53), which is nothing other than the Levi-Civita con-
nection in the vielbein formalism

ωabc =
1
2
(fabc − fbca + fcab)

= −ωacb, (56)

where

fabc = Eμ
a Eν

b (∂μEνc − ∂νEμc) (57)

are the structure functions of the vectors Ea ∈ Γ(TM)
defined by Eq. (3).

Now, let us specialize to a Riemannian four-manifold
M . Because the spin connection ωμab and the curvature
tensor Rμνab are antisymmetric on the ab index pair, one
can decompose them into a self-dual part and an anti-
self-dual part as follows [7]:

ωμab = A(+)i
μ ηi

ab + A(−)i
μ η̄i

ab, (58)

Rμνab = F (+)i
μν ηi

ab + F (−)i
μν η̄i

ab, (59)

where the 4 × 4 matrices ηi
ab ≡ η

(+)i
ab and η̄i

ab ≡ η
(−)i
ab for

i = 1, 2, 3 are ’t Hooft symbols defined by

η̄i
jk = ηi

jk = εijk, j, k ∈ {1, 2, 3},
η̄i
4j = ηi

j4 = δij . (60)

Note that the ’t Hooft matrices intertwine the group
structure of index i with the spacetime structure of in-
dices a, b. See appendix A in Ref. [7] for some useful
identities for the ’t Hooft tensors.

Any SO(4) = SU(2)L × SU(2)R/Z2 rotations can be
decomposed into self-dual and anti-self-dual rotations.
Let us introduce two families of 4 × 4 matrices defined
by

(T i
+)ab ≡ ηi

ab, (T i
−)ab ≡ η̄i

ab. (61)

Then, one can show that T i
± satisfy SU(2) Lie algebras,

i.e.,

[T i
±, T j

±] = −2εijkT k
±, [T i

±, T j
∓] = 0. (62)

Indeed the ’t Hooft tensors in Eq. (61) are two indepen-
dent spin s = 3

2 representations of the SU(2) Lie alge-
bra. A deep geometric meaning of the ’t Hooft tensors
is to specify the triple (I, J,K) of complex structures of
R

4 ∼= C
2 for a given orientation as the simplest hyper-

Kähler manifold. The triple complex structures (I, J,K)
form a quaternion, that can be identified with the SU(2)
generators T i

± in Eq. (61).
Using the representation ω

(±)
μab = A

(±)i
μ (T i

±)ab =

(A(±)
μ )ab in Eq. (58), we can write the (anti-)self-dual

curvature tensors in Eq. (59) in the form

F (±)
μν = ∂μA(±)

ν − ∂νA(±)
μ + [A(±)

μ , A(±)
ν ]. (63)

Therefore, we see that A
(±)
μ can be identified with

SU(2)L,R gauge fields and F
(±)
μν with their field

strengths. Indeed, one can also show that the local
SO(4) rotations

ωμ → ΛωμΛ−1 + Λ∂μΛ−1 (64)

with Λa
b(y) ∈ SO(4) can be represented as the gauge

transformations of the SU(2) gauge field A
(±)
μ

A(±)
μ → Λ±A(±)

μ Λ−1
± + Λ±∂μΛ−1

± (65)

where Λ± ∈ SU(2)L,R [57].
With the form language where d = dyμ∂μ = EaEa

and A = Aμdyμ = AaEa, the field strength, Eq. (63), of
SU(2) gauge fields in a coordinate basis is given by

F (±) = dA(±) + A(±) ∧ A(±)

=
1
2
F (±)

μν dyμ ∧ dyν

=
1
2

(
∂μA(±)

ν − ∂νA(±)
μ + [A(±)

μ , A(±)
ν ]

)
dyμ ∧ dyν (66)

or in a non-coordinate basis by

F (±) =
1
2
F

(±)
ab Ea ∧ Eb

=
1
2

(
EaA

(±)
b − EbA

(±)
a + [A(±)

a , A
(±)
b ] + fab

cA(±)
c

)
×Ea ∧ Eb (67)

where we used in Eq. (67) the structure equation

dEa =
1
2
fbc

aEb ∧ Ec. (68)

As we remarked, the ’t Hooft tensors {η(±)i
ab } spec-

ify the triple of complex structures of the simplest
hyper-Kähler manifold R

4 satisfying the quaternion al-
gebra. Because any Riemannian metric can be written
as gμν(y) = Ea

μ(y)Eb
ν(y)δab, one can introduce the cor-

responding triple of local complex structures on the Rie-
mannian manifold M

J (±)i =
1
2
η
(±)i
ab Ea ∧ Eb, (69)

which are inherited from R
4, or in terms of local coordi-

nates

J (±)i =
1
2
η
(±)i
ab Ea

μEb
ν dyμ∧dyν ≡ 1

2
J (±)i

μν dyμ∧dyν . (70)

One can easily check that the local complex structures
J (±)i still satisfy the quaternion algebra

[J (±)i, J (±)j ]μν ≡ J
(±)i
μλ J (±)jλ

ν − J
(±)j
μλ J (±)iλ

ν

= −2εijkJ (±)k
μν ,

[J (±)i, J (∓)j ]μν = 0. (71)

Now, it is easy to see that the torsion-free condition T a =
0 is equivalent to the one in which the complex structures
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J (±)i are covariantly constant, i.e.,

dJ (±)i =
1
2
η
(±)i
ab dEa ∧ Eb − 1

2
η
(±)i
ab Ea ∧ dEb

= −[η(±)iη(∓)j ]abA
(∓)j ∧ Ea ∧ Eb

+2εijkA(±)j ∧ J (±)k

= 2εijkA(±)j ∧ J (±)k, (72)

where we used the fact that [η(±)iη(∓)j ]ab is symmetric,
i.e., [η(±)iη(∓)j ]ab = [η(±)iη(∓)j ]ba. Therefore, we get the
relation

dAJ (±)i ≡ dJ (±)i − 2εijkA(±)j ∧ J (±)k = 0. (73)

All these properties can be beautifully summarized us-
ing the Palatini formalism of Einstein gravity, in which
the spin connection and the vielbein are regarded as in-
dependent variables. The Einstein-Hilbert action in the
Palatini formalism is given by

SP =
1
4

∫
M

εab
cdEa ∧ Eb ∧ Rcd. (74)

By varying the action in Eq. (74) with respect to the
vierbein and the spin connection, one can get the torsion-
free condition T a = dEa + ωa

b ∧ Eb = 0, as well as the
Einstein equation Rab − 1

2δabR = 0, thus recovering the
Einstein gravity.

If the decomposition in Eq. (59) is used, the Palatini
action in Eq. (74) can be recast into the beautiful form

SP =
1
4

∫
M

εab
cdEa ∧ Eb ∧ Rcd

=
1
4

∫
M

εab
cdEa ∧ Eb ∧ (

F (+)iηi
cd + F (−)iη̄i

cd

)
=

1
2

∫
M

Ea ∧ Eb ∧ (
F (+)iηi

ab − F (−)iη̄i
ab

)
=

∫
M

(
J (+)i ∧ F (+)i − J (−)i ∧ F (−)i

)
. (75)

The action in Eq. (75) immediately shows that the con-
dition in Eq. (73) is, indeed, the equations of motion
for SU(2) gauge fields A(±)i. Interestingly, the Palatini
action in Eq. (75) is invariant under a local deformation
given by

A(±)i → A(±)i, J (±)i → J (±)i + dAΛ(±)i, (76)

with an arbitrary one-form Λ(±) ∈ SU(2). The defor-
mation symmetry in Eq. (76) should be true due to the
Bianchi identity dAF (±) = 0.

The gravitational instantons [58] are defined by the
self-dual solution to the Einstein equation

Refab = ±1
2
εab

cdRefcd. (77)

Note that a metric satisfying the self-duality equation,
Eq. (77), is necessarily Ricci-flat because Rab = Racb

c =

± 1
6εb

cdeRa[cde] = 0 and thus automatically satisfies the
vacuum Einstein equations. If the decomposition in Eq.
(59) is used, Eq. (77) can be written as

F
(+)i
ef ηi

ab + F
(−)i
ef η̄i

ab = ±1
2
εab

cd(F (+)i
ef ηi

cd + F
(−)i
ef η̄i

cd)

= ±(F (+)i
ef ηi

ab − F
(−)i
ef η̄i

ab). (78)

Therefore, we should have F
(−)i
ab = 0 for the self-dual

case with a plus sign in Eq. (77) and F
(+)i
ab = 0 for the

anti-self-dual case with a minus sign, thus imposing the
self-duality equation, Eq. (77), is equivalent to the half-
flat equation F (±)i = 0. Because the Riemann curvature
tensors satisfy the symmetry property

Rabcd = Rcdab, (79)

one can rewrite the self-duality equation, Eq. (77), as
follows:

Rabef = ±1
2
εab

cdRcdef . (80)

Then, using the decomposition in Eq. (59) again, one
can similarly show [59] that the gravitational instanton
in Eq. (80) can be understood as an SU(2) Yang-Mills
instanton, i.e.,

F
(±)
ab = ±1

2
εab

cdF
(±)
cd , (81)

where F
(±)
ab = F

(±)i
ab T i

± = Eμ
a Eν

b F
(±)
μν are defined by Eq.

(67).
A solution to the half-flat equation F (±) = 0 is given

by A(±) = Λ±dΛ−1
± ; then, Eq. (65) shows that it is

always possible to choose a self-dual gauge A(±)i = 0. In
this gauge, Eq. (73) reduces to the property dJ (±)i = 0;
that is, the triple complex structures in one of the (±)-
sectors are all closed. In other words, there is the triple
{J (±)i} of globally well-defined complex structures. This
means that the metric ds2 = Ea ⊗Ea describes a hyper-
Kähler manifold. In the end, the gravitational instantons
defined by Eq. (77) can be characterized by the following
property:

F (±)i = 0 ⇔ dJ (±)i = 0, ∀ i = 1, 2, 3. (82)

In order to solve the equations in Eq. (82), let us
introduce linearly-independent four-vector fields Va and
a volume form ν on M . Then, one can easily check [60]
that the (anti-)self-dual ansatz [61]

J (±)i =
1
2
η
(±)i
ab ιaιbν, (83)

where ιa denotes the inner derivation with respect to Va,
immediately solves the equations dJ (±)i = 0 if and only
if the vector fields satisfy the following equations [62]

1
2
η
(±)i
ab [Va, Vb] = 0, (84)

LVa
ν = 0, ∀ a = 1, · · · , 4. (85)
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This can simply be seen by applying the formula [63]

d(ιXιY α) = ι[X,Y ]α+ιY LXα−ιXLY α+ιXιY dα (86)

for vector fields X, Y and a p-form α.
Now go back to the action in Eq. (44) and consider

the self-duality equation of U(1) gauge fields defined by

F̂ab = ±1
2
εab

cdF̂cd. (87)

Note that the self-duality equation, Eq. (87), is nonlinear
due to the Poisson commutator term in Eq. (45), so there
exist nontrivial solutions [38]. After quantization, Eq.
(7), they become noncommutative U(1) instantons [64].
One can translate the self-duality equation, Eq. (87), to
the self-duality equation between vector fields according
to the map in Eq. (49):

F̂ab = ±1
2
εab

cdF̂cd ⇔ [Va, Vb] = ±1
2
εab

cd[Vc, Vd].

(88)

Recall that the vector fields Va are all divergence-free,
i.e., ∂μV μ

a = 0; in other words, LVa
ν = 0. Therefore,

we see that the self-duality equation, Eq. (87), for gauge
fields is certainly equivalent to Eqs. (84) and (85). In
conclusion, we finally proved [4–7] the equivalence be-
tween U(1) instantons defined by Eq. (87) and gravita-
tional instantons defined by Eq. (77).

3. Einstein Gravity from Electromagnetism on
a Symplectic Manifold

As a warm-up, we have illustrated with self-dual gauge
fields how the Darboux theorem in symplectic geome-
try implements a deep principle to realize a Riemannian
manifold as an emergent geometry from gauge fields on a
symplectic manifold through the correspondence in Eq.
(12) whose metric is given by

ds2 = δabE
a ⊗ Eb = λ2δabV

a
μ V b

ν dyμ ⊗ dyν , (89)

where Ea = λV a ∈ Γ(T ∗M) are dual one-forms. Now,
we will generalize the emergent gravity to arbitrary
gauge fields on a 2n-dimensional symplectic manifold
(M,B) and derive Einstein equations from Eqs. (51)
and (52).

First let us determine what λ ∈ C∞(M) in Eq. (89)
is. Introduce the structure equation of the vector fields
Va = λEa ∈ Γ(TM)

[Va, Vb] = −fab
cVc. (90)

By comparing with Eq. (3), one can get the relation
between the two structure functions

fab
c = λfab

c − Va log λδc
b + Vb log λδc

a. (91)
With the definition in Eq. (90), the self-duality equation,
Eq. (88), may be written in a compact form

η
(±)i
ab fab

c = 0. (92)

Suppose that the 2n-dimensional volume form whose
four-dimensional example was introduced in Eq. (83) is
given by

ν = λ2V 1 ∧ · · · ∧ V 2n; (93)

in other words,

λ2 = ν(V1, · · · , V2n). (94)

The volume form in Eq. (93) can be related to the Rie-
mannian one νg = E1 ∧ · · · ∧ E2n as

ν = λ2−2nνg. (95)

Acting LVa on both sides of Eq. (94), we get

LVa

(
ν(V1, · · · , V2n)

)
= (LVa

ν)(V1, · · · , V2n) +
2n∑

b=1

ν(V1, · · · ,LVa
Vb, · · · , V2n)

= (LVa
ν)(V1, · · · , V2n) +

2n∑
b=1

ν(V1, · · · , [Va, Vb], · · · , V2n)

= (∇ · Va + 2(1 − n)Va log λ + fba
b)ν(V1, · · · , V2n)

= (2Va log λ)ν(V1, · · · , V2n). (96)

Because LVaν = (∇ · Va + 2(1 − n)Va log λ)ν = 0, Eq. (96) leads to the relation

ρa ≡ fba
b = 2Va log λ; (97)
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then, from Eq. (91),

fba
b = (3 − 2n)Ea log λ. (98)

Conversely, if fba
b = 2Va log λ, the vector fields Va pre-

serve the volume form ν, i.e., LVa
ν = (∇ · Va + 2(1 −

n)Va log λ)ν = 0 ∀a = 1, · · · , 2n. Equation (98) im-
plies that the vector fields Ea preserve the volume form
ν̃ = λ3−2nνg, which can be proven as follows:

LEa
(λ3−2nνg) = d

(
ιEa(λ3−2nνg)

)
= d

(
ιλEa(λ2−2nνg)

)
= d

(
ιVa

ν
)

= LVa
ν = 0. (99)

In a non-coordinate (anholonomic) basis {Ea} satisfy-
ing the commutation relation in Eq. (3), the spin con-
nections are defined by

∇aEc = ωa
b
cEb, (100)

where ∇a ≡ ∇Ea is the covariant derivative in the direc-
tion of a vector field Ea. Acting on the dual basis {Ea},
they are given by

∇aEb = −ωa
b
cE

c. (101)

Because we will impose the torsion-free condition, i.e.,

T (a, b) = ∇[aEb] − [Ea, Eb] = 0, (102)

the spin connections are related to the structure func-
tions

fabc = −ωacb + ωbca. (103)

The Riemann curvature tensors in the basis {Ea} are
defined by

R(a, b) = [∇a,∇b] −∇[a,b] (104)

or in component form, by

Rab
c
d = 〈Ec, R(Ea, Eb)Ed〉

= Eaωb
c
d − Ebωa

c
d + ωa

c
eωb

e
d

−ωb
c
eωa

e
d + fab

eωe
c
d. (105)

Imposing the condition that the metric in Eq. (89) is
covariantly constant, i.e.,

∇c

(
δabE

a ⊗ Eb
)

= 0, (106)

or, equivalently,

ωcab = −ωcba, (107)

we see that the spin connections ωcab have the same num-
ber of components as fabc. Thus, Eq. (103) has a unique
solution, and it is precisely given by Eq. (56). The defi-
nition in Eq. (104), together with the metricity condition
in Eq. (107), immediately leads to the following symme-
try property:

Rabcd = −Rabdc = −Rbacd. (108)

If the relation in Eq. (91) is used, the spin connections in
Eq. (56) are now determined by the gauge theory bases

λωabc =
1
2
(fabc− fbca + fcab)−Vb log λδca +Vc log λδab.

(109)

The spacetime geometry described by the metric in
Eq. (89) is an emergent gravity arising from gauge fields
whose underlying theory is defined by the action in Eq.
(44). The fundamental variables in our approach are, of
course, gauge fields that are subject to Eqs. (51) and
(52). A spacetime metric is now regarded as a collective
variable defined by a composite or bilinear of gauge fields.
Therefore, we are going to get a viable realization of the
idea we speculated about with Eq. (2); is it possible to
show that the equations of motion, Eq. (52), for gauge
fields together with the Bianchi identity in Eq. (51) can
be rewritten as the Einstein equations for the metric in
Eq. (89)? For this purpose, we first want to represent
the Riemann curvature tensors in Eq. (105), originally
expressed with the orthonormal basis Ea, in terms of the
gauge theory basis Va. That representation will be useful
because we will eventually impose Eqs. (51) and (52) on
them.

Indeed, everything is prepared because all calculations
can straightforwardly be done using Eqs. (91) and (109).
All the details can be found in Ref. [7]. Here, we will
briefly sketch essential steps. One can easily derive the
following identity:

R(Ea, Eb)Ec + R(Eb, Ec)Ea + R(Ec, Ea)Eb

= [Ea, [Eb, Ec]] + [Eb, [Ec, Ea]] + [Ec, [Ea, Eb]] (110)

by using the torsion-free condition in Eq. (102). The
Jacobi identity then immediately leads to R[abc]d = 0.
Because Va = λEa, we have the relation

[V[a, [Vb, Vc]]] = λ3[E[a, [Eb, Ec]]], (111)

where all the terms containing the derivatives of λ cancel
each other. As we promised, the first Bianchi identity
R[abc]d = 0 follows from the Jacobi identity in Eq. (51).
Thus, we pleasingly confirm that

D̂[aF̂bc] = 0 ⇔ R[abc]d = 0. (112)

The Bianchi identity in Eq. (112), together with Eq.
(108), leads to the symmetry in Eq. (79). It should be
emphasized that the equivalence in Eq. (112) holds for
arbitrary gauge fields in any even dimensions.

From the above derivation, we have to notice that, if
torsion-free condition in Eq. (102) are not imposed, the
equivalence in Eq. (112) must be corrected. This can be
seen from the Bianchi identities [3]

DT a ≡ dT a + ωa
b ∧ T b = Ra

b ∧ Eb, (113)
DRa

b ≡ dRa
b + ωa

c ∧ Rc
b − Ra

c ∧ ωc
b = 0, (114)

which are integrability conditions derived from Eqs. (54)
and (55). In general, the equivalence in Eq. (112) holds
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only if DT d = 0, where Rc
d∧Ec = 1

2Rabc
dEa∧Eb∧Ec =

1
6R[abc]

dEa ∧ Eb ∧ Ec = 0. Note that Eq. (51) is sim-
ply a consequence of the Jocobi identity for the Pois-
son bracket in Eq. (6), which should be true for a
general Poisson structure (not necessarily nondegener-
ate) as long as the Schouten-Nijenhuis bracket [θ, θ]SN ∈
Γ(Λ3TM) vanishes. Thus, Eq. (51) will still be true for
a generic Poisson manifold. Also, one may get the re-
lation R[abc]

d − D[aT d
bc] = 0, instead of Eq. (111), for

a nonzero torsion. Nevertheless, we conjecture that the
torsion will identically vanish even for a general Poisson
manifold because the existence of a Poisson structure im-
plies the equivalence principle in the theory of emergent
gravity.

The mission for the equations of motion, Eq. (52),
is more nontrivial. After some technical manipulation,
a remarkably simple form for the Ricci tensor can be
obtained in four dimensions [7]:

Rab = − 1
λ2

[
f (+)i
d ηi

acf
(−)j
d η̄j

bc + f (+)i
d ηi

bcf
(−)j
d η̄j

ac

−(
f (+)i
c ηi

acf
(−)j
d η̄j

bd + f (+)i
c ηi

bcf
(−)j
d η̄j

ad

)]
.(115)

Here, we also decomposed fabc into self-dual and anti-
self-dual parts as in Eq. (58):

fabc = f (+)i
c ηi

ab + f (−)i
c η̄i

ab, (116)

where

f (±)i
c η

(±)i
ab =

1
2

(
fabc ± 1

2
εab

defdec

)
. (117)

Recall that we want to relate the equations of motion,
Eq. (52), together with the Bianchi identity in Eq. (51),
to the Einstein equations for the emergent metric (89).
For later use, let us also introduce a completely antisym-
metric tensor defined by

Ψabc ≡ fabc + fbca + fcab ≡ εabcdΨd. (118)

Using the decomposition in Eq. (116), one can easily see
that

Ψa = − 1
3!

εabcdΨbcd = −
(
f (+)i
b ηi

ab − f (−)i
b η̄i

ab

)
(119)

while Eq. (97) leads to

ρa = fbab = −
(
f (+)i
b ηi

ab + f (−)i
b η̄i

ab

)
. (120)

Note that the right-hand side of Eq. (115) is purely
interaction terms between the self-dual and the anti-self-
dual parts in Eq. (116). Therefore, if gauge fields satisfy
the self-duality equation, Eq. (92), i.e., f (±)i

a = 0, they
describe a Ricci-flat manifold, i.e., Rab = 0. Of course,
this result is completely consistent with the previous self-
dual case.

The next step is to calculate the Einstein tensor to
identify the form of the energy-momentum tensor

Eab = Rab − 1
2
δabR

= − 1
λ2

(
f (+)i
d ηi

acf
(−)j
d η̄j

bc + f (+)i
d ηi

bcf
(−)j
d η̄j

ac

)
+

1
λ2

(
f (+)i
c ηi

acf
(−)j
d η̄j

bd + f (+)i
c ηi

bcf
(−)j
d η̄j

ad

−δabf
(+)i
d ηi

cdf
(−)j
e η̄j

ce

)
(121)

where the Ricci scalar R is given by

R =
2
λ2

f (+)i
b ηi

abf
(−)j
c η̄j

ac. (122)

We have adopted the conventional view that the gravi-
tational field is represented by the spacetime metric it-
self. The problem, thus, reduces to finding field equa-
tions to relate the metric in Eq. (89) to the energy-
momentum distribution. According to our scheme, Eq.
(121), therefore, corresponds to such field equations, i.e.,
the Einstein equations. First, notice that the right-hand
side of Eq. (121) identically vanishes for self-dual gauge
fields, satisfying f (±)i

a = 0, whose energy-momentum ten-
sor also identically vanishes because their action is topo-
logical, i.e., metric independent. Howecer, for general
gauge fields for which f (±)i

a �= 0, the right-hand side of
Eq. (121) no longer vanishes, which, in turn, enforces
Eab = Rab− 1

2δabR �= 0. Because the Einstein tensor Eab

equals some energy-momentum tensor for matter fields,
the non-vanishing Einstein tensor implies that there is
a nontrivial energy-momentum tensor coming from U(1)
gauge fields. In other words, the presence of U(1) gauge
fields on a symplectic spacetime not only deforms space-
time geometry according to the correspondence in Eq.
(12) but also plays a role of matter fields contributing
to the energy-momentum tensor. Indeed, this should be
the case because the action in Eq. (44) reduces to the
ordinary Maxwell theory in the commutative limit and
thus has a nontrivial energy-momentum tensor. There-
fore, it is natural to identify the right-hand side of Eq.
(121) with some energy-momentum tensor determined
by U(1) gauge fields.

We intentionally make the following separation into
two kinds of energy-momentum tensors denoted by T

(M)
ab

and T
(L)
ab :

8πG

c4
T

(M)
ab = − 1

λ2

(
f (+)i
d ηi

acf
(−)j
d η̄j

bc + f (+)i
d ηi

bcf
(−)j
d η̄j

ac

)
= − 1

λ2
f (+)i
d f (−)j

d

(
ηi

acη̄
j
bc + ηi

bcη̄
j
ac

)
= − 1

λ2

(
facdfbcd − 1

4
δabfcdefcde

)
, (123)
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8πG

c4
T

(L)
ab =

1
λ2

(
f (+)i
c ηi

acf
(−)j
d η̄j

bd + f (+)i
c ηi

bcf
(−)j
d η̄j

ad

−δabf
(+)i
d ηi

cdf
(−)j
e η̄j

ce

)
=

1
λ2

f (+)i
c f (−)j

d

(
ηi

acη̄
j
bd + ηi

bcη̄
j
ad − δabη

i
ecη̄

j
ed

)
=

1
2λ2

(
ρaρb − ΨaΨb − 1

2
δab(ρ2

c − Ψ2
c)
)
(124)

where we have used the decomposition in Eq. (117) and
the relations

f (+)i
b ηi

ab = −1
2
(ρa + Ψa), f (−)i

b η̄i
ab = −1

2
(ρa − Ψa).

With this notation, the Einstein equations, Eq. (121),
can be written as

Eab = Rab − 1
2
δabR

=
8πG

c4

(
T

(M)
ab + T

(L)
ab

)
. (125)

The main motivation of the above separation was the
fact that the energy-momentum tensor T

(M)
ab is traceless,

i.e., T
(M)
aa = 0, because of the property η

(±)i
ab η

(∓)j
ab = 0,

so the Ricci scalar in Eq. (122) is determined by the
second energy-momentum tensor T

(L)
ab only.

First, let us identify the real character of the energy-
momentum tensor in Eq. (123). When one stares at
the energy-momentum tensor in Eq. (123), one may
find that it is very reminiscent of the Maxwell energy-
momentum tensor given by

T
(em)
ab =

�
2c2

g2
Y M

(
FacFbc − 1

4
δabFcdFcd

)
, (126)

which is also traceless, i.e., T
(em)
aa = 0. Indeed, it was

argued in Ref. [7] that the energy-momentum tensor
in Eq. (123) can be mapped to Eq. (126) by reversely
applying the map in Eq. (12), so to speak, by translating
the map Γ(TM) → C∞(M) [65].

There is another reason the energy-momentum tensor
in Eq. (123) should be mapped to Eq. (126). Con-
sider a commutative limit in which |θ|2 ≡ ĝacĝbdθ

abθcd =
κ2|κBg−1|2 → 0. In this limit, we should recover the
ordinary Maxwell theory from the action in Eq. (44),
which may be more obvious from the left-hand side of
Eq. (36). Because the action in Eq. (44) is defined in the
commutative limit, which reduces to the Maxwell theory
at |θ| = 0, the Maxwell theory should play a role in the
Einstein equation in Eq. (125). Of course, it would be
most natural for it to appear on the right-hand side of the
Einstein equation, Eq. (125), as an energy-momentum
tensor, as we explained above.

If so, it is still necessary to understand how the grav-
itational constant G in Eq. (125) arose from the gauge
theory in Eq. (44) because it did not contain G from
the outset. Recall that both Eqs. (125) and (126)

are valid even in D-dimensions. Because the energy-
momentum tensor carries the physical dimension of en-
ergy density, i.e., [T (em)

ab ] = ML2T−2

LD−1 and [Rab] = L−2,
we need some physical constant carrying the physical di-
mension of M−1LD−1T−2 in Eq. (125). Of course, it
is the Newton constant G. See Eq. (14). However, we
pointed out that, if a field theory is equipped with an
intrinsic length scale, which is precisely the case for the
action in Eq. (44) with L2 = |θ|, the gravitational con-
stant G can arise purely from the field theory. In our
case, this means [7] that the gravitational constant G
can be determined from only the field theory parameters
in Eq. (44):

G�
2

c2
∼ g2

Y M |θ|. (127)

We will wait to Section V to pose an important ques-
tion on what the physical implications of Eq. (127) are
because we are not yet prepared for that question.

Now, it is in order to ask about the real character of the
energy-momentum tensor in Eq. (124). As we pointed
out before, T

(M)
ab in Eq. (123) is traceless, so the Ricci

scalar in Eq. (122) should genuinely be determined by
the second energy-momentum tensor in Eq. (124). For
example, let us consider a maximally symmetric space in
which the curvature and the Ricci tensors are given by

Rabcd =
R

D(D − 1)
(δacδbd − δadδbc), Rab =

R

D
δab.

(128)

Then, let us simply assume that the Einstein equations,
Eq. (125), allow a nearly maximally symmetric space-
time. In this case, the energy-momentum tensor in
Eq. (124) will be dominant, and the global structure
of spactime will be determined by T

(L)
ab only.

To descry closer aspects of the energy-momentum ten-
sor in Eq. (124), let us consider the following decompo-
sition:

ρaρb =
1
4
δabρ

2
c +

(
ρaρb − 1

4
δabρ

2
c

)
,

ΨaΨb =
1
4
δabΨ2

c +
(
ΨaΨb − 1

4
δabΨ2

c

)
. (129)

In the above decomposition, the first terms correspond
to scalar modes and will be a source of the expan-
sion/contraction of spacetime while the second terms
correspond to quadruple modes and will give rise to the
shear distortion of spacetime, which can be seen via Ray-
chauduri’s equation (288). For a nearly maximally sym-
metric spacetime, the second terms can, thus, be ne-
glected. In this case, the energy-momentum tensor in Eq.
(124) behaves as a cosmological constant for a (nearly)
constant-curvature spacetime, i.e.,

T
(L)
ab = − c4R

32πG
δab. (130)
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In Section V, we will consider the Wick rotation, y4 =
iy0, of the energy-momentum tensor in Eq. (124) and
discuss a very surprising aspect of it in Minkowski space-
time.

III. QUANTUM GRAVITY

Riemannian geometry has been charged with a pri-
mary role in describing the theory of gravity, but many
astronomical phenomena involved with very strongly
gravitating systems, e.g., the Big-Bang, black holes,
etc., disclose that a Riemannian geometry describing a
smooth spacetime manifold is not enough. Instead, it
turns out that a “quantum geometry” is necessary to
describe such extremely gravitating systems. Unfortu-
nately, we still do not know how to quantize a Rieman-
nian manifold in order to define the quantum geometry.

In the previous section, we showed that a Rieman-
nian geometry could emerge from a Poisson geometry in
the context of emergent gravity. The underlying Poisson
geometry has been defined by a U(1) gauge theory on a
Poisson spacetime. Therefore, we may quantize the Pois-
son geometry to define quantum gravity. Now, we want
to explore how the Poisson geometry defined by the U(1)
gauge theory on the Poisson spacetime can be quantized
to describe quantum geometries.

1. Quantum Equivalence Principle

In Section I, we have suggested that the quantization
of gravity might be defined by the spacetime deforma-
tion in terms of G rather than �. If spin-two graviton
were really a fundamental particle, it could be physically
viable to quantize gravity in terms of the Planck con-
stant � which will quantize the particle phase space of
gravitons. However, recent developments in string the-
ory [11], known as the AdS/CFT duality, open-closed
string duality, matrix models, etc., imply that gravity
may be a collective phenomenon emergent from gauge
fields. That is, the spin-two graviton might arise as a
composite of two spin-one gauge bosons. Presumably,
this composite nature of gravitons is already immanent
in the vielbein formalism as the metric expression in Eq.
(2) politely insinuates.

In Section II, we showed that Einstein gravity can be
formulated in terms of a symplectic geometry rather than
a Riemannian geometry in the context of emergent grav-
ity. An essential step for emergent gravity was to real-
ize the equivalence principle, the most important prop-
erty in the theory of gravity (general relativity), from
U(1) gauge theory on a symplectic or a Poisson mani-
fold. Through the realization of the equivalence princi-
ple, which is an intrinsic property in symplectic geometry
[8], known as the Darboux theorem or the Moser lemma,

we can understand how diffeomorphism symmetry arises
from symplectic U(1) gauge theory and how gravity can
emerge from symplectic electromagnetism, which is also
an interacting theory.

A unique feature of gravity disparate from other phys-
ical interactions is that it is characterized by the Newton
constant G whose physical dimension is (length)2 in nat-
ural units. We have to deeply ruminate about its physical
origin. Our proposal is that it is inherited from a Pois-
son structure of spacetime. In order to support that, we
have elucidated how gravity can emerge from a field the-
ory on such a spacetime. Also, we have realized such an
idea in Eq. (127) that the gravitational constant G can
be purely determined by the gauge theory parameters,
signaling the emergence of gravity from the field theory.
Remarkably, it turns out that U(1) gauge theory defined
with an intrinsic length scale set by the Poisson structure
in Eq. (6) should be a theory of gravity.

Therefore, it is now obvious how to quantize gravity
if gravity is emergent from a gauge theory defined on a
symplectic or Poisson manifold. We already briefly spec-
ulated in subsection I.3 how quantum geometry can arise
from the quantization of spacetime, i.e., a noncommuta-
tive spacetime. We will clarify more how the essential
properties of emergent gravity can be lifted to the non-
commutative spacetime. In particular, we want to clarify
how the Darboux theorem, as the equivalence principle
for emergent gravity, can be realized in a full noncommu-
tative geometry. It was already convincingly argued in
Ref. [5] that such a kind of “quantum equivalence prin-
ciple” exists in the context of deformation quantization à
la Kontsevich as a gauge equivalence between star prod-
ucts. Actually, this gauge equivalence between star prod-
ucts reduces in the commutative limit to the usual Dar-
boux theorem and was the basis of the Seiberg-Witten
map between commutative and noncommutative gauge
fields [16], as was also discussed in Ref. [5]. Therefore, a
general noncommutative deformation of emergent grav-
ity would be possible because Kontsevich already proved
[15] that any Poisson manifold can always be quantized
at least in the context of deformation quantization.

As we argued in Section II, the Darboux theorem, or
more precisely the Moser lemma, in symplectic geome-
try is enough to derive Einstein gravity because the latter
arises from a U(1) gauge theory on a symplectic mani-
fold. Now, we want to quantize the U(1) gauge theory
defined by the action in Eq. (44) à la Dirac, i.e., by
adopting the quantization rule in Eq. (7):

Da ∈ C∞(M) → D̂a = Baby
b + Âa ∈ Aθ,

{Da, Db}θ → −i[D̂a, D̂b] ≡ −Bab + F̂ab, (131)

where F̂ab ∈ Aθ is the noncommutative field strength
defined by

F̂ab = ∂aÂb − ∂bÂa − i[Âa, Âb]. (132)

Here, we understand the noncommutative fields in Eq.
(131) as being self-adjoint operators acting on the Hilbert
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space H. Then, we get the U(1) gauge theory defined on
the noncommutative spacetime in Eq. (8) as

Ŝ = − 1
4Gs

TrH[D̂a, D̂b][D̂a, D̂b], (133)

where Gs ≡ gs/2πκ2 and the trace TrH is defined over
the Fock space in Eq. (18) and can be identified with

TrH ≡
∫

d2ny

(2π)n|Pfθ| . (134)

The Jacobi identity for the operator algebra Aθ leads to
the Bianchi identity

[D̂[a, [D̂b, D̂c]]] = −D̂[aF̂bc] = 0, (135)

and the equations of motion derived from the action in
Eq. (133) read as

[D̂a, [D̂a, D̂b]] = −D̂aF̂ab = 0, (136)

where

D̂aF̂bc = ∂aF̂bc − i[Âa, F̂bc]. (137)

In classical mechanics, the set of possible states of a
particle system forms a Poisson manifold P . The ob-
servables that we want to measure are smooth functions
in C∞(P ), forming a commutative (Poisson) algebra. In
quantum mechanics, the set of possible states is repre-
sented by a Hilbert space H. The observables are self-
adjoint operators acting on H, forming a noncommuta-
tive �-algebra. The change from a Poisson manifold to a
Hilbert space is a pretty big one.

A natural question is whether a quantization, such as
Eq. (7), for a spacetime manifold M with a general
Poisson structure π = 1

2πμν(x) ∂
∂xμ ∧ ∂

∂xν ∈ Γ(Λ2TM)
is always possible with a radical change in the nature of
the observables. The problem is how to construct the
Hilbert space for a general Poisson manifold, which is,
in general, highly nontrivial. Deformation quantization
was proposed in Ref. [66] as an alternative, where the
quantization is understood to be a deformation of the
algebra A = C∞(M) of classical observables. Instead of
building a Hilbert space from a Poisson manifold and as-
sociating an algebra of operators to it, we are only con-
cerned with the algebra A to deform the commutative
product in C∞(M) to a noncommutative and associa-
tive product. In a canonical phase space where π = θ
such as the case we have considered so far, it is easy to
show that the two approaches have a one-to-one corre-
spondence through the Weyl-Moyal map [9,10]:

f̂ ·ĝ ∼= (f�g)(y) = exp
(

i

2
θμν∂y

μ∂z
ν

)
f(y)g(z)

∣∣∣∣
y=z

. (138)

Recently Kontsevich answered the above question in
the context of deformation quantization [15]. He proved

that every finite-dimensional Poisson manifold M admits
a canonical deformation quantization and that changing
coordinates leads to gauge-equivalent star products. We
briefly recapitulate his results, which will be useful for
our later discussions. Let A be the algebra over R of
smooth functions on a finite-dimensional C∞-manifold
M . A star product on A is an associative R[[�]]–bilinear
product on the algebra A[[�]], a formal power series in �

with coefficients in C∞(M) = A, given by the following
formula for f, g ∈ A ⊂ A[[�]] [67]:

(f, g) 	→ f�g = fg+�B1(f, g)+�
2B2(f, g)+· · · ∈ A[[�]],

(139)

where Bi(f, g) are bidifferential operators. There is a
natural gauge group which acts on star products. This
group consists of automorphisms of A[[�]] considered as
an R[[�]]–module (i.e., linear transformations A → A
parameterized by �). If D(�) = 1 +

∑
n≥1 �

nDn is such
an automorphism, where Dn : A → A are differential
operators, it acts on the set of star products as

� → �′, f(�)�′g(�) = D(�)
(
D(�)−1(f(�))�D(�)−1(g(�))

)
(140)

for f(�), g(�) ∈ A[[�]]. This is evident from the commu-
tativity of the diagram

A[[�]] ×A[[�]] 
 ��

D(�)×D(�)

��

A[[�]]

D(�)

��
A[[�]] ×A[[�]] 
′

�� A[[�]].

Two star products � and �′ are called equivalent if
there exists an automorphism D(�), a formal power se-
ries of differential operators, satisfying Eq. (140). We
are interested in star products up to the gauge equiva-
lence. This equivalence relation is closely related to the
cohomological Hochschild complex of algebra A [15],
i.e., the algebra of smooth polyvector fields on M . For
example, it follows from the associativity of the prod-
uct in Eq. (139) that the symmetric part of B1 can be
killed by a gauge transformation that is a coboundary
in the Hochschild complex, and that the antisymmetric
part of B1, denoted as B−

1 , comes from a bivector field
π ∈ Γ(Λ2TM) on M :

B−
1 (f, g) = 〈π, df ⊗ dg〉. (141)

In fact, any Hochschild coboundary can be removed by
using a gauge transformation D(�), thus leading to the
gauge equivalent star product in Eq. (140). The asso-
ciativity at O(�2) further constrains that π must be a
Poisson structure on M ; in other words, [π, π]SN = 0,
where the bracket is the Schouten-Nijenhuis bracket on
polyvector fields (see Ref. [15] for the definition of this
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bracket and the Hochschild cohomology). Thus, gauge
equivalence classes of star products modulo O(�2) are
classified by Poisson structures on M . It was shown [15]
that there are no other obstructions to deforming the
algebra A up to arbitrary higher orders in �.

For an equivalence class of star products for any Pois-
son manifold, Kontsevich arrived at the following general
result [15]:

The set of gauge equivalence classes of star products on
a smooth manifold M can be naturally identified with the
set of equivalence classes of Poisson structures depending
formally on �

π = π(�) = π1� + π2�
2 + · · · ∈ Γ(Λ2TM)[[�]],

[π, π]SN = 0 ∈ Γ(Λ3TM)[[�]] (142)

modulo the action of the group of formal paths in the dif-
feomorphism group of M , starting at the identity diffeo-
morphism. Also, if we change coordinates in Eq. (139),
we obtain a gauge-equivalent star product.

This theorem means that the set of equivalence classes
of associative algebras close to algebras of functions on
manifolds is in one-to-one correspondence with the set
of equivalence classes of Poisson manifolds module dif-
feomorphisms.

Suppose that the Poisson tensor π = 1
2πμν(x) ∂

∂xμ ∧
∂

∂xν ∈ Γ(Λ2TM) is a nondegenerate constant bi-vector
and denote it with θ again. In this case, the star product
is given by Eq. (138), the so-called Moyal product. If we
make an arbitrary change of coordinates, yμ 	→ xa(y), in
the Moyal �-product in Eq. (138), which is nothing but
the Kontsevich’s star product in Eq. (139) with the con-
stant Poisson bi-vector θ, we will get a new star product,
Eq. (139), defined by a Poisson bi-vector π(�). However,
the resulting star product has to be gauge equivalent to
the Moyal product in Eq. (138) and π(�) belongs to the
same equivalence class of Poisson structures and so could
be determined by using the formal power series in Eq.
(142) for the original Poisson bi-vector θ. Conversely, if
two star products � and �′ are gauge equivalent in the
sense that there exists an automorphism D(�) satisfy-
ing Eq. (140), the Poisson structures θ and π defining
the star products � and �′, respectively, must belong to
the same gauge equivalence class. This is the general
statement of the above theorem.

Actually, it is easy to show that the gauge equiva-
lence relation in Eq. (140) between star products reduces
to the Darboux transformation (29) in the commutative
limit where D(�) = 1. After identifying π−1 = B + F
and θ−1 = B, we get in this limit

{xa, xb}θ(y) = θμν ∂xa

∂yμ

∂xb

∂yν
= πab(x) =

( 1
B + F

)ab

(x),

(143)

which is precisely the inverse of Eq. (29) if ω1 = π−1

and ω0 = θ−1. Therefore, we propose [5] the “quantum
equivalence principle” as the gauge equivalence in Eq.

(140) between star products in the sense that the Dar-
boux theorem as the equivalence principle for emergent
gravity is lifted to a noncommutative geometry. Fur-
thermore, the isomorphism in Eq. (34) from the Lie
algebra of Poisson vector fields to the Lie algebra of
vector fields as derivations of C∞(M) can be lifted to
the noncommutative spacetime in Eq. (8) as follows:
Consider an adjoint operation of noncommutative gauge
fields D̂a(y) ∈ Aθ in Eq. (131),

V̂a[f̂ ](y) ≡ −i[D̂a(y), f̂(y)]
. (144)

The leading term in Eq. (144) exactly recovers the vector
fields in Eq. (12), i.e.,

V̂a[f̂ ](y) = −i[D̂a(y), f̂(y)]


= −θμν ∂Da(y)
∂yν

∂f(y)
∂yμ

+ · · ·
= Va[f ](y) + O(θ3). (145)

Because the star product in Eq. (139) is associative,
one can show the following properties:

V̂a[f̂ � ĝ] = V̂a[f̂ ] � ĝ + f̂ � V̂a[ĝ],

V̂−i[D̂a,D̂a]�
= [V̂a, V̂b]
. (146)

The above property implies that we can identify the
adjoint operation Der(Aθ) ≡ {V̂a|a = 1, · · · , 2n} with
the (inner) derivations of a noncommutative �-algebra
Aθ, and so the generalization of vector fields Γ(TM) =
{Va|a = 1, · · · , 2n} in Eq. (12). Using Eq. (146), one
can show that

V̂F̂ab
= [V̂a, V̂b]
, (147)

V̂D̂aF̂bc
= [V̂a, [V̂b, V̂c]
]
, (148)

which may be compared with Eqs. (49) and (50). We
can use the map in Eq. (148) in exactly the same way
as in the Poisson algebra case to translate the Jacobi
identity in Eq. (135) and the equations of motion in Eq.
(136) into some relations between the generalized vector
fields V̂a defined by Eq. (144) [7]:

D̂[aF̂bc] = 0 ⇔ [V̂[a, [V̂b, V̂c]]
]
 = 0, (149)

D̂aF̂ab = 0 ⇔ [V̂ a, [V̂a, V̂b]
]
 = 0. (150)

We will consider the system of the derivations of non-
commutative �-algebra Aθ defined by Eqs. (149) and
(150) as the quantization of the system given by Eqs.
(51) and (52) and, thus, as quantization of Einstein grav-
ity in the sense of Eq. (7). To support the claim, we will
take the correspondence in Eq. (22) to show [6] that any
large-N gauge theory can be mapped to a noncommuta-
tive U(1) gauge theory like as Eq. (133). Because the
large-N gauge theory is believed to provide a theory of
quantum geometries as evidenced by the AdS/CFT cor-
respondence and various matrix models in string theory,
we think it could be reasonable evidence for our claim.
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2. Noncommutative Electromagnetism as a
Large-N Gauge Theory

Let us consider U(N → ∞) Yang-Mills theory in d
dimensions:

SM = − 1
Gs

∫
ddzTr

(
1
4
FμνFμν +

1
2
DμΦaDμΦa

−1
4
[Φa,Φb]2

)
, (151)

where Gs ≡ 2πgs/(2πκ)
4−d
2 and Φa (a = 1, · · · , 2n) are

adjoint scalar fields in U(N). Here, the d-dimensional
commutative spacetime R

d
C will be taken with either a

Lorentzian or a Euclidean signature. Note that, if d = 4
and n = 3, the action in Eq. (151) is exactly the bosonic
part of the 4-dimensional N = 4 supersymmetric U(N)
Yang-Mills theory, which is the large-N gauge theory of
the AdS/CFT correspondence.

Suppose that a vacuum of the theory, Eq. (151), is
given by

〈Φa〉vac =
1
κ

ya, 〈Aμ〉vac = 0. (152)

We will assume that the vacuum expectation values ya ∈
U(N) in the N → ∞ limit satisfy the algebra

[ya, yb] = iθab1N×N , (153)

where θab is a constant matrix of rank 2n. If so, the vac-
uum in Eq. (152) is definitely a solution to the theory in
Eq. (151) and the large-N matrices ya can be mapped to
noncommutative fields according to the correspondence

in Eq. (22). The adjoint scalar fields in vacuum then sat-
isfy the noncommutative Moyal algebra defined by Eq.
(8) or equivalently

[ya, yb]
 = iθab. (154)

Now, let us expand the large-N matrices in the action
in Eq. (151) around the vacuum in Eq. (152):

Φa(z, y) =
1
κ

(
ya + θabÂb(z, y)

)
, (155)

Dμ(z, y) = ∂μ − iÂμ(z, y), (156)

where we have assumed that the fluctuations ÂM (X) ≡
(Âμ, Âa)(z, y), M = 1, · · · , d + 2n, also depend on the
vacuum moduli in Eq. (152). Therefore, let us introduce
D = d + 2n-dimensional coordinates XM = (zμ, ya),
which consist of d-dimensional commutative ones de-
noted by zμ (μ = 1, · · · , d) and 2n-dimensional noncom-
mutative ones denoted by ya (a = 1, · · · , 2n), satisfying
the relation in Eq. (154). Likewise, D-dimensional gauge
fields ÂM (X) are also introduced in a similar way [68]:

DM (X) = ∂M − iÂM (X)

≡ (Dμ = ∂μ − iÂμ, Da = −iκBabΦb)(z, y).
(157)

According to the correspondence in Eq. (22), we will
replace the matrix commutator in the action in Eq. (151)
by the star commutator, i.e.,

[♣,♠]N×N → [♣,♠]
. (158)

It is then straightforward to calculate each component
in the matrix action in Eq. (151)

Fμν = i[Dμ, Dν ]
 = ∂μÂν − ∂νÂμ − i[Âμ, Âν ]
 := F̂μν ,

DμΦa = i
θab

κ
[Dμ, Db]
 =

θab

κ

(
∂μÂb − ∂bÂμ − i[Âμ, Âb]


)
:=

θab

κ
F̂μb, (159)

[Φa,Φb] = − 1
κ2

θacθbd[Dc, Dd]
 =
i

κ2
θacθbd

(
− Bcd + ∂cÂd − ∂dÂc − i[Âc, Âd]


)
:= − i

κ2

(
θ(F̂ − B)θ

)ab

,

where we defined [∂μ, f̂ ]
 = ∂μf̂ and B = 1
2Babdya ∧ dyb

with rank(B) = 2n. It is important to notice that
large-N matrices on the vacuum in Eq. (152) are now
represented by their master fields, which are higher-
dimensional noncommutative U(1) gauge fields in Eq.
(157) whose field strength is given by

F̂MN = ∂M ÂN − ∂N ÂM − i[ÂM , ÂN ]
. (160)

Collecting all the results in Eq. (159) and using the trace

in Eq. (134), the action in Eq. (151) can be recast into
the simple form [6]

ŜB = − 1
4g2

Y M

∫
dDX

√−GGMP GNQ(F̂MN − BMN )

�(F̂PQ − BPQ), (161)

where we have assumed a constant metric on R
D = R

d
C×



-1774- Journal of the Korean Physical Society, Vol. 65, No. 11, December 2014

R
2n
NC with the form

ds2 = GMNdXMdXN

= gμνdzμdzν + ĝabdyadyb (162)

and the relations in Eqs. (38), (39) and (40) were used.
In the end, the d-dimensional U(N) Yang-Mills theory
in Eq. (151) has been transformed into a D-dimensional
noncommutative U(1) gauge theory.

Depending on the choice of the base space R
d
C , one can

get a series of matrix models from the large-N gauge the-
ory in Eq. (151): for instance, the IKKT matrix model
for d = 0 [18], the BFSS matrix model for d = 1 [17]
and the matrix string theory for d = 2 [19]. The most
interesting case is d = 4 and n = 3, which is equal to the
bosonic part of the 4-dimensional N = 4 supersymmetric
U(N) Yang-Mills theory in the AdS/CFT duality [22]
and is equivalent to the 10-dimensional noncommutative
U(1) gauge theory on R

4
C × R

6
NC . Note that all these

matrix models or large-N gauge theories are nonpertur-
bative formulations of string or M theories. Therefore,
it should be reasonable to expect that the d-dimensional
U(N → ∞) gauge theory in Eq. (151) and so the D-
dimensional noncommutative U(1) gauge theory in Eq.
(161) describe a theory of quantum gravity according to
the large-N duality or AdS/CFT correspondence.

We will give further evidences why the matrix ac-
tion in Eq. (151) contains a variety of quantum ge-
ometries and how smooth Riemannian geometries can
be emergent from the action in Eq. (161) in a com-
mutative limit. First, apply the adjoint operation in
Eq. (144) to the D-dimensional noncommutative gauge
fields DA(X) = (Dμ, Da)(z, y) (after switching the index
M → A to distinguish them from the local coordinate in-
dices M,N, · · · ) to obtain

V̂A[f̂ ](X) = [DA, f̂ ]
(z, y)
≡ V M

A (z, y)∂Mf(z, y) + O(θ3), (163)

where V μ
A = δμ

A because the star product acts only on y-

coordinates and we define [∂μ, f̂(X)]
 = ∂f̂(X)
∂zμ . More ex-

plicitly, the D-dimensional noncommutative U(1) gauge
fields at leading order appear as the usual vector fields
(frames on a tangent bundle) on a D-dimensional mani-
fold M given by

VA(X) = (∂μ + Aa
μ∂a, Db

a∂b) (164)

or with matrix notation

V M
A (X) =

(
δν
μ Aa

μ

0 Db
a

)
, (165)

where

Aa
μ ≡ −θab ∂Âμ

∂yb
, Db

a ≡ δb
a − θbc ∂Âa

∂yc
. (166)

One can easily check that VA’s in Eq. (164) take values
in the Lie algebra of volume-preserving vector fields, i.e.,

∂MV M
A = 0. One can also determine the dual basis V A =

V A
MdXM ∈ Γ(T ∗M), i.e., 〈V A, VB〉 = δA

B , which is given
by

V A(X) =
(
dzμ, V a

b (dyb − Ab
μdzμ)

)
(167)

or with matrix notation

V A
M (X) =

(
δν
μ −V a

b Ab
μ

0 V a
b

)
, (168)

where V c
a Db

c = δb
a.

From the previous analysis in Section II.3 (which cor-
responds to the d = 0 case), we know that the vector
fields VA determined by gauge fields are related to the
orthonormal frames (vielbeins) EA by VA = λEA and
EA = λV A, where the conformal factor λ will be deter-
mined later. (This situation is very reminiscent of the
string frame (VA) and the Einstein frame (EA) in string
theory.) Hence, the D-dimensional metric can be deter-
mined explicitly, by using the dual basis (167) up to a
conformal factor [69]:

ds2 = ηABEA ⊗ EB

= λ2ηABV A ⊗ V B = λ2ηABV A
MV B

N dXM ⊗ dXN

= λ2
(
ημνdzμdzν + δabV

a
c V b

d (dyc − Ac)(dyd − Ad)
)

(169)

where Aa = Aa
μdzμ.

The conformal factor λ2 in the metric in Eq. (169)
can be determined in exactly the same way as in the
Section II.3. Choose a D-dimensional volume form with
a matching parameter λ ∈ C∞(M) such that

ν = λ2V 1 ∧ · · · ∧ V D (170)

and

λ2 = ν(V1, · · · , VD). (171)

Then, the vector fields VA are volume preserving with
respect to a D-dimensional volume form ν = λ(2−D)νg,
where

νg = E1 ∧ · · · ∧ ED (172)

and the vector fields EA are volume preserving with re-
spect to another volume form ν̃ = λ(3−D)νg. Because
∂MV M

A = 0 or LVA
ν = 0, we can choose the invariant

volume by turning off all fluctuations in Eq. (170) as

ν = dz1 ∧ · · · ∧ dzd ∧ dy1 ∧ · · · ∧ dy2n. (173)

Then, we finally get

λ2 = det−1V a
b . (174)

One can see that the spacetime geometry described
by the metric in Eq. (169) is completely determined by
noncommutative gauge fields whose underlying theory is
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defined by the action in Eq. (151) or in Eq. (161). One
may also confirm the claim in Section I.1 that a spin-
two graviton arises as a composite of two spin-one vector
fields and such spin-one vector fields arise from electro-
magnetic fields living in the noncommutative spacetime
of Eq. (154). However, one has to remember that the
spacetime geometry in Eq. (169) is responsible only at
the leading order, i.e., O(θ), of the generalized vector
fields defined by Eq. (163). All higher derivative terms
in the star product in Eq. (163) are simply ignored.
If such higher derivative terms are included in the star
product in Eq. (163) order by order, they will deform
the Einstein gravity order by order as a response to the
noncommutative effects of spacetime. (See Ref. [5] for
higher-order corrections to emergent gravity.) If a probe
goes into a deep microscopic world where the noncom-
mutative effect of spacetime will grow significantly, the
gravity description in Eq. (169) in terms of smooth ge-
ometries will gradually become crude and coarse. In the
deep noncommutative space, we have to replace Einstein
gravity by a more fundamental theory describing quan-
tum gravity or a noncommutative geometry. We argued
that such a fundamental theory could be implemented
by using the large-N gauge theory in Eq. (151) or the
higher-dimensional noncommutative U(1) gauge theory
(161). First note that

[DA, DB ]
 = −i(F̂AB − BAB), (175)

[DA, [DB , DC ]
]
 = −iD̂AF̂BC , (176)

where

D̂AF̂BC ≡ ∂AF̂BC − i[D̂A, F̂BC ]
. (177)

Therefore, the Bianchi identity and the equations of mo-
tion for the action in Eq. (161) can be written as

D̂[AF̂BC] = i[D[A, [DB , DC]]
]
 = 0, (178)

D̂AF̂AB = i[DA, [DA, DB ]
]
 = 0. (179)

Then, the above equations can be translated into some
“geometric” equations of generalized vector fields defined
in Eq. (163):

D̂[AF̂BC] = 0 ⇔ [V̂[A, [V̂B , V̂C]]
]
 = 0, (180)

D̂AF̂AB = 0 ⇔ [V̂ A, [V̂A, V̂B ]
]
 = 0. (181)

It may be useful to introduce a noncommutative version
of the structure equation, Eq. (90):

[V̂A, V̂B ]
 = −F̂ C
AB V̂C , (182)

with the ordering prescription that the structure coef-
ficients F̂ C

AB ∈ Aθ are always coming to the left-hand
side. Equations (180) and (181) can be rewritten using

the structure equation, Eq. (182), as

D̂[AF̂BC] = 0

⇔ V̂[AF̂ D
BC] − F̂ E

[BC � F̂ D
A]E = 0, (183)

D̂AF̂AB = 0

⇔ ηAB
(
V̂AF̂ D

BC − F̂ E
BC � F̂ D

AE

)
= 0. (184)

We take a commutative limit |θ| → 0 (in the same
sense as � → 0 in quantum mechanics), and we keep
only the leading term in Eq. (163) for the generalized
vector fields V̂A. In this limit, we will recover the Ein-
stein gravity for the emergent metric in Eq. (169) where
Eqs. (183) and (184) reduce to the first Bianchi iden-
tity for Riemann tensors and the Einstein equations, re-
spectively, as we checked in the previous section. The
Einstein gravity is relevant only in this limit. If |θ| is
finite (in the same sense as � → 1 in quantum mechan-
ics), we have to rely on Eqs. (183) and (184) instead:
What is going on here? In order to answer the ques-
tion, it is necessary to solve Eqs. (183) and (184) first.
Of course, it will be, in general, very difficult to solve
the equations. Instead, one may introduce linear alge-
braic conditions of D-dimensional field strengths F̂AB

as a higher-dimensional analogue of 4-dimensional self-
duality equations such that the Yang-Mills equations in
the action in Eq. (161) follow automatically. These are
of the type [70]

1
2
TABCDF̂CD = χF̂AB (185)

with a constant 4-form tensor TABCD. The relation in
Eq. (185) clearly implies via the Bianchi identity in Eq.
(180) that the equations of motion, Eq. (181), are satis-
fied provided χ is nonzero. For D > 4, the 4-form tensor
TABCD cannot be invariant under SO(D) transforma-
tions and Eq. (185) breaks the rotational symmetry to
a subgroup H ⊂ SO(D). Thus, the resulting first-order
equations can be classified by the unbroken symmetry H
under which TABCD remains invariant [70]. It was also
shown [71] that the first-order linear equations above
are closely related to supersymmetric states, i.e., BPS
states in higher-dimensional Yang-Mills theories.

Note that

V̂−i[DA,DB ]� = V̂F̂AB
= [V̂A, V̂B ]
. (186)

Using the homomorphism in Eq. (186), one can translate
the generalized self-duality equation, Eq. (185), into the
structure equation between vector fields,

1
2
TABCDF̂CD = χF̂AB

⇔ 1
2
TABCD[V̂C , V̂D]
 = χ[V̂A, V̂B ]
. (187)

Therefore, a D-dimensional noncommutative gauge field
configuration satisfying the first-order system defined by
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the left-hand side of Eq. (187) is isomorphic to a D-
dimensional emergent “quantum” geometry defined by
the right-hand side of Eq. (187) whose metric in the
commutative limit is given by Eq. (169). For example,
in four dimensions where TABCD = εABCD and χ = ±1,
Eq. (187) goes to Eq. (88) describing gravitational in-
stantons in the commutative limit. Hence, it would not
be absurd for someone to claim that self-dual noncommu-
tative electromagnetism in four dimensions is equivalent
to self-dual quantum gravity [4,38]. Indeed, it was ar-
gued in Ref. [6] that the emergent geometry arising
from the self-dual system in Eq. (187) is closely related
to the bubbling geometry in the AdS space found in Ref.
[33].

3. Background-independent Quantum Gravity

According to Einstein, gravity is the dynamics of
spacetime geometry. Therefore, as emphasized by El-
vang and Polchinski [72], the emergence of gravity nec-
essarily requires the emergence of spacetime itself. That
is, spacetime is not given a priori, but should be de-
rived from fundamental ingredients in quantum gravity
theory, say, “spacetime atoms”. However, for consis-
tency, the entire spacetime including a flat spacetime
must be emergent. In other words, the emergent gravity
should necessarily be “background independent,” where
any spacetime structure is not a priori assumed, but is
defined by the theory. Furthermore, if spacetime is emer-
gent, then all fields supported on this spacetime must be
emergent, too. The question is how everything, includ-
ing spacetime, gauge fields and matter fields, could be
emergent collectively. We know emergent phenomena in
condensed matters arise due to a very coherent conden-
sation in vacuum. Thus, in order to realize all these
emergent phenomena, the emergent spacetime needs to
be derived from an extremely coherent vacuum, which is
the lesson we learned from condensed matter. This turns
out to be the case if a flat spacetime is emergent from
a noncommutative algebra such as quantum harmonic
oscillators.

We will carefully recapitulate the emergent gravity de-
rived from the action in Eq. (151) to throw the uni-
verse into a fresh perspective and to elucidate how the
emergent gravity based on the noncommutative geome-
try achieves background independence. Of course, real
physics is necessarily background dependent because a
physical phenomenon occurs in a particular background
with specific initial conditions. Background indepen-
dence here means that, although physical events occur
in a particular (spacetime and material) background, an
underlying theory itself describing such a physical event
should presuppose neither any kind of spacetime nor ma-
terial backgrounds. The background in itself should also
arise from a solution of the underlying theory.

The U(N) gauge theory in Eq. (151) is defined

by a collection of N × N matrices (Aμ,Φa)(z) on a
d-dimensional flat spacetime R

d
C . Note that the d-

dimensional flat spacetime R
d
C already exists from the

beginning independently of U(N) gauge fields and that
the theory says nothing about its origin. It just serves
as a playground for the players (Aμ,Φa).

We showed that the d-dimensional matrix theory in
Eq. (151) in the N → ∞ limit could be mapped
to the D = d + 2n-dimensional noncommutative U(1)
gauge theory. The resulting higher-dimensional U(1)
gauge theory has been transformed to a theory of higher-
dimensional gravity describing a dynamical spacetime
geometry according to the isomorphism between the non-
commutative �-algebra Aθ and the algebra Der(Aθ) of
vector fields. Look at the metric in Eq. (169). Defi-
nitely, the extra 2n-dimensional spacetime is emergent
and takes part in the spacetime geometry. It was not
a preexisting spacetime background in the action in Eq.
(151). Instead the theory says that it originated from
the vacuum in Eq. (152). One can easily check this
fact by turning off all fluctuations in the metric in Eq.
(169). The D-dimensional flat spacetime comes from the
vacuum configuration in Eq. (152) whose vector field
is given by V

(vac)
A = (∂μ, ∂a) according to Eq. (163).

Furthermore, the vacuum is a solution of the theory
in Eq. (151). Therefore, the underlying theory in Eq.
(151) by itself entirely describes the emergence of the
2n-dimensional space and its dynamical fluctuations.

Also, note that the original d-dimensional spacetime
is now dynamical, not a playground any more, although
the original flat spacetime part R

d
C was assumed a priori

at the outset. One can see that the existence of nontriv-
ial gauge field fluctuations Aμ(z) causes the curving of
R

d
C . Therefore, the large-N gauge theory in Eq. (151) al-

most provides a background-independent description of
spacetime geometry, except the original background R

d
C .

Now, a question is how to achieve a complete back-
ground independence about the emergent geometry. The
answer is simple. We may completely remove the space-
time R

d
C from the action in Eq. (151) and start with a

theory without spacetime from the beginning. How to
do this operation is well-known in matrix models. This
change of dimensionality appears in matrix theory as the
‘matrix T-duality’ (see Sec. VI.A in Ref. [20]) defined
by

iDμ = i∂μ + Aμ � Φa. (188)

Applying the matrix T-duality in Eq. (188) to the action
in Eq. (151), on one hand, one can arrive at the 0-
dimensional IKKT matrix model [18] in the case of the
Euclidean signature

SIKKT = − 2π

gsκ2
Tr

(
1
4
[XM , XN ][XM , XN ]

)
, (189)

where XM = κΦM , or the 1-dimensional BFSS matrix
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model [17] in the case of the Lorentzian signature

SBFSS = − 1
Gs

∫
dtTr

(
1
2
D0ΦaD0Φa − 1

4
[Φa,Φb]2

)
.

(190)

On the other hand, one can also go up to D-dimensional
pure U(N) Yang-Mills theory given by

SC = − 1
4g2

Y M

∫
dDXTrFMNFMN . (191)

Note that the B-field has completely disappeared; i.e.,
the spacetime is commutative. In fact, the T-duality be-
tween the theories defined by Eqs. (161) and (191) is an
analogue of the Morita equivalence on a noncommutative
torus stating that the noncommutative U(1) gauge the-
ory with rational θ = M/N is equivalent to an ordinary
U(N) gauge theory [16].

Let us focus on the IKKT matrix model in Eq. (189)
because it is completely background independent be-
cause it is 0-dimensional. In order to define the action in
Eq. (189), it is not necessary to assume the prior exis-
tence of any spacetime structure. There are only a bunch
of N × N Hermitian matrices XM (M = 1, · · · , D) that
are subject to a couple of algebraic relations given by

[XM , [XN , XP ]] + [XN , [XP , XM ]] + [XP , [XM , XN ]]
= 0, (192)

[XM , [XM , XN ]] = 0. (193)

Suppose that a vacuum of the theory in Eq. (189) in
the N → ∞ limit is given by

[XM , XN ] = iθMN1N×N =
(

0 0
0 iθab

)
1N×N , (194)

where θab is a constant matrix of rank 2n. In exactly
the same way as the case for Eq. (151), one can map the
N × N matrices XM = (Xμ, Xa) into noncommutative
fields according to the correspondence in Eq. (22):

(Xμ, Xa)N×N 	→ κ
(
Φ̂μ(y),

i

κ
θabD̂b(y)

)
∈ Aθ, (195)

where D̂a(y) ∈ Aθ is given by Eq. (131). It is then
straightforward to get a 2n-dimensional noncommutative
U(1) gauge theory from the matrix action in Eq. (189):

Ŝ =
1

g2
Y M

∫
d2ny

√
ĝ
(1

4
ĝacĝbd(F̂ab − Bab) � (F̂cd − Bcd)

+
1
2
ĝabD̂aΦ̂μ � D̂bΦ̂μ − 1

4
[Φ̂μ, Φ̂ν ]2


)
, (196)

where g2
Y M and the metric ĝab are defined by Eqs. (38),

(39) and (40). If θMN in Eq. (194) is a constant matrix
of rank D = d + 2n instead, we will get a D-dimensional
noncommutative U(1) gauge theory whose action is ba-
sically the same as Eq. (161) except that it comes with

the Euclidean signature and a constant B-field of rank
D.

In summary, we have scanned both U(N) Yang-Mills
theories and noncommutative U(1) gauge theories in var-
ious dimensions and different B-field backgrounds by ap-
plying the matrix T-duality in Eq. (188) and the corre-
spondence in Eq. (22). From the derivation of Eq. (161),
one may notice that the rank of the B-field is equal to
the dimension of the emergent space, which is also equal
to the number of adjoint scalar fields Φa ∈ U(N). There-
fore, the matrix theory in Eq. (151) can be defined in
different dimensions by changing the rank of the B-field
if the dimension D is fixed, e.g., D = 10. On the other
hand, we can change the dimensionality of the theory in
Eq. (196) by changing the rank of θ in Eq. (194). In this
way, we can connect every U(N) Yang-Mills theory and
noncommutative U(1) gauge theory in various dimen-
sions by changing the B-field background and applying
the matrix T-duality (188) and the correspondence in
Eq. (22). It is really remarkable!

However, there is also a caveat. One can change the
dimensionality of the matrix model by any integer num-
ber by using the matrix T-duality in Eq. (188) while the
rank of the B-field can be changed only by an even num-
ber because it is supposed to be symplectic. Hence, it is
not obvious what kind of background can explain a non-
commutative field theory with an odd number of adjoint
Higgs fields. A plausible guess is that either the vac-
uum is described by a noncommutative space induced
by a Poisson structure, e.g., of Lie algebra type, i.e.,
[Xa, Xb] = ifab

cX
c, or there is a 3-form Cμνρ that re-

duces to the 2-form B in Eq. (38) by a circle compact-
ification, so may be of M-theory origin. We will briefly
discuss the Lie algebra case later, but, unfortunately,
we don’t know much about how to construct a corre-
sponding noncommutative field theory with the 3-form
background. We leave it as a future problem.

Some critical aspect of quantum geometry may be en-
countered with the following question. What is the emer-
gent geometry derived from the noncommutative U(1)
gauge theory in Eq. (196) ? One may naively apply
the map in Eq. (163) to the noncommutative fields(
Φ̂μ(y), D̂a(y)

)
∈ Aθ. The fields D̂a(y) have no problem

because they are exactly the same as Eq. (131). How-
ever, the fields Φ̂μ(y) leads to a bizarre circumstance.
From the map in Eq. (163), we may define

−i[Φ̂μ(y), f̂(y)]
 = −θab ∂Φμ(y)
∂yb

∂af(y) + · · ·
“ ≡ ” V μa(y)∂af(y) + · · · . (197)

We immediately get into trouble if we remember that the
fields Φ̂μ(y) are purely fluctuations and so the ‘fake’ vec-
tor fields V μ = V μa(y)∂a are not invertible, in general.
For example, they tend to vanish at |y| → ∞. Recall that
a Riemannian metric should be nondegenerate, i.e., in-
vertible everywhere. This is not the case for V μ. There-
fore, the fields Φ̂μ(y) are not yet full-fledged as a classical
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geometry although they could define a “bubbling quan-
tum geometry”. This notable difference between Φ̂μ(y)
and D̂a(y) is due to the fact that D̂a(y) define fluctu-
ations around the uniform vacuum condensation in Eq.
(152) while Φ̂μ(y) define pure fluctuations around “noth-
ing”, say, without any coherent condensation in vacuum.
Therefore we get a very important picture from the above
analysis:

In order to describe a classical geometry from a back-
ground independent theory such as Eq. (189), it is neces-
sary to have a nontrivial vacuum defined by a “coherent”
condensation of gauge fields, e.g., the vacuum defined by
Eq. (152).

Here, “coherent” means that a spacetime vacuum is
defined by the Heisenberg algebra such as quantum har-
monic oscillators as in Eq. (17). Its physical significance
will be discussed later.

Also, note that a symplectic structure Bab ≡ (θ−1)ab

is nowhere vanishing, which can be regarded as a back-
ground field strength of noncommutative gauge fields
A

(0)
a ≡ 〈Â(0)

a 〉vac = −Baby
b. In terms of physicist’s lan-

guage, this means that there is an (inhomogeneous in
general) condensation of gauge fields in vacuum, i.e.,

〈Bab(x)〉vac = θ−1
ab (x). (198)

For a constant symplectic structure for simplicity, rewrit-
ing the covariant vectors in Eq. (131) as (actually to
invoke a renowned Goldstone boson ϕ = 〈ϕ〉 + h) [73]

D̂a(y) = −〈Â(0)
a 〉vac + Âa(y) (199)

would be suggestive. This naturally suggests some sort
of spontaneous symmetry breaking [5] in which ya are
vacuum expectation values of D̂a(y), specifying the back-
ground in Eq. (198) as usual, and Âb(y) are fluctuating
dynamical coordinates (fields). We thus arrived at an-
other important point:

The origin of spacetime with a symplectic or a Poisson
structure such as Eq. (6) or Eq. (17) comes from the
coherent condensation of gauge fields in vacuum.

4. General Noncommutative Spacetime

So far, we have mostly considered noncommutative
spaces defined by a canonical symplectic structure. Here,
we will explain how it is possible to generalize emergent
gravity to a general noncommutative spacetime, for ex-
ample, to the case with a nonconstant symplectic struc-
ture or a generic Poisson structure. General results have
been beyond our reach up to now. Thus, we will be
brief about this subject. Readers may skip this part and
might attack the emergent gravity for general cases after
a deeper understanding about the simple cases has been
realized.

The question is how to generalize the emergent grav-
ity picture to the case of a nontrivial vacuum, e.g.,
Eq. (198), describing an inhomogeneous condensate
of gauge fields. In this case, the Poisson structure
Θab(x) = ( 1

B )ab(x) is not constant, so the corresponding
noncommutative field theory is defined by a nontrivial
star-product

[Y a, Y b]
′ = iΘab(Y ) (200)

where Y a denote vacuum coordinates, which are de-
signed with the capital letters to distinguish them from
ya for the constant vacuum in Eq. (17). The star product
[f̂ , ĝ]
′ for f̂ , ĝ ∈ AΘ can be perturbatively computed via
the deformation quantization [15]. There are excellent
earlier works [75] especially relevant for the analysis of
the DBI action as a generalized geometry though a con-
crete formulation of noncommutative field theories for a
general noncommutative spacetime is still out of reach.

We will mostly focus on the commutative limit so that

−i[f̂ , ĝ]
′ = Θab(Y )
∂f(Y )
∂Y a

∂g(Y )
∂Y b

+ · · ·
≡ {f, g}Θ + · · · (201)

for f̂ , ĝ ∈ AΘ. Using the Poisson bracket in Eq. (201),
we can similarly realize the Lie algebra homomophism
C∞(M) → TM : f 	→ Xf between a Hamiltonian func-
tion f and the corresponding Hamiltonian vector field
Xf . To be specific, for any given function f ∈ C∞(M),
we can always assign a Hamiltonian vector field Xf

defined by Xf (g) = {g, f}Θ with any fixed function
g ∈ C∞(M). Then, the Lie algebra homomophism

X{f,g}Θ = [Xf , Xg] (202)

still holds as long as the Jacobi identity for the Poisson
bracket {f, g}Θ(x) holds or, equivalently, the Schouten-
Nijenhuis bracket in Eq. (223) for the Poisson structure
Θab vanishes.

As we discussed in Eq. (140), there is a natural auto-
morphism D(�) that acts on star-products [15]. In the
commutative limit where D(�) ≈ 1, we can deduce the
following relation from Eq. (140):

{f, g}Θ = {f, g}θ. (203)

Let us explain what Eq. (203) means. For f = Y a(y)
and g = Y b(y), Eq. (203) implies that

Θab(Y ) = θcd ∂Y a

∂yc

∂Y b

∂yd
, (204)

whose statement is, of course, equivalent to the Darboux
transformation in Eq. (29). Also, notice that Eq. (203)
defines diffeomorphisms between vector fields X ′

f (g) ≡
{g, f}Θ and Xf (g) ≡ {g, f}θ such that

X ′
f

a =
∂Y a

∂yb
Xb

f . (205)
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Indeed, the automorphism in Eq. (140) corresponds to a
global statement that the two star-products involved are
cohomologically equivalent in the sense that they gener-
ate the same Hochschild cohomology [15].

In order to understand the origin of the nontrivial star
product in Eq. (200), let us look at the background
independent action in Eq. (189). As we pointed out, a
particular vacuum such as the one in Eq. (198) should be
defined by the theory itself as a solution of the equations
of motion, Eq. (193). Of course, there are infinitely
many solutions. The constant background in Eq. (194)
is just one of them, so let us consider another background

[XM , XN ] =
(

0 0
0 i(θ − θF̂ θ)ab

)
1N×N . (206)

Using the property in Eq. (203), one can infer that the
above background can be made equivalent to Eq. (200)
by using the identification Xa := Y a = ya + θabÂb(y)
and Θab(y) = (θ − θF̂ (y)θ)ab. If F̂ab(y) simply satisfy
Eq. (185), which provides a very ample class of solutions,
the background in Eq. (206) is a consistent solution of
the theory in Eq. (189). For example, the vacuum in
Eq. (206) in four dimensions (n = 2) corresponds to the
noncommutative instanton background. In this case, the
vacuum manifold determined by background gauge fields
is a hyper-Kähler manifold.

Therefore, we may understand that the nontrivial star
product in Eq. (200) results from an inhomogeneous con-
densation of gauge fields on the constant vacuum in Eq.
(194). This observation can be applied to the identity
in Eq. (36) in a very interesting way. Let us decompose
the nontrivial B-field in Eq. (198) as

Bab(x) = (B̄ + F̄ (x))ab, (207)

where B̄ab =
(
θ−1

)
ab

describes a constant background
such as the one in Eq. (17) while F̄ (x) = dĀ(x) describes
an inhomogeneous condensate of gauge fields. Then, the
left-hand side of Eq. (36) is of the form g + κ(B̄ + F),
where F = dA with A(x) = Ā(x) + A(x). It should be
completely conceivable that it can be mapped to a non-
commutative gauge theory of the gauge field A(x) in the
constant B̄-field background according to the Seiberg-
Witten equivalence [16]. Let us denote the correspond-
ing noncommutative gauge field as Âa ≡ ̂̄Aa + Âa. The
only notable point is that the gauge field Âa contains an
inhomogeneous background part ̂̄Aa. This situation is,
of course, analogous to an instanton (or soliton) back-
ground in gauge theory, as we remarked before.

Thus, everything will go parallel with the constant
case. We will consider a general situation in the con-
text of the action in Eq. (161), where background gauge
fields are given by ̂̄Aμ(z, y) as well as ̂̄Ab(z, y), which
also depend on the commutative coordinates zμ. Let us

introduce the following covariant coordinates:

X̂a(z, y) = ya + θabÂb(z, y)

= ya + θab ̂̄Ab(z, y) + θabÂb(z, y)

≡ Y a(z, y) + θabÂb(z, y), (208)

where we identified the vacuum coordinates Y a in Eq.
(200) because we have to recover them after turning off
the fluctuation Âa. Also, introduce the covariant deriva-
tives

D̂μ(z, y) = ∂μ − iÂμ(z, y)

= ∂μ − i ̂̄Aμ(z, y) − iÂμ(z, y)

≡ ̂̄Dμ(z, y) − iÂμ(z, y). (209)

Then, the covariant derivatives in Eq. (157) can be de-
fined in exactly the same way:

D̂A = ∂A − iÂA(z, y) = (D̂μ,−iB̄abX̂
b)(z, y), (210)

where ∂A = (∂μ,−iB̄aby
b). Now, the noncommutative

fields D̂A in Eq. (210) can be mapped to vector fields
using Eq. (163).

Because the results in Section III.2 can be applied to
arbitrary noncommutative gauge fields in a constant B-
field, the same formulae can be applied to the present
case with the understanding that the vector fields VA in
Eq. (163) refer to total gauge fields including the in-
homogeneous background. This means that the vector
fields VA = λEA ∈ Γ(TM) reduce to V̄A = λ̄ĒA af-
ter turning off the fluctuations, where V̄A is determined
by the background (∂μ− i ̂̄Aμ(z, y),−iB̄abY

b(z, y)) and λ̄
satisfies the relation

λ̄2 = ν(V̄1, · · · , V̄D). (211)

Therefore, the D-dimensional metric is precisely given
by Eq. (169) with Aa = Aa

μdzμ, and the metric for the
background is given by

ds2 = ηABĒA ⊗ ĒB

= λ̄2ηABV̄ A ⊗ V̄ B

= λ̄2ηABV̄ A
M V̄ B

N dXM ⊗ dXN . (212)

Here, we have implicitly assumed that the background
V̄A satisfies Eqs. (180) and (181). In four dimensions, for
instance, we know that the metric in Eq. (212) describes
Ricci-flat Kähler manifolds if V̄A satisfies the self-duality
equation, Eq. (88).

Now, let us look at the picture of the right-hand side
of Eq. (36). After applying the Darboux transform,
Eq. (29), only for the symplectic structure, Eq. (207),
and leaving the fluctuations intact, the right-hand side
becomes of the form Gab(y) + κ(B̄ab + Fab(y)), where

Fab(y) =
∂xα

∂ya

∂xβ

∂yb
Fαβ(x) ≡ ∂aAb(y)−∂bAa(y), (213)
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and the metric Gab(y) is given by Eq. (33). Note that
in this picture, the gauge fields Aa(y) are regarded as
fluctuations propagating in the background Gab(y) and
B̄ab. Therefore, it would be reasonable to interpret the
right-hand side of Eq. (36) as a noncommutative gauge
theory of the gauge field Aa(y) defined by the canonical
noncommutative space in Eq. (17), but in a curved space
described by the metric Gab(y).

Although the formulation of noncommutative field
theory in a generic curved spacetime is still a challeng-
ing problem, there is no obstacle to formulating emer-
gent gravity if one is confined to the commutative limit.
Because the inhomogeneous condensate of gauge fields
in the vacuum (207) now appears as an explicit back-
ground metric, the metric in Eq. (169) in this picture
will be replaced by

ds2 = hABEA ⊗ EB

= Λ2hABV A ⊗ V B

= Λ2hABV A
MV B

N dXM ⊗ dXN , (214)

where hAB is the metric in the space spanned by non-
coordinate bases VA = ΛEA [76]. Because the met-
ric in Eq. (214) has the Riemannian volume form
νg =

√−hE1∧· · ·∧ED instead of Eq. (172), the volume
form ν = Λ(2−D)νg in Eq. (170) will be given by

ν =
√−hΛ2V 1 ∧ · · · ∧ V D. (215)

Thus, the function Λ in Eq. (214) will be determined by
the condition

√−hΛ2 = ν(V1, · · · , VD). (216)

Because the anholonomic basis V A in Eq. (214) will
become flat when fluctuations are turned off, i.e., Fab =
0, the background metric in this picture is simply given
by

ds2 = Λ
2
hMN dXM ⊗ dXN , (217)

where Λ
2

= 1/
√−h.

As usual, the torsion-free condition, Eq. (102), for
the metric in Eq. (214) will be imposed to get the re-
lation in Eq. (103) in which ωABC = hBDωA

D
C and

fABC = hCDfAB
D, where the indices A,B, · · · are raised

and lowered using the metric hAB . Because hAB is not
a flat metric, ωA

B
C in Eq. (100) or Eq. (101) will ac-

tually be the Levi-Civita connection in noncoordinate
bases rather than a spin connection, but we will keep
the notation for convenience. Also, the condition that
the metric in Eq. (214) be covariantly constant, i.e.,
∇C

(
hABEA ⊗ EB

)
= 0, leads to the relation [76]

ωABC =
1
2
(
EAhBC − EBhCA + EChAB

)
+

1
2
(
fABC − fBCA + fCAB

)
. (218)

The curvature tensors have exactly the same form as
Eq. (105). All the calculation in Section II.3 can be
repeated in the same way even for this case although the
details will be much more complicated and have not been
performed so far. By comparing the two metrics, Eqs.
(212) and (217), we finally get the following relations [7]:

hMN = ηABV̄ A
M V̄ B

N , Λ
2

= λ̄2 =
1√−h

, (219)

which is, of course, consistent with our earlier observa-
tion.

One may wonder whether the emergent gravity for
symplectic structures can be smoothly taken over to the
case where a symplectic structure is not available. It
was shown in Ref. [42] that emergent gravity can nicely
be generalized to a Poisson manifold (M,π). A Pois-
son manifold M is a differentiable manifold M equipped
with a bivector field (not necessarily nondegenerate)
π = πμν∂μ ∧ ∂ν ∈ Γ(Λ2TM) which defines an R-bilinear
antisymmetric operation {·, ·}π : C∞(M) × C∞(M) →
C∞(M) by

(f, g) 	→ {f, g}π = 〈π, df⊗dg〉 = πμν(x)∂μf(x)∂νg(x).
(220)

The bracket, called the Poisson bracket, satisfies

1) Leibniz rule : {f, gh}π = g{f, h}π + {f, g}πh,(221)
2) Jacobi identity : {f, {g, h}π}π + {g, {h, f}π}π

+{h, {f, g}π}π = 0, (222)

∀f, g, h ∈ C∞(M). Poisson manifolds appear as a nat-
ural generalization of symplectic manifolds where the
Poisson structure reduces to a symplectic structure if π
is nongenerate [8].

One can show that the Jacobi identity in Eq. (222) for
the bracket {·, ·}π is equivalent to the condition that the
Schouten-Nijenhuis bracket [77] for the Poisson tensor
π vanishes, i.e.,

[π, π]SN ≡
(
πλμ ∂πνρ

∂xλ
+ πλν ∂πρμ

∂xλ
+ πλρ ∂πμν

∂xλ

)
× ∂

∂xμ
∧ ∂

∂xν
∧ ∂

∂xρ
= 0. (223)

Like the Darboux theorem in symplectic geometry, the
Poisson geometry also enjoys a similar property known
as the splitting theorem proven by Weinstein [78]. The
splitting theorem states that a d-dimensional Poisson
manifold is locally equivalent to the product of R

2n

equipped with the canonical symplectic structure with
R

d−2n equipped with a Poisson structure of rank zero
at the origin. That is, the Poisson manifold (M,π)
is locally isomorphic (in a neighborhood of x ∈ M)
to the direct product S × N of a symplectic manifold
(S,

∑n
i=1 dqi ∧ dpi) with a Poisson manifold (Nx, {·, ·}N )

whose Poisson tensor vanishes at x.
A well-known example of a Poisson manifold is four-

sphere where no symplectic structure is available. If M
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is a compact symplectic manifold, the second de Rham
cohomology group H2(M) is nontrivial, so the only n-
sphere that admits a symplectic form is the 2-sphere. For
example, let S4 = {(u, v, t) ∈ C × C × R : |u|2 + |v|2 =
t(2 − t)}. Then, the bivector field π = uv∂u ∧ ∂v −
uv∗∂u ∧ ∂v∗ − u∗v∂u∗ ∧ ∂v + u∗v∗∂u∗ ∧ ∂v∗ is a Poisson
tensor, that is, [π, π]SN = 0, and π ∧ π = 4|u|2|v|2∂u ∧
∂v ∧ ∂u∗ ∧ ∂v∗ . Therefore, the Poisson tensor π vanishes
on a subspace of either u = 0 or v = 0, so the Poisson
structure becomes degenerate there. In this case, we have
to rely on a Poisson structure to formulate an emergent
gravity [42].

The Poisson tensor π of a Poisson manifold M induces
a bundle map π� : T ∗M → TM by

A 	→ π�(A) = πμν(x)Aμ(x)
∂

∂xν
(224)

for A = Aμ(x)dxμ ∈ T ∗
x M , which is called the anchor

map of π [77]. See also Section VI. The rank of the
Poisson structure at a point x ∈ M is defined as the
rank of the anchor map at that point. If the rank equals
the dimension of the manifold at each point, the Pois-
son structure reduces to a symplectic structure, which is
also called nondegenerate. The nondegenerate Poisson
structure uniquely determines the symplectic structure
defined by a 2-form ω = 1

2ωμν(x)dxμ ∧ dxν = π−1, and
the condition in Eq. (223) is equivalent to the statement
that the 2-form ω is closed, dω = 0. In this case, the
anchor map π� : T ∗M → TM becomes a bundle isomor-
phism, as we discussed in Section I.

To define a Hamiltonian vector field π�(df) of a smooth
function f ∈ C∞(M), what one really needs is a Poisson
structure that reduces to a symplectic structure for the
nondegenerate case. A Hamiltonian vector field Xf =
−π�(df) for a smooth function f ∈ C∞(M) is defined by
the anchor map in Eq. (224) as follows:

Xf (g) = −〈π, df ⊗ dg〉 = {g, f}π = πμν(x)
∂f

∂xν

∂g

∂xμ
.

(225)

Given a smooth Poisson manifold (M,π), the map f 	→
Xf = −π�(df) is a homomorphism [77] from the Lie
algebra C∞(M) of smooth functions under the Poisson
bracket to the Lie algebra of smooth vector fields under
the Lie bracket. In other words, the Lie algebra homo-
morphism in Eq. (10) is still true even for any Poisson
manifold.

As we just noticed, it is enough to have a Poisson
structure to achieve the map C∞(M) → Γ(TM) : f 	→
Xf = −π�(df) such as Eq. (9). As we discussed earlier,
any Poisson manifold can be quantized via deformation
quantization [15]:

{xμ, xν}π = πμν(x) → [x̂μ, x̂ν ]
̃ = iκ π̂μν(x̂), (226)

where we introduced a deformation parameter κ of
(length)2 and π̂ab(x̂) ∈ Aπ are assumed to be dimen-
sionless operators. Therefore, the anchor map in Eq.

(225) can be lifted to a noncommutative manifold as in
Eq. (144),

V̂a[f̂ ](x) ≡ −i[D̂a(x), f̂(x)]
̃, (227)

for any noncommutative field D̂a(x) ∈ Aπ (dropping the
hat in the coordinates x̂μ ∈ Aπ for simple notation).
Then, everything will go exactly parallel with the sym-
plectic case if we define emergent quantum gravity from
a gauge theory defined on the noncommutative space in
Eq. (226) with the generalized vector fields in Eq. (227).
It was studied in Ref. [42] how a fuzzy Poisson mani-
fold can be derived from a mass deformed matrix model,
from which the picture of emergent gravity was checked.

IV. EMERGENT MATTER

We have stressed that quantum gravity should be
background independent where no kind of spacetime
structure is assumed. Only morphisms between objects
need to be postulate. An underlying theory, for exam-
ple, only has matrices (as objects) that are subject to
some algebraic relations such as the Jacobi identity and
the equations of motion (as morphisms). However, we
can derive a spacetime geometry from these algebraic
relations between objects by mapping the matrix alge-
bra to a Poisson or noncommutative �-algebra Aθ and
then deriving the algebra Der(Aθ) of Aθ. We observed
that such an operator algebra, e.g., �-algebra, can be de-
fined by using noncommutative gauge fields and that a
smooth geometry emerges from them in a macroscopic
world. Depending on the choice of an algebraic relation,
we get a different geometry. In this scheme, the geom-
etry is a derived concept defined by the algebra [14].
In a deep noncommutative space, a smooth geometry is
doomed; instead, an algebra between objects becomes
more fundamental. Ergo, the motto of emergent gravity
is that an algebra defines a geometry. One has to spec-
ify an underlying algebra to talk about a corresponding
geometry.

As a recitation, the emergence of gravity necessarily
requires the emergence of spacetime itself. If spacetime
is emergent, then all fields supported on this spacetime
must be emergent too. Somehow, matter fields and other
non-Abelian gauge fields for weak and strong forces must
be emergent together with spacetime. How is this possi-
ble? How are matter fields describing quarks and leptons
to be defined in the context of emergent geometry?

We may start with a naive reasoning. First, note that
translations in noncommutative directions are an inner
automorphism of the noncommutative �-algebra Aθ gen-
erated by the coordinates in Eq. (17):

e−ikaBabyb

� f̂(y) � eikaBabyb

= f̂(y + k) (228)

for any f̂(y) ∈ Aθ. The inner automorphism in Eq.
(228) is nontrivial only in the case of a noncommuta-
tive algebra [9]; that is, commutative algebras do not
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possess any inner automorphism, so all “points” in non-
commutative space are indistinguishable, i.e., unitarily
equivalent while all points in commutative space are dis-
tinguishable, i.e., unitarily inequivalent. As a result, one
loses the meaning of “point” in noncommutative space.
Hence, the concept of “particle” becomes ambiguous,
too. Thus, before matter fields, first we may address the
question: What is a particle in noncommutative space-
time?

When a space becomes noncommutative, there is a
Hilbert space H associated with the space such as Eq.
(18), so a point or a particle may be replaced by a state
in H. Then, the most natural concept of a particle in
noncommutative space may be a localized state in H.
However, because the Hilbert space H is a complex vec-
tor space as usual, such a localized state will tend to be
dissipative due to a linear superposition between nearby
states. Therefore, the most natural and pertinent con-
cept of a particle in noncommutative space may be a sta-
ble localized state in H. This means [7] that a particle
may be realized as a topological object in the noncom-
mutative �-algebra Aθ.

As illustrated by quantum mechanics, noncommuta-
tive algebras admit a much greater variety of algebraic
and topological structures compared to commutative
ones. Likewise, when spacetime at a fundamental level
is replaced by a noncommutative algebra, algebraic and
topological structures in the noncommutative spacetime
actually become extremely rich and coherent [14], which
would, we guess, be responsible for emergent properties
such as diffeomorphisms, gauge symmetries and matter
fields.

This line of thought is our naive reasoning about how
to realize a particle or matter field in noncommutative
spacetime. We think this idea should direct us to a rea-
sonable track, but an involved math is often abstruse.
Therefore, we will try to get more insights from physics.

1. Feynman’s View on Electrodynamics

In a very charming paper [46], Dyson explains the
Feynman’s view about the electrodynamics of a charged
particle. Feynman starts with an assumption that a par-
ticle exists with position xi and velocity ẋi satisfying
commutation relations

[xi, xk] = 0, m[xi, ẋk] = i�δi
k. (229)

Then, he asks a question: What is the most general
form of forces appearing in Newton’s equation mẍi =
Fi(x, ẋ, t) consistent with the commutation relation in
Eq. (229)? Remarkably, he ends up with the electro-
magnetic force

m
dv
dt

= e
(
E + v × B

)
. (230)

In a sense, Feynman’s result is a no-go theorem for the
consistent interaction of particles in quantum mechan-
ics. It turns out that the conditions in Eq. (229) are
restrictive enough that only the electromagnetic force in
Eq. (230) is compatible with them.

We here reproduce his argument with a puny refine-
ment. We will start with the Feynman’s assumption,
together with the Hamilton’s equation

df

dt
=

i

�
[H, f ] +

∂f

∂t
, (231)

where f = f(x, p, t), H = H(x, p, t) ∈ A� and ẋi ≡
ẋi(x, p). However, we will not assume Newton’s equation
mẍi = Fi(x, ẋ, t). To be precise, we replaced Newton’s
equation by Eq. (231), i.e.,

m
dẋi

dt
=

im

�
[H, ẋi] ≡ Fi(x, p, t). (232)

First, consider the following commutator:

[H, [xi, ẋk]] = [xi, [H, ẋk]] − [ẋk, [H,xi]]

= −i�
( 1

m
[xi, Fk] + [ẋi, ẋk]

)
= 0. (233)

The Jacobi identity [xl, [ẋi, ẋk]] + [ẋi, [ẋk, xl]] +
[ẋk, [xl, ẋi]] = [xl, [ẋi, ẋk]] = 0 with Eq. (233) implies

[xl, [xi, Fk]] = 0. (234)

Equation (233) also implies [xi, Fk] + [xk, Fi] = 0, so we
may write

[xi, Fk] = − i�

m
εiklBl. (235)

Equation (235) is the definition of the field Bl =
Bl(x, p, t) ∈ A�, but Eq. (234) says

[xl, Bm] = 0, (236)

which means that Bm is a function of x and t only, i.e.,
Bm = Bm(x, t). Then, we can solve Eq. (235) with

Fi(x, p, t) = Ei(x, t) + εikl
〈
ẋkBl(x, t)

〉
, (237)

where Ei(x, t) ∈ A� is an arbitrary function that also
depends on x and t only and the symbol 〈· · · 〉 denotes
the Weyl-ordering, i.e., the complete symmetrization of
operator products.

Combining Eqs. (233) and (235) leads to

Bl = − im2

2�
εlik[ẋi, ẋk]. (238)

Another Jacobi identity εijk[ẋi, [ẋj , ẋk]] = 0 then implies

[ẋi, Bi] = − i�

m

〈∂Bi

∂xi

〉
= 0. (239)
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Taking the total derivative of Eq. (238) with respect to
time gives〈

ẋi
∂Bl

∂xi

〉
+

∂Bl

∂t

=
m2

2�2
εlik[H, [ẋi, ẋk]]

=
im

�
εlik[ẋk, Fi]

=
im

�

(
− εlik[ẋi, Ek] − [ẋi, ẋl]Bi − ẋl[ẋi, Bi]

+
〈
ẋi[ẋi, Bl]

〉)
= −εlik

〈∂Ek

∂xi

〉
+

1
m

εlikBiBk +
〈
ẋi

∂Bl

∂xi

〉
= −εlik

〈∂Ek

∂xi

〉
+

〈
ẋi

∂Bl

∂xi

〉
.

(240)

From Eq. (240), we finally get

∂Bl

∂t
+ εlik

〈∂Ek

∂xi

〉
= 0. (241)

We arrived at the force in Eq. (237) (by using the defi-
nition in Eq. (232)), where the fields Ei(x, t) and Bi(x, t)
should satisfy Eqs. (239) and (241). We immediately
recognize that they are electromagnetic fields. There-
fore, we get a remarkable result [46] that the Lorentz
force in Eq. (230) is the only consistent interaction with
a quantum particle satisfying the commutation relations
in Eq. (229). Remember that we have only assumed
the commutation relation (229) and have only used the
Hamilton’s equation in Eq. (231) and the Jacobi iden-
tity to find a consistent interaction of quantum particles.
However, we could get only the electromagnetic force in
Eq. (230). What a surprise (at least to us)!

Feynman’s observation raises a curious question. We
know that, beside the electromagnetic force, other inter-
actions, weak and strong forces, exist in Nature. Thus,
the question is how to incorporate the weak and the
strong forces into Feynman’s scheme. Because he started
only with very natural axioms, there seems to be no room
to relax his postulates to include the weak and the strong
forces except by introducing extra dimensions. Surpris-
ingly, it works with extra dimensions!

Consider a particle motion defined on R
3 × F with

an internal space F whose coordinates are {xi : i =
1, 2, 3} ∈ R

3 and {QI : I = 1, · · · , n2 − 1} ∈ F . The
dynamics of the particle carrying an internal charge in F
[47,48] is defined by a symplectic structure on T ∗R3 ×F
whose commutation relations are given by

[xi, xk] = 0, m[xi, ẋk] = i�δi
k, (242)

[QI , QJ ] = i�f IJ
KQK , (243)

[xi, QI ] = 0. (244)

Note that the internal space F is a Poisson manifold
(F, π) whose Poisson structure is given by π = 1

2πIJ∂I ∧

∂J = 1
2f IJ

KQK∂I∧∂J and defines the SU(n) Lie algebra
in Eq. (243). That is, by Eq. (223),

[π, π]SN = 0
⇔ fJK

LfLI
M + fKI

LfLJ
M + f IJ

LfLK
M = 0.

(245)

Also, the internal coordinates QI are assumed to obey
Wong’s equation [79]

Q̇I + f I
JKAJ

i (x, t)QK ẋi = 0. (246)

Wong’s equation just says that the internal charge QI

is parallel-transported along the trajectory of a particle
under the influence of the non-Abelian gauge field AI

i .
The geometrical meaning of Wong’s equation, Eq.

(246), can be seen as follows: Taking the total deriva-
tive of Eq. (244) with respect to time gives

[ẋi, Q
I ] = −[xi, Q̇I ] =

i�

m
f I

JKAJ
i (x, t)QK . (247)

This property can be used to show the formula for any
field φ(x, t) = φI(x, t)QI ∈ A� × G:

[ẋi, φ
I(x, t)QI ] = [ẋi, φ

I(x, t)]QI + φI(x, t)[ẋi, Q
I ]

= − i�

m

(
∂iφ

I + f I
JKAJ

i φK
)
QI

= − i�

m

(
∂iφ − i

�
[Ai, φ]

) ≡ − i�

m
Diφ. (248)

Recall that pi = mẋi+Ai(x, t) are translation generators
along R

3, and remember the geometrical meaning of the
Wong’s equation, Eq. (246), stated above.

Now repeat Feynman’s question: What is the most
general interaction of a quantum particle carrying an in-
ternal charge satisfying Eq. (246) and the commutation
relations in Eqs. (242)-(244)? The calculation follows al-
most the same line [47] as that for the electromagnetic
force except that the fields Ei(x, t) = EI

i (x, t)QI ∈ A�×g
and Bi(x, t) = BI

i (x, t)QI ∈ A� × g now carry internal
charges in the Lie algebra g; thus, Wong’s equation, Eq.
(246), has to be taken into account. We will not echo
the derivation because it is almost straightforward with
a careful Weyl-ordering. That may be a good exercise
for graduate students.

The resulting force exerted on a quantum particle mov-
ing in R

3×F is the generalized non-Abelian Lorentz force
[47]

Fi = Ei + εiklẋkBl, (249)

where the fields Ei(x, t) = EI
i (x, t)QI and Bi(x, t) =

BI
i (x, t)QI satisfy

∂iBi− i

�
[Ai, Bi] = 0,

∂Bi

∂t
+εikl

(
∂kEl− i

�
[Ak, El]

)
= 0.

(250)
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The equations in Eq. (250), of course, can be summa-
rized with the Lorentz covariant form (in the temporal
gauge, A0 = 0) as

εμνρσDνFρσ = 0, (251)

and the Bianchi identity, Eq. (251), can be solved by
introducing non-Abelian gauge fields Aμ such that

Fμν = ∂μAν − ∂νAμ − i

�
[Aμ, Aν ]. (252)

One can check the expression in Eq. (252). For example,
one can get

εiklBI
l = ∂iA

I
k − ∂kAI

i + f I
JKAJ

i AK
k (253)

by using the Jacobi identity

[QI , [ẋi, ẋk]] + [ẋi, [ẋk, QI ]] + [ẋk, [QI , ẋi]] = 0 (254)

together with Eqs. (238) and (247) where Bl = BI
l QI .

2. Symplectic Geometry Again

The previous argument by Feynman clearly implies
that the fundamental interactions such as electromag-
netic, weak and strong forces can be understood as a
symplectic or Poisson geometry of a particle phase space.
Feynman starts with a very natural assumption about
the Poisson structure of a particle interacting with exter-
nal forces. In the case of a free particle, Eq. (228) is the
well-known Heisenberg algebra: [xi, xk] = 0, [xi, pk] =
i�δi

k. (Note that Feynman and Dyson intentionally use
mẋi instead of pi.) If some external fields are turned on,
then the particle momentum mẋi is no longer equal to
pi, but is shifted by pi − Ai, where Ai are arbitrary ex-
ternal fields. We easily see that, if the external fields Ai

depend only on x and t, i.e., Ai = Ai(x, t), and satisfy
Wong’s equation, Eq. (246), in the non-Abelian cases
(to preserve the localizability in Eq. (244)), the com-
mutation relations, Eq. (228), remain intact, but that
is not the whole story. We have repeatedly used the
Jacobi identity of the algebra A� or A� ×G, which orig-
inally comes from the Poisson algebra in Eq. (4) of a
particle phase space P or P × F . Recall that the Jacobi
identity of Poisson bracket is not automatically guaran-
teed. The Schouten-Nijenhuis bracket for the Poisson
tensor should vanish [77]. See Eq. (223). Therefore,
the external fields Ai cannot be completely arbitrary.
They should not ruin the underlying Poisson structure.
We know that, if the Poisson structure is nondegener-
ate, this condition is equivalent to the statement that
the symplectic 2-form uniquely determined by the Pois-
son structure must be closed. See the discussion below
Eq. (224). This is precisely the condition for gauge fields
Feynman found. In gauge theory, it is called the Bianchi
identity, e.g., dF = 0 or DF = 0.

There is an another beautiful observation [49]
(orginally due to Jean-Marie Souriau) realizing Feyn-
man’s idea. Let (P, ω) be a symplectic manifold. One
can properly choose local canonical coordinates ya ≡
(x1, p1, · · · , xn, pn) in P such that the symplectic struc-
ture ω can be written in the form

ω =
n∑

i=1

dxi ∧ dpi. (255)

Then, ω ∈ Γ(Λ2T ∗P ) can be thought of as a bundle
map ω : TP → T ∗P . Because ω is nondegenerate at
any point y ∈ P , we can invert this map to obtain the
map η ≡ ω−1 : T ∗P → TP . This cosymplectic structure
η = ∂

∂xi ∧ ∂
∂pi

∈ ω ∈ Γ(Λ2TP ) is called the Poisson
structure of P and defines a Poisson bracket {·, ·}�. See
Section III.4. In a local chart with coordinates ya, we
have

{f, g}� =
2n∑

a,b=1

ηab ∂f

∂ya

∂g

∂yb
. (256)

Let H : P → R be a smooth function on a Poisson
manifold (P, η). The vector field XH defined by ιXH

ω =
dH is called a Hamiltonian vector field with the energy
function H. We define a dynamical flow by using the
differential equation [8]

df

dt
= XH(f) +

∂f

∂t
= {f,H}� +

∂f

∂t
. (257)

A solution to the above equation is a function f such
that for any path γ : [0, 1] → M , we have

df(γ(t))
dt

= {f,H}�(γ(t)) +
∂f(γ(t))

∂t
. (258)

The dynamics of a charged particle in an external
static magnetic field is described by the Hamiltonian

H =
1

2m

(
p − eA

)2
, (259)

which is obtained from the free Hamiltonian H0 = p2

2m
with the replacement

p → p − eA. (260)

Here, the electric charge of an electron is qe = −e, and
e is a coupling constant identified with gY M . The sym-
plectic structure in Eq. (255) leads to the Hamiltonian
vector field XH given by

XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi
. (261)

Then, the Hamilton’s equation, Eq. (257), reduces to
the well-known Lorentz force law

m
dv
dt

= ev × B. (262)
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The observation in Ref. [49] (and of Jean-Marie
Souriau) is that the Lorentz force law in Eq. (262) can
be derived by keeping the Hamiltonian H = H0, but
instead shifting the symplectic structure

ω → ω′ = ω − eB, (263)

where B = 1
2Bik(x)dxi ∧ dxk. In this case, the Hamil-

tonian vector field XH is defined by ιXH
ω′ = dH0 and

given by

XH =
∂H0

∂pi

∂

∂xi
−

(∂H0

∂xi
− eBik

∂H0

∂pk

) ∂

∂pi
. (264)

Then, one can easily check that the Hamilton’s equa-
tion, Eq. (257), with the vector field in Eq. (264) re-
produces the Lorentz force law in Eq. (262). Actu-
ally, one can show that the symplectic structure ω′ in
Eq. (263) introduces a noncommutative phase space [9]
such that the momentum space becomes noncommuta-
tive, i.e., [p′i, p

′
j ] = −i�eBij .

If a particle is interacting with electromagnetic fields,
the influence of the magnetic field B = dA is described
by ‘minimal coupling’, Eq. (260), and the new momenta
p′ = −i�(∇ − i e

�
A) are covariant under U(1) gauge

transformations. Let us point out that the minimal cou-
pling can be understood as the Darboux transformation,
Eq. (29), between ω and ω′. Consider the coordinate
transformation ya 	→ xa(y) = (X1, P1, · · · , Xn, Pn)(x, p)
such that

n∑
i=1

dxi∧dpi =
n∑

i=1

dXi∧dPi− e

2

n∑
i,j=1

Bij(X)dXi∧dXj ,

(265)

with the Hamiltonian being unchanged, i.e., H0 = P2

2m .
The condition in Eq. (265) is equivalent to the following
equations:

∂xi

∂Xj

∂pi

∂Xk
− ∂xi

∂Xk

∂pi

∂Xj
= −eBjk,

∂xi

∂Xj

∂pi

∂Pk
− ∂xi

∂Pj

∂pi

∂Xk
= δk

j , (266)

∂xi

∂Pj

∂pi

∂Pk
− ∂xi

∂Pk

∂pi

∂Pj
= 0.

The above equations are solved by

xi = Xi, pi = Pi + eAi(X). (267)

In summary the dynamics of a charged particle in an
electromagnetic field has two equivalent descriptions [7]:(

H =
(p − eA)2

2m
,ω

)
(x, p)

∼=
(
H0 =

P2

2m
,ω′ = ω − eB

)
(X, P ). (268)

The equivalence in Eq. (268) can easily be generalized
to a time-dependent background Aμ = (A0,A)(x, t) with

the Hamiltonian H = 1
2m

(
p − eA

)2 + eA0. The Hamil-
ton’s equation, Eq. (257), in this case is given by Eq.
(230). The equivalence in Eq. (268) now means that the
Lorentz force law, Eq. (230), can be obtained by using
the Hamiltonian vector field in Eq. (264) with the Hamil-
tonian H0 = p2

2m +eA0 and noticing that the time depen-
dence of the external fields now appears as the explicit
t-dependence of momenta pi = pi(t). Indeed, the electric
field E appears as the combination E = −∇A0 + 1

e
∂p
∂t ,

but note that the coordinates (xi, pi) in Eq. (264) cor-
respond to (Xi, Pi) in the notation of Eq. (265) and so
∂p
∂t = −e∂A

∂t by Eq. (267).
Feynman’s approach transparently shows that electro-

magnetism is an inevitable structure in quantum parti-
cle dynamics and that we need an internal space (extra
dimensions) to introduce non-Abelian forces. Further-
more, as emphasized by Dyson [46], Feynman’s formula-
tion also shows that nonrelativistic Newtonian mechan-
ics and relativistic Maxwell’s equations coexist peace-
fully. This is due to the underlying symplectic geometry
as Souriau and Sternberg showed [49]. We know that
the Lorentz force, Eq. (230), is generated by the minimal
coupling pμ → Pμ ≡ pμ−eAμ and that the minimal cou-
pling can be encoded into the deformation of symplectic
structure, which can be summarized as the relativistic
form [80]: ω = −dξ → ω′ = ω − eF = −d

(
ξ + eA

)
,

where ξ = Pμdxμ and A = Aμ(x)dxμ. Therefore, the
Maxwell equation dF = 0 is simply interpreted as the
closedness of the symplectic structure, and the mini-
mal coupling is the Darboux transformation in Eq. (29)
from the deformed symplectic structure ω′ = ω − eF ,
as was shown in Eq. (265). In this symplectic formu-
lation of particle dynamics, the gauge symmetry defined
by A → A+dλ is actually symplectomorphisms, i.e., dif-
feomorphisms generated by Hamiltonian vector fields Xλ

satisfying LXλ
ω = 0. In this sense, the gauge symme-

try is derived from the symplectic or Poisson geometry,
so one may regard the underlying symplectic or Poisson
structure as a more fundamental structure of particle dy-
namics. Also, one may notice a great similarity between
the symplectic geometries of particles and spacetime ge-
ometry (gravity).

A symplectic formulation of the equations of motion of
a particle was generalized to a Yang-Mills field by Stern-
berg in [49] and Weinstein in [81]. Let π : P → M
be a principal G-bundle, and let F be a Hamiltonian G-
space. This means that F is a symplectic manifold with
symplectic form Ω such that G acts on F as a group
of symplectic diffeomorphisms so that there is a homo-
morphism of the Lie algebra g of G into the algebra of
Hamiltonian vector fields and that we are given a lift-
ing of this homomorphism to a homomorphism of g into
the Lie algebra of functions on F , where the Lie alge-
bra structure is given by Poisson bracket. Thus, to each
ξ ∈ g, we get a function fξ on F and a Hamiltonian
vector field ξF on F so that ιξF

Ω = −dfξ.
Let E ⊂ T ∗M×P be the pull-back of P by the canoni-
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cal projection π̃ : T ∗M → M , i.e., the following diagram
commutes:

E
Pr2 ��

Pr1

��

P

π

��
T ∗M

π̃ �� M

Sternberg shows [49] how a connection on P can be used
to put a symplectic structure on the associated bundle
E ×G F → T ∗M with fiber F . Given a Hamiltonian
function H : T ∗M → R, one may pull it back to E ×G F
and thereby obtain a Hamiltonian flow that represents
the motion of a classical particle under the influence of
the field for which the given connection is a Yang-Mills
field. That is, every connection on a principal bundle
P induces a Poisson structure on the associated bundle
E×GF . The resulting symplectic mechanics of a particle
in a Yang-Mills field is actually equivalent to Feynman’s
approach in Section IV.1. More details in terms of the
local formula will be discussed elsewhere.

3. Emergent Matters from Stable Geometries

Now let us pose our original problem about what mat-
ter is in emergent geometry. We speculated that particles
or matter fields may be realized as a topological object
in a noncommutative �-algebra Aθ and, thus, as a stable
localized state in a Hilbert space H, e.g., the Fock space
(18). If so, we can assign the concept of positions and ve-
locities (as collective variables) to these localized states
such that they satisfy some well-defined (quantum) Pois-
son algebra, e.g., Eqs. (242)-(244), which are inherited
from the original noncommutative �-algebra Aθ. Here,
we will suggest a plausible picture based on the Fermi-
surface scenario in Refs. [82,83], but we will not insist
on our proposal.

Particles are by definition characterized by their posi-
tions and momenta, besides their intrinsic charges, e.g.,
spin, isospin and an electric charge. They should be re-
placed by matter fields in relativistic quantum theory in
order to incorporate pair creation and pair annihilation.
Moreover, in a noncommutative space such as Eq. (17),
the very notion of a point is replaced by a state in the
Hilbert space of Eq. (18); thus, the concept of parti-
cles (and matter fields, too) becomes ambiguous, so the
following question should be meaningful and addressed:
What is the most natural notion of a particle or a corre-
sponding matter field in the noncommutative �-algebra
of Eq. (19)? We suggested in Ref. [7] that it should be
a K-theory object in the sense of Ref. [82].

We consider the U(N) Yang-Mills theory described
by the action in Eq. (151) defined on a d-dimensional
Minkowski spacetime R

d
C . As we explained in Section

III.3, the theory in Eq. (151) can be related to both

U(N) Yang-Mills theories and noncommutative U(1)
gauge theories in various dimensions and different B-
field backgrounds by applying the matrix T-duality in
Eq. (188) and the correspondence in Eq. (22). Thereby,
we will assume that the U(N) Yang-Mills theory in Eq.
(151) has been obtained from the BFSS matrix model in
Eq. (190) by using the (d − 1)-fold matrix T-duality in
Eq. (188). In particular, it will be important to remem-
ber that the U(N → ∞) gauge theory in Eq. (151) in
the Moyal background in Eq. (152) can be mapped to
the D = d+2n-dimensional noncommutative U(1) gauge
theory in Eq. (161).

Motivated by this fact, we will specify our problem
as follows: We want to classify a stable class of “time-
independent solutions” in the action in Eq. (161) satisfy-
ing the asymptotic boundary condition in Eq. (152). For
such kind of solutions, we may simply forget about time
and work in the temporal gauge, A0 = 0. Therefore, we
will consider the U(N) gauge-Higgs system (A, Φa)(x)
as a map from R

p
C to GL(N, C), where p ≡ d − 1 and

zμ = (t,x). As long as we require the fields in the the-
ory to approach the common limit in Eq. (152) (which
does not depend on x) as x → ∞ in any direction,
we can think of R

p as having the topology of a sphere
Sp = R

p∪{∞}, with the point at infinity being included
as an ordinary point.

Note that the matrices Φa(x) (a = 1, · · · , 2n) are non-
degenerate along Sp because we have assumed Eq. (152).
Therefore, Φa defines a well-defined map [82]

Φa : Sp → GL(N, C) (269)

from Sp to the group of nondegenerate complex N × N
matrices. If this map represents a nontrivial class in the
pth homotopy group πp(GL(N, C)), the solution in Eq.
(269) will be stable under small perturbations, and the
corresponding nontrivial element of πp(GL(N, C)) repre-
sents a topological invariant. Note that the map in Eq.
(269) is contractible to the group of maps from Sp to
U(N) [52].

If we think of GL(N, C) as an endomorphism from
C

N to itself, C
N is already big enough to embed Sp

into it if N > p/2. This leads to a remarkable point
that there is the so-called stable regime at N > p/2,
where πp(GL(N, C)) is independent of N . In this stable
regime, the homotopy groups of GL(N, C) or U(N) de-
fine a generalized cohomology theory, known as K-theory
[50–53]. In K-theory, which also involves vector bundles
and gauge fields, any smooth manifold X is assigned an
Abelian group K(X). Aside from a deep relation to D-
brane charges and RR fields in string theory [51, 52],
the K-theory is also deeply connected with the theory of
Dirac operators, the index theorem, Riemannian geome-
try, noncommutative geometry, etc. [14].

The matrix action in Eq. (151) describes a U(N → ∞)
vector (Chan-Paton) bundle supported on R

d
C . The ho-

motopy map in Eq. (269) is to classify stable solutions
of the U(N) Chan-Paton bundle that cannot be dissi-
pated by small perturbations. However, the topological
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classification should be defined up to pair creations and
pair annihilations because there is no way to suppress
such quantum effects. This is the reason [52,53] K(X)
is the right answer for classifying the topological class
of excitations in the U(N) gauge-Higgs system. For X
noncompact, K(X) is to be interpreted as compact K-
theory [50]. For example, for X = R

d, this group is
given by

K(Rd) = πd−1(GL(N, C)), (270)

with N in the stable regime. The corresponding groups
are known to exhibit Bott periodicity such that K(Rd) =
Z for even d and K(Rd) = 0 for odd d.

With the above understanding, let us find an explicit
construction of a topologically non-trivial excitation. It
is well-known [53] that this can be done using an el-
egant construction due to Atiyah, Bott and Shapiro
(ABS) [54]. The construction uses the gamma ma-
trices of the Lorentz group SO(p, 1) for X = R

d
C to

construct explicit generators of the K-theory group in
Eq. (270), where p = d − 1. Let X be even dimen-
sional so that K(X) = Z, and S± be two irreducible
spinor representations of Spin(d) Lorentz group, and
pμ = (ω,p), μ = 0, 1, · · · , p, be the momenta along
X. We define the gamma matrices Γμ : S+ → S− of
SO(p, 1) obeying {Γμ,Γν} = 2ημν . Also, we introduce
an operator D : H× S+ → H× S− [82] such that

D = Γμpμ + · · · , (271)

which is regarded as a linear operator acting on a Hilbert
space H, as well as the spinor vector space S±. Here,
the Hilbert space H is possibly much smaller than the
Fock space in Eq. (18), because the Dirac operator in
Eq. (271) acts on collective (coarse-grained) modes of
the solution in Eq. (269).

The ABS construction implies [82,83] that the Dirac
operator in Eq. (271) is a generator of πp(U(N)) as a
nontrivial topology in momentum space (p, ω) and acts
on a low lying excitation near the vacuum in Eq. (152)
which carries K-theory charges and so is stable. Such
modes are described by using coarse-grained fermions
χA(ω,p, θ), with θ denoting possible collective coordi-
nates of the solution in Eq. (269) [82]. The ABS con-
struction determines the range Ñ of the index A carried
by the coarse-grained fermions χA to be Ñ = 2[p/2]n ≤ N
complex components. The precise form of the fermion
χA depends on its K-theory charge, whose explicit rep-
resentation on H × S± will be given later. Feynman’s
approach [46] in Section IV.1 will provide a clear-cut
picture to see what the multiplicity n means. At low en-
ergies, the dispersion relation of the fermion χA is given
by the relativistic Dirac equation

iΓμ∂μχ + · · · = 0, (272)

with possible gauge interactions and higher order cor-
rections in higher energies. Thus, we get a spinor of the

Lorentz group SO(p, 1) from the ABS construction as a
topological solution in momentum space [82]. For exam-
ple, in four dimensions, i.e., p = 3, χA has two complex
components when n = 1, so it describes a chiral Weyl
fermion.

Although the emergence of (p+1)-dimensional spinors
is just a consequence due to the fact that the ABS con-
struction uses the Clifford algebra to construct explicit
generators of πp(U(N)), its physical origin is mysterious
and difficult to understand. However, we believe that the
coherent spactime vacuum in Eq. (17) would be the crux
for the origin of the fermionic nature of particles and the
mysterious connection between the Clifford module and
K-theory [54]. An important future problem would be
to clearly understand this issue.

Now, let us address the problem to determine the mul-
tiplicity n of the coarse-grained fermions χαa, where we
decomposed the index A = (αa) with α the spinor index
of the SO(d) Lorentz group and a = 1, · · · , n an in-
ternal index of an n-dimensional representation of some
compact symmetry G. In order to understand this prob-
lem, we will identify the noncommutative �-algebra Aθ

with GL(N, C) by using the relation in Eq. (22). Un-
der this correspondence, the U(N → ∞) gauge theory
in Eq. (151) in the Moyal background in Eq. (152) can
be mapped to the D-dimensional noncommutative U(1)
gauge theory in Eq. (161) defined on R

d
C × R

2n
NC where

D = d + 2n. Then, the K-theory in Eq. (270) for any
sufficiently large N can be identified with the K-theory
K(Aθ) for the noncommutative �-algebra Aθ [52].

As we showed in Section III.2, the generic fluctuation
in Eq. (163) will deform the background spacetime lat-
tice defined by the Fock space in Eq. (18), which gener-
ates gravitational fields given by the metric in Eq. (169).
For simplicity, we will consider low-energy excitations
around the solution in Eq. (269) whose K-theory class is
given by K(Aθ). In this case, the solution in Eq. (269)
would be a sufficiently localized state described by a com-
pact (bounded self-adjoint) operator in Aθ. This means
that it does not appreciably disturb the ambient gravi-
tational field. Therefore, we may reduce the problem to
quantum particle dynamics on X×F [7], where X = R

d
C

and F is an internal space describing collective modes of
the solution in Eq. (269). It is natural to identify the
coordinates of F with an internal charge of G carried by
the fermion χαa. To be specific, the (collective) coor-
dinates of F will take values in the Lie algebra g of G,
such as the isospins or colors, and will be denoted by
QI (I = 1, · · · , n2 − 1). In the end, we essentially revisit
Feynman’s problem, which we addressed in Section IV.1.

The quantum particle dynamics on X × F naturally
requires the introduction of non-Abelian gauge fields
in the representation of the Lie algebra in Eq. (243),
and the dynamics of the particle carrying an internal
charge in F will be defined by a symplectic structure
on T ∗X × F . Note that R

2n
NC already has its symplec-

tic structure B = 1
2Babdya ∧ dyb, originated from the

noncommutative space in Eq. (154). Also, note that
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the action in Eq. (161) has only U(1) gauge fields on
R

d
C ×R

2n
NC , so the problem is how to get the Lie algebra

generators in Eq. (243) from the space R
2n
NC and how to

get the non-Abelian gauge fields AI
μ(z) ∈ g on X from

the U(1) gauge fields on R
d
C ×R

2n
NC . Here, it is enough to

consider only the transverse gauge fields AI
μ(z) as low-

lying excitations because the solution in Eq. (269) is ac-
tually coming from the longitudinal gauge field Âa(z, y)
in Eq. (157).

The problem is solved [7] by noting that the n-
dimensional harmonic oscillator in quantum mechanics
can realize SU(n) symmetries (see the Chapter 14 in
Ref. [84]). The generators of the SU(n) symmetry on
the Fock space in Eq. (18) are given by

QI = a†
iT

I
ikak, (273)

where the creation and the annihilation operators are
given by Eq. (17) and the T I ’s are constant n×n matri-
ces satisfying [T I , T J ] = ifIJ

KTK with the same struc-
ture constants as Eq. (243) . It is easy to check that
the QI ’s satisfy the SU(n) Lie algebra (243). We in-
troduce the number operator Q0 ≡ a†

iai and identify it
with a U(1) generator. The operator C =

∑
I QIQI is

the quadratic Casimir operator of the SU(n) Lie algebra
and commutes with all QI ’s. Thus, one may identify C
with an additional U(1) generator.

Let ρ(H) be a representation of the Lie algebra in Eq.
(243) in a Hilbert space H. We take an n-dimensional
representation in H = L2(Cn), a square integrable
Hilbert space. Because the solution in Eq. (269) is de-
scribed by a compact operator in Aθ, its representation
space H = L2(Cn) will be much smaller (with finite ba-
sis in generic cases) than the original Fock space in Eq.
(18). Thus, let us expand the U(1) gauge field Âμ(z, y)
in Eq. (157) with the SU(n) basis in Eq. (273):

Âμ(z, y) =
∞∑

n=0

∑
Ii∈ρ(H)

AI1···In
μ (z, ρ, λn) QI1 · · ·QIn

= Aμ(z) + AI
μ(z, ρ, λ1) QI + AIJ

μ (z, ρ, λ2) QIQJ

+ · · · , (274)

where ρ and λn are eigenvalues of Q0 and C, respec-
tively, in the representation ρ(H). The expansion in Eq.
(274) is formal, but it is assumed that each term in Eq.
(274) belongs to the irreducible representation of ρ(H).
Through the expansion in Eq. (274), we get SU(n) gauge
fields AI

μ(z), as well as U(1) gauge fields Aμ(z), as low-
lying excitations [7].

Note that the coarse-grained fermion χ in Eq. (272)
behaves as a stable relativistic particle in the spacetime
X = R

d
C . When these fermionic excitations are given,

there will also be bosonic excitations arising from chang-
ing the position along X of the internal charge F . Ac-
cording to Feynman’s picture, especially Wong’s equa-
tion, Eq. (246), the gauge fields in Eq. (274) represent
collective modes for the position change in X = R

d
C of

the charge F [83]. See Eq. (248) for the geometrical in-
terpretation of Wong’s equation, Eq. (246). Thus, they
can be regarded as collective modes in the vicinity of an
internal charge living in F and interact with the fermions
in Eq. (272).

Therefore, we think of the Dirac operator, Eq. (271),
as an operator D : H×S+ → H×S−, where H = L2(Cn),
and we introduce a minimal coupling with the U(1) and
SU(n) gauge fields in Eq. (274) by the replacement pμ →
pμ − eAμ −AI

μQI . Then, the Dirac equation, Eq. (272),
becomes

iΓμ(∂μ − ieAμ − iAI
μQI)χ + · · · = 0. (275)

Here, we see that the coarse-grained fermion χ in the
homotopy class πp(U(N)) is in the fundamental repre-
sentation of SU(n), so we identify the multiplicity n in
the ABS construction in Eq. (272) with the number of
colors in SU(n) [7].

The most interesting case in Eq. (161) is of d = 4
and n = 3, that is, 10-dimensional noncommutative U(1)
gauge theory on R

4
C × R

6
NC . In this case, Eq. (275) is

the 4-dimensional Dirac equation, where χ is a quark,
an SU(3) multiplet of chiral Weyl fermions, which cou-
ples with gluons AI

μ(z), SU(3) gauge fields for the color
charge QI , as well as photons Aμ(z), U(1) gauge fields
for the electric charge e. One may consider a similar ABS
construction in the vector space C

2 × C ⊂ C
3, i.e., by

breaking the SU(3) symmetry into SU(2)×U(1), where
χ would be a lepton, an SU(2) doublet of chiral Weyl
fermions coupling with SU(2) gauge fields. In this case,
QI (I = 1, 2, 3) in Eq. (273) are the famous Schwinger
representation of the SU(2) Lie algebra.

To conclude, we may go back to our starting point.
Our starting point was the d-dimensional U(N) Yang-
Mills theory defined by the action in Eq. (151) or equiv-
alently D-dimensional noncommutative U(1) gauge the-
ory defined by the action in Eq. (161). We observed
that the theory in Eq. (151) allows topologically stable
solutions as long as the homotopy group in Eq. (269)
is nontrivial, and we argued that a matter field, such as
leptons and quarks, simply arises from such a stable so-
lution and that non-Abelian gauge fields correspond to
collective zero-modes of the stable localized solution. Al-
though we intended to interpret such excitations as par-
ticles and gauge fields and to ignore their gravitational
effects, we have to remember that these are originally
a part of spacetime geometry according to the map in
Eq. (163). Consequently, we get a remarkable picture,
if any, that matter fields, such as leptons and quarks,
simply arise as a stable localized geometry, which is a
topological object in the defining algebra (noncommuta-
tive �-algebra) of quantum gravity.
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V. ANATOMY OF SPACETIME

It is in order to discuss the most beautiful aspects
of emergent gravity. Remarkably, the emergent gravity
reveals a novel picture about the origin of spacetime,
dubbed as emergent spacetime, which is radically dif-
ferent from any previous physical theory all of which de-
scribe what happens in a given spacetime. Thus, we may
take it for granted that emergent gravity leads to many
results that are radically different from Einstein gravity.

1. Emergent Time in Emergent Gravity

We have intentionally postponed posing the
formidable issue how “Time” emerges, together
with space, and how it is entangled with space to unfold
into a single entity, spacetime, and take the shape of
Lorentz covariance. Now we are ready to address this
formidable issue.

Let (M,π) be a Poisson manifold. We previously de-
fined the anchor map π� : T ∗M → TM in Eq. (224)
for a general Poisson bivector π ∈ Γ(Λ2TM) and the
Hamiltonian vector field in Eq. (225) by

XH ≡ −π�(dH) = {·,H}π = πμν(x)
∂H

∂xν

∂

∂xμ
, (276)

where H : M → R is a smooth function on the Poisson
manifold (M,π). If the Poisson tensor π is nondegen-
erate so that π−1 ≡ ω ∈ Γ(Λ2T ∗M) is a symplectic
structure on M , the anchor map π� : T ∗M → TM de-
fines a bundle isomorphism because π� is nondegenerate
everywhere. We will speak of the flow φt of a vector
field X on M when referring to a 1-parameter group of
diffeomorphisms generated by X.

Any Poisson manifold (M,π) always admits a Hamil-
tonian dynamical system on M defined by a Hamiltonian
vector field XH and it is described by

df

dt
= XH(f) +

∂f

∂t
= {f,H}π +

∂f

∂t
(277)

for any f ∈ C∞(R × M). If φt is a flow generated by a
Hamiltonian vector field XH , the following identity holds
[8]:

d

dt
(f ◦ φt) =

d

dt
φ∗

t f = φ∗
tLXH

f + φ∗
t

∂f

∂t

= φ∗
t {f,H}π +

∂f

∂t
◦ φt

=
(
{f,H}π +

∂f

∂t

)
◦ φt. (278)

Thus, we can get f(x, t) = g(φt(x)), where g(x) ≡
f(x, 0). If π = η = ∂

∂xi ∧ ∂
∂pi

, we precisely reproduce
Eqs. (257) and (258) from Eqs. (277) and (278), respec-
tively. In this case, the evolution of a particle system is

described by the dynamical flow in Eq. (278) generated
by the Hamiltonian vector field in Eq. (276) for a given
Hamiltonian H.

Introduce an extended Poisson tensor on R × M [8]

π̃ = π +
∂

∂t
∧ ∂

∂H
(279)

and a generalized Hamiltonian vector field

X̃H ≡ −π̃�(dH) = {·,H}π̃ = πμν(x)
∂H

∂xν

∂

∂xμ
+

∂

∂t
.

(280)

We can then rewrite Hamilton’s equation, Eq. (277),
compactly in the form

df

dt
= X̃H(f) = {f,H}π̃ = {f,H}π +

∂f

∂t
. (281)

Similarly, we can extend the symplectic structure ω =
π−1 to the product manifold R×M by considering a new
symplectic structure ω̃ = π∗

2ω, where π2 : R × M → M
is the projection such that π2(t, x) = x. Define ωH =
ω̃ + dH ∧ dt. Then, the pair (R × M,ωH) is called a
contact manifold [8].

Suppose that observables f ∈ C∞(M) do not depend
on time explicitly, i.e., ∂f

∂t = 0. Look at Eq. (278).
We understand that the time evolution of the system in
this case is determined by simply calculating the Poisson
bracket with a Hamiltonian function H. In other words,
in the case of ∂f

∂t = 0, the time evolution is just the inner
automorphism of the Poisson algebra (M, {·, ·}π) [85].
Therefore, time in Hamilton’s equation, Eq. (277), is
basically an affine parameter to trace the history of a par-
ticle, and it is operationally defined by the Hamiltonian.
That is, time in Hamiltonian dynamics is intrinsically
the histories of the particles themselves. However, we
have to notice that, only when the symplectic structure
is fixed for a given Hamiltonian, the evolution of the sys-
tem is completely determined by the evolution equation
in Eq. (278). In this case, the dynamics of the system
can be formulated in terms of an evolution with a single
time parameter. In other words, we have a globally well-
defined time for the evolution of the system. This is the
usual situation we consider in classical mechanics.

If observables f ∈ C∞(M) including the Hamiltonian
H, explicitly depend on time, i.e., ∂f

∂t �= 0, the time
evolution of the system is not completely determined by
the inner automorphism of the Poisson algebra only, so
the time evolution partially becomes an outer automor-
phism. However, as we remarked above, we can extend
an underlying Poisson structure as in Eq. (279) or intro-
duce a contact manifold (R × M,ωH) by extending an
underlying symplectic structure. The time evolution of
a particle system is again defined by an inner automor-
phism of the extended Poisson algebra (R × M, {·, ·}π̃).
In this case, time should be regarded as a dynamical vari-
able whose conjugate momentum is given by the Hamil-
tonian H, as indicated by the Poisson structure in Eq.
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(279). Thus, the time should be defined locally in this
case. Let us clarify this situation.

Consider a dynamical evolution described by a change
of a symplectic structure from ω to ωt = ω+t(ω′−ω) for
all 0 ≤ t ≤ 1, where ω′ − ω = −edA. The Moser lemma,
Eq. (27), says that there always exists a one-parameter
family of diffeomorphisms generated by a smooth time-
dependent vector field Xt satisfying ιXt

ωt = eA. Al-
though the vector field Xt defines a dynamical one-
parameter flow, the vector field Xt is, in general, not
even locally Hamiltonian because dA �= 0. The evolu-
tion of the system in this case is locally described by the
flow φt of Xt starting at F0 = identity, but it is no longer
a (locally) Hamiltonian flow. In this case, we fail to have
the property LXt

f = {f,H}π in Eq. (278), so we have
no global Hamiltonian flow. That is, there is no well-
defined or global time for the particle system. In other
words, the time flow φt of Xt is defined on a local chart
and describes only a local evolution of the system.

We observed the equivalence in Eq. (268) for the dy-
namics of a charged particle. Let us consider the above
situation by looking at the left-hand side picture of Eq.
(268) by fixing the symplectic structure, but instead by
changing the Hamiltonian. (Note that the magnetic field
in the Lorentz force, Eq. (262), does not do any work,
so there is no energy flow during the evolution.) At time
t = 0, the system is described by the free Hamiltonian
H0, but it ends up with the Hamiltonian in Eq. (259) at
time t = 1. Therefore, the dynamics of the system can-
not be described with a single time parameter covering
the entire period 0 ≤ t ≤ 1. We can introduce at most a
local time during δt < ε on a local patch and smoothly
adjust to a neighboring patch. To say, a clock of the par-
ticle will tick each time with a different rate because the
Hamiltonian of the particle is changing during time evo-
lution. As we already remarked before, we may also need
to quantize the time according to the Poisson structure
in Eq. (279) in order to describe a quantum evolution
of a system in terms of an extended inner automorphism
such as that in Eq. (281).

Now, we can apply the same philosophy to the case of
the Poisson structure in Eq. (6) defined on a space itself
[7]. The mathematics is exactly the same. An essential
point in defining the time evolution of a system was that
any Poisson manifold (M,π) always admits the Hamil-
tonian dynamical system in Eq. (277) on M defined by
the Hamiltonian vector field XH given by Eq. (276).
We have faced the same situation with the θ-bracket,
Eq. (6), whose time evolution was summarized in Eq.
(27). Of course, one should avoid a confusion between
the dynamical evolution of a particle system related to
the phase space in Eq. (4) and the dynamical evolution
of spacetime geometry related to the noncommutative
space in Eq. (6).

We learn an important lesson from Souriau and Stern-
berg [49] that the Hamiltonian dynamics in the pres-
ence of electromagnetic fields can be described by the
deformation of a symplectic structure of a phase space.

More precisely, we observed that the emergent geome-
try is defined by a one-parameter family of diffeomor-
phisms generated by a smooth vector field Xt satis-
fying ιXtωt + A = 0 for the change of a symplectic
structure within the same cohomology class from ω to
ωt = ω + t(ω′ − ω) for all 0 ≤ t ≤ 1 where ω′ − ω = dA.
The vector field Xt is, in general, not a Hamiltonian flow,
so no global time can be assigned to the evolution of the
symplectic structure ωt. However, if there is no fluctu-
ation of the symplectic structure, i.e., F = dA = 0 or
A = −dH, there can be a globally well-defined Hamil-
tonian flow. In this case, we can define a global time
by introducing a unique Hamiltonian such that the time
evolution is defined by df/dt = XH(f) = {f,H}θ=ω−1

everywhere. In particular, when the initial symplectic
structure ω is constant (homogeneous), a clock will tick
everywhere at the same rate. Note that this situation
happens for the constant background in Eq. (17) from
which a flat spacetime emerges as we will discuss soon
in some detail. If ω is not constant, the time evolution
will not be uniform over space and a clock will tick at
different rates at different places. This is consistent with
Einstein gravity because a nonconstant ω corresponds to
a curved space in our picture, as we explained in Section
III.4.

In the case of a changing symplectic structure, we can
apply the same strategy as we did in the particle case
with the Poisson structure π = θ, so we suggest, in gen-
eral, the concept of “Time” in emergent gravity [7] as
a contact manifold (R×M,ωH), where (M,ω) is a sym-
plectic manifold and ωH = ω̃ + dH ∧ dt, with ω̃ = π∗

2ω
defined by the projection π2 : R×M → M, π2(t, x) = x.
A question is then how to recover the (local) Lorentz
symmetry in the end. As we pointed out above, if (M,ω)
is a canonical symplectic manifold, i.e., M = R

2n and
ω = constant, a (2n + 1)-dimensional Lorentz symmetry
appears from the contact manifold (R × M,ωH). (For
a more general case such as our (3 + 1)-dimensional
Lorentzian world and a Poisson spacetime, Eq. (223),
we may instead use the Poisson structure in Eqs. (279)-
(281), or we may need an even more general argument,
which we don’t know yet.) Once again, the Darboux
theorem says that there always exists a local coordinate
system in which the symplectic structure has a canoni-
cal form. See Eq. (29). For the Poisson case, we can
apply Weinstein’s splitting theorem instead. Then, it
is quite plausible that the Lorentz symmetry on a local
Darboux chart would be recovered in a local way. Fur-
thermore, Feynman’s argument in Section IV.1 implies
that the gauge symmetry, as well as the Lorentz sym-
metry, is just derived from the symplectic structure on
the contact manifold (R×M,ωH). For example, one can
recover the gauge symmetry along the time direction by
defining the Hamiltonian H = A0+H ′ and the time evo-
lution of a spacetime geometry by the Hamilton’s equa-
tion D0f ≡ df/dt+{A0, f}θ̃=ω̃−1 = {f,H ′}θ̃=ω̃−1 . Then,
one may interpret Hamilton’s equation as an infinitesi-
mal version of an inner automorphism like (163), which
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was, indeed, used to define the vector field V0(X) in Eq.
(164).

Our proposal for the emergent time [7] is based on
the fact that a symplectic manifold (M,ω) always ad-
mits a Hamiltonian dynamical system on M defined by
a Hamiltonian vector field XH , i.e., ιXH

ω = dH. The
emergent time can be generalized to the noncommutative
space in Eq. (8) by considering the inner derivation, Eq.
(144), instead of the Poisson bracket {f,H}θ. If time is
emergent in this way, it implies a very interesting con-
sequence. Note that every symplectic manifold (M,B)
is canonically oriented and comes with a canonical mea-
sure, the Liouville measure, Bn = 1

n!B ∧ · · · ∧ B, which
is a volume form of the symplectic manifold (M,B)
and nowhere vanishing on M . Therefore, the symplec-
tic structure B triggered by the vacuum condensate in
Eq. (198) not only causes the emergence of spacetime
but also specifies an orientation of spacetime. Because
the time evolution of spacetime is defined by the Pois-
son structure π = θ = B−1 as in Eq. (278), a global
time evolution of spacetime manifold will have a direc-
tion that depends on the orientation Bn, although a lo-
cal time evolution has time reversal symmetry. If gravity
is emergent from the electromagnetism supported on a
symplectic manifold as we have envisaged so far, it may
also be possible to explain the “arrow of time” in the
cosmic evolution of our Universe - the most notoriously
difficult problem in quantum gravity.

2. Cosmological Constant Problem and Dark
Energy

In general relativity, gravitation arises out of the dy-
namics of spacetime being curved by the presence of
stress-energy, and the equations of motion for the metric
fields of spacetime are determined by the distribution of
matter and energy:

Rμν − 1
2
gμνR =

8πG

c4
Tμν . (282)

The Einstein equations, Eq. (282), describe how the ge-
ometry of spacetime on the left-hand side is determined
dynamically in harmony with matter fields on the right-
hand side, at first sight. We know that the existence of
spacetime leads to a “metrical elasticity” of space, i.e.,
to an inertial force that opposes the curving of space.

However, there is a deep conflict between the space-
time geometry described by general relativity and the
matter fields described by quantum field theory [86]. If
spacetime is flat, i.e., gμν = ημν , the left-hand side of
Eq. (282) identically vanishes, so the energy-momentum
tensor of matter fields should vanish, i.e., Tμν = 0. In
other words, a flat spacetime is completely empty with
no energy. Thus, the concept of empty space in Einstein
gravity is in an acute contrast to the concept of vacuum
in quantum field theory, where the vacuum is not empty

but is full of quantum fluctuations. As a result, a vac-
uum is extremely heavy, and its weight is on the order
of the Planck mass, i.e., ρvac ∼ M4

P .
The conflict rises to the surface that gravity and mat-

ters respond differently to the vacuum energy and per-
plexingly brings about the notorious cosmological con-
stant problem. Indeed, the clash manifests itself as a
mismatch of symmetry between gravity and matter [87].
To be precise, if we shift a matter Lagrangian LM by a
constant Λ, that is,

LM → LM − 2Λ, (283)

it results in a shift of the matter energy-momentum ten-
sor by Tμν → Tμν − Λgμν in the Einstein equation, Eq.
(282), although the equations of motion for matter are
invariant under the shift in Eq. (283). Definitely the
Λ-term in Eq. (283) will appear as the cosmological con-
stant in Einstein gravity, and it affects the spacetime
structure. For example, a flat spacetime is no longer a
solution of Eq. (282).

Let us sharpen the problem arising from the conflict
between geometry and matter. In quantum field the-
ory, there is no way to suppress quantum fluctuations
in a vacuum. Fortunately, the vacuum energy due to
the quantum fluctuations, regardless of how large they
are, does not cause any trouble for quantum field the-
ory thanks to the symmetry in Eq. (283). However,
general covariance requires that gravity couple univer-
sally to all kinds of energy. Therefore, the vacuum en-
ergy ρvac ∼ M4

P will induce a highly-curved spacetime
whose curvature scale R would be ∼ M2

P according to
Eq. (282). If so, the quantum field theory framework in
the background of quantum fluctuations must be broken
down due to a large back-reaction of background space-
tim, but we know that it is not the case. The quantum
field theory is well-defined, even in the presence of the
vacuum energy ρvac ∼ M4

P , and the background space-
time still remains flat, as we empirically know. So far,
there is no experimental evidence for the vacuum energy
really coupling to gravity, although it is believed that the
vacuum energy is real as experimentally verified by the
Casimir effect.

Which side of Eq. (282) is the culprit giving rise to
the incompatibility? After consolidating all the suspi-
cions inferred above, we throw doubt on the left-hand
side of Eq. (282), especially, on the result that a flat
spacetime is free gratis, i.e., costs no energy. We should
remark that such a result is not compatible with the
inflation scenario either because it implies that a huge
vacuum energy in a highly nonequilibrium state is re-
quired to generate an extremely large spacetime. Note
that Einstein gravity is not completely background in-
dependent because it assumes the prior existence of a
spacetime manifold. Here, we refer to a background-
independent theory in which no spacetime structure is a
priori assumed, but is defined by the theory. In particu-
lar, the flat spacetime is a geometry of special relativity
rather than general relativity, and so it is assumed to be
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a priori given without reference to its dynamical origin.
This reasoning implies that the negligence about the dy-
namical origin of a flat spacetime defining a local inertial
frame in general relativity might be the core root of the
incompatibility inherent in Eq. (282).

All in all, one may be tempted to infer that a flat
spacetime may not be free gratis, but a result of Planck
energy condensation in a vacuum. Now, we will show
that inference to be true [41]. Surprisingly, the emer-
gent spacetime picture then appears as the Hóly Gráil to
cure several notorious problems in theoretical physics; for
example, the cosmological constant problem, the nature
of dark energy and the reason gravity is so weak com-
pared to other forces. After all, our final destination is
to check whether the emergent gravity from noncommu-
tative geometry is a physically viable theory to correctly
explain the dynamical origin of flat spacetime.

Let us start with a background-independent matrix
theory, for example, Eqs. (133) or (189), where no space-
time structure is introduced. A specific spacetime back-
ground, e.g., a flat spacetime, has been defined by spec-
ifying the vacuum, Eq. (152), of the theory. Now, look
at the metric in Eq. (89) or in Eq. (169) to trace back
to where the flat spacetime comes from. The flat space-
time is the case with V μ

a = δμ
a , so λ2 = 1. The vec-

tor field Va = V μ
a ∂μ = ∂a in this case comes from the

noncommutative gauge field A
(0)
a ≡ 〈Â(0)

a 〉vac = −Baby
b

in Eq. (199) whose field strength is 〈F̂ (0)
ab 〉vac = −Bab,

describing a uniform condensation of gauge fields in vac-
uum. See Eq. (198). Therefore, we see that the flat
spacetime is emergent from the vacuum algebra in Eq.
(8) induced by a uniform condensation of gauge fields in
vacuum. This is a tangible difference from Einstein grav-
ity in which the flat spacetime is completely an empty
space.

The emergent gravity defined by the action in Eq.
(161), for example, responds completely differently to
the constant shift in Eq. (283). To be specific, let us
consider a constant shift of the background BMN →
BMN + δBMN . Then, the action in Eq. (161) in the
new background becomes

ŜB+δB = ŜB +
1

2g2
Y M

∫
dDXF̂MNδBMN

− 1
4g2

Y M

∫
dDX

(
δB2

MN − 2BMNδBMN

)
. (284)

The last term in Eq. (284) is simply a constant; thus,
it will not affect the equations of motion, Eq. (179).
The second term is a total derivative, so it will vanish if∫

dDXF̂MN = 0. (It is a defining property [9] in the def-
inition of a star product that

∫
dDXf̂ � ĝ =

∫
dDXf̂ · ĝ.

Then, the second term should vanish as far as ÂM → 0
at infinity.) If spacetime has a nontrivial boundary,
the second term could be nonvanishing at the bound-
ary, which would change the theory under the shift. We
will not consider a nontrivial spacetime boundary be-

cause the boundary term is not an essential issue here,
though there should be interesting physics at the bound-
ary [88]. Then we get the result ŜB+δB

∼= ŜB . Indeed,
this is the Seiberg-Witten equivalence between noncom-
mutative field theories defined by the noncommutativity
θ′ = 1

B+δB and θ = 1
B [16]. Although the vacuum in

Eq. (198) readjusts itself under the shift, the Hilbert
spaces Hθ′ and Hθ in Eq. (18) are completely isomor-
phic if and only if θ and θ′ are nondegenerate constants.
Furthermore, the vector fields in Eq. (163) generated by
B + δB and B backgrounds are equally flat as long as
they are constant. Consequently two different constant
backgrounds are related by a global Lorentz transfor-
mation. Equation (121) also shows that the background
gauge field does not contribute to the energy-momentum
tensor in Eq. (125).

Therefore, we clearly see that a constant shift of en-
ergy density such as Eq. (283) is a symmetry of the
theory in Eq. (161) although the action in Eq. (161)
defines a theory of gravity in the sense of emergent grav-
ity. As a consequence, there is no cosmological constant
problem in emergent gravity [41]. Now, let us estimate
the dynamical scale of the vacuum condensation in Eq.
(198). Because gravity emerges from noncommutative
gauge fields, the parameters g2

Y M and |θ| defining a non-
commutative gauge theory should be related to the New-
ton constant G in emergent gravity. A simple dimen-
sional analysis leads to the relation in Eq. (127). This
relation immediately leads to the fact [7] that the energy
density of the vacuum in Eq. (198) is

ρvac ∼ |Bab|2 ∼ M4
P , (285)

where MP = (8πG)−1/2 ∼ 1018GeV is the Planck mass.
Therefore, the emergent gravity finally reveals a remark-
able picture that the huge Planck energy MP is actually
the origin of the flat spacetime. Hence, we conclude that
a vacuum energy does not gravitate differently from Ein-
stein gravity, and a flat spacetime is not free gratis, but is
a result of Planck energy condensation in vacuum [41].

If the vacuum algebra in Eq. (8) describes a flat space-
time, it can have a very important implication to cosmol-
ogy. According to our picture for emergent spacetime, a
flat spacetime is emergent from Planck energy condensa-
tion in vacuum; thus, the time scale for the condensate
will be roughly on the order of the Planck time. We know
that there was an epoch of very violent time-varying vac-
uum, the so-called cosmic inflation. Therefore, it is nat-
ural to expect that the explosive inflation era that lasted
roughly 10−33 seconds at the beginning of our Universe
corresponds to a dynamical process enormously spread-
ing out a flat spacetime by the instantaneous condensa-
tion of vacuum energy ρvac ∼ M4

P . Unfortunately, it is
not clear how to microscopically describe this dynami-
cal process by using the matrix action (189). Neverthe-
less, it is quite obvious that the cosmological inflation
should be a dynamical condensation of the vacuum en-
ergy ρvac ∼ M4

P for the generation of (flat) spacetime
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according to our emergent gravity picture.
In addition, our picture for the emergent spacetime

implies that the global Lorentz symmetry should be a
perfect symmetry up to the Planck energy because the
flat spacetime was emergent from Planck energy conden-
sation in vacuum - the maximum energy in Nature. The
huge vacuum energy ρvac ∼ |Bab|2 ∼ M4

P was simply
used to make a flat spacetime and, surprisingly, does not
gravitate [41]! Then, the gravitational fields generated
by the deformations of the background in Eq. (198) will
be very weak because the spacetime vacuum is very solid
with a stiffness of the Planck scale. Hence the dynam-
ical origin of flat spacetime is intimately related to the
weakness of the gravitational force. Furthermore, the
vacuum algebra in Eq. (17) describes an extremely co-
herent condensation because it is equal to the Heisenberg
algebra of an n-dimensional quantum harmonic oscilla-
tor. As a consequence, the noncommutative algebra (17)
should describe a zero-entropy state in spite of the in-
volvement of the Planck energy. This is very mysterious,
but it should be the case because a flat spacetime emer-
gent from the algebra in Eq. (17) is completely an empty
space from the viewpoint of Einstein gravity and, so, has
no entropy. This reasoning also implies that the conden-
sation of vacuum energy ρvac ∼ M4

P happened at most
once.

We observed that the dynamical scale of the vacuum
condensate is on the order of the Planck scale. The emer-
gence of spacetime was caused by Planck energy accumu-
lating in vacuum, but the Planck energy condensation
causes the underlying spacetime to be noncommutative,
which will introduce an uncertainty relation between mi-
croscopic spacetimes. Therefore, a further accumulation
of energy over the noncommutative spacetime will be
subject to UV/IR mixing [89]. UV/IR mixing in non-
commutative spacetime then implies that any UV fluctu-
ations on the order of the Planck scale LP will be neces-
sarily paired with IR fluctuations of a typical scale LH .
These vacuum fluctuations around the flat spacetime will
add a tiny energy δρ to the vacuum in Eq. (285) so that
the total energy density is equal to ρ ∼ M4

P + δρ. A sim-
ple dimensional analysis and a symmetry consideration,
e.g., the cosmological principle, lead to the following es-
timate of the vacuum fluctuation [87]:

ρ = ρvac +δρ ∼ M4
P

(
1+

L2
P

L2
H

)
= M4

P +
1

L2
P L2

H

. (286)

It might be remarked that, though the second term in Eq.
(286) is nearly constant within a Hubble patch, it is not
completely constant over the entire spacetime while the
first term is a true constant because the vacuum fluctu-
ation δρ has a finite size of LH , so it will act as a source
of spacetime curvature of the order of 1/L2

H . Because
the first term in ρ does not gravitate, the second term
δρ will, thus, be a leading contributor to the deforma-
tion of the global spacetime curvature, leading possibly
to a de Sitter phase. Interestingly, this energy of vacuum

fluctuations, δρ ∼ 1
L2

P L2
H

, is in good agreement with the
observed value of current dark energy [41,87] if LH is
identified with the size of the cosmic horizon of our uni-
verse.

As we reasoned above, the existence of the energy δρ
in Eq. (286) seems to be a generic property of emergent
gravity based on a noncommutative spacetime. There-
fore, the emergent spacetime would leave the vestige of
this energy everywhere. Readers may remember that
we discussed some strange energy in Section II.3, so
let us go back to Eq. (124). Although we have taken
the Euclidean signature to get the result in Eq. (124),
we will simply assume that it can be analytically con-
tinued to the Lorentzian signature. The Wick rotation
will be defined by y4 = iy0. Under this Wick rotation,
δab → ηab = (− + ++) and ε1234 = 1 → −ε0123 = −1.
Then, we get Ψ(E)

a = iΨ(L)
a according to the definition in

Eq. (118). It is then given by [7]

T (L)
μν =

1
16πG4λ2

(
ρμρν+ΨμΨν−1

2
gμν(ρ2

λ+Ψ2
λ)
)
, (287)

where ρμ = 2∂μλ and Ψμ = Ea
μΨa.

The Raychaudhuri equation [90,91] represents the evo-
lution equations of the expansion, shear and rotation of
flow lines along the flow generated by a vector field in
a background spacetime. Here, we introduce an affine
parameter τ labeling points on the curve of the flow.
Given a timelike unit vector field uμ, i.e., uμuμ = −1,
the Raychaudhuri equation in four dimensions is given
by

Θ̇−u̇μ
;μ+ΣμνΣμν−ΩμνΩμν +

1
3
Θ2 = −Rμνuμuν . (288)

Θ = uμ
;ν represents the expansion/contraction of volume

and Θ̇ = dΘ
dτ while u̇μ = uμ

;νuν represents the acceler-
ation due to nongravitational forces, e.g., the Lorentz
force. Σμν and Ωμν are the shear tensor and the vortic-
ity tensor, respectively, which are all orthogonal to uμ,
i.e., Σμνuν = Ωμνuν = 0. The Einstein equation, Eq.
(125), can be rewritten as

Rμν = 8πG
(
Tμν − 1

2
gμνTλ

λ
)
, (289)

where Tμν = Ea
μEb

νTab. One can see from Eq. (289) that
the right-hand side of Eq. (288) is given by

−Rμνuμuν = − 1
2λ2

uμuν(ρμρν + ΨμΨν), (290)

where we have considered the energy-momentum tensor,
Eq. (287), only for simplicity.

Suppose that all the terms on the left-hand side of Eq.
(288), except the expansion evolution Θ̇, vanish or be-
come negligible. In this case, the Raychaudhuri equation
reduces to

Θ̇ = − 1
2λ2

uμuν(ρμρν + ΨμΨν). (291)



-1794- Journal of the Korean Physical Society, Vol. 65, No. 11, December 2014

Note that the Ricci scalar is given by R = 1
2λ2 gμν(ρμρν +

ΨμΨν). Therefore, R < 0 when ρμ and Ψμ are timelike
while R > 0 when they are spacelike. Remember that
our metric signature is (− + ++), so, for timelike per-
turbations, Θ̇ < 0, which means that the volume of a
three-dimensional spacelike hypersurface orthogonal to
uμ decreases. However, if spacelike perturbations are
dominant, the volume of the three-dimensional space-
like hypersurface can expand. For example, consider the
scalar perturbations in Eq. (129), i.e.,

〈ρaρb〉 =
1
4
ηabρ

2
c , 〈ΨaΨb〉 =

1
4
ηabΨ2

c . (292)

For spacelike purturbations, Eq. (291) becomes

Θ̇ =
R

4
> 0. (293)

The perturbation in Eq. (292) does not violate the en-
ergy condition because uμuνT

(L)
μν = R

32πG > 0 according
to Eq. (287). This means that the Liouville energy-
momentum tensor in Eq. (287) can act as a source
of gravitational repulsion and exert a negative pressure
causing an expansion of the universe, possibly leading to
a de Sitter phase [91]. As was pointed out in Eq. (130),
it can behave like a cosmological constant, i.e., ρ = −p,
in a constant (or almost constant) curvature spacetime.
Another important property is that the Liouville energy
in Eq. (287) is vanishing for the flat spacetime, so it
should be small if spacetime is not so curved.

To be more quantitative, let us consider the fluctuation
in Eq. (292) and look at the energy density uμuνT

(L)
μν

along the flow represented by a timelike unit vector uμ

as in Eq. (290). Note that the Riemannian volume is
given by νg = λ2ν =

√−gd4y. Also, it was shown in
Ref. [7] that Ψμ is the Hodge-dual to the 3-form H.
Thus, uμρμ and uμΨμ refer to the volume change of a
three-dimensional spacelike hypersurface orthogonal to
uμ. Assume that the radius of the three-dimensional hy-
persurface is LH(τ) at time τ , where τ is an affine param-
eter labeling the curve of the flow. Then, it is reasonable
to expect that uμρμ = 2uμ∂μλ ≈ 2λ/LH(τ) ≈ uμΨμ

because the Ricci scalar R ∼ 1
L2

H
. After all, we approxi-

mately get [7]

uμuνT (L)
μν ∼ 1

8πGL2
H

=
1

L2
P L2

H

. (294)

If we identify the radius LH with the size of cosmic hori-
zon, the energy density in Eq. (294) reproduces the dark
energy δρ in Eq. (286) up to a factor.

VI. CONCLUSION

We suggested that the quantum gravity must be de-
fined by quantizing spacetime itself by the Newton con-
stant G. This quantization scheme is very different

from the conventional one in which quantization ba-
sically quantizes an infinite-dimensional particle phase
space associated with spacetime metric fields in terms of
the Planck constant �. Our observation is that the ex-
istence of the Newton constant in Nature can be trans-
lated into a symplectic or Poisson structure of space-
time and that the canonical quantization of the under-
lying symplectic or Poisson structure inevitably leads to
spacetime noncommutative geometry. It turns out that
electromagnetism defined on the symplectic or Poisson
spacetime enjoys very beautiful properties: the Darboux
theorem and the Moser lemma. From these theorems,
we can formulate the equivalence principle even for the
electromagnetic force such that there always exists a co-
ordinate transformation to locally eliminate the electro-
magnetic force. This equivalence principle can be fully
lifted to a noncommutative spacetime; thus, the so-called
“quantum equivalence principle” can be identified with
a gauge equivalence between star products. This implies
that quantum gravity can consistently be derived from
the quantum equivalence principle and that matter fields
can arise from the quantized spacetime.

If gravity emerges from a field theory, it is necessary
to realize the Newton constant G from the field theory.
That is the reason the field theory should be defined with
an intrinsic parameter of (length)2, and a noncommuta-
tive spacetime elegantly carries out this mission. The
only other example of such a theory carrying an intrinsic
constant of (length)2 is string theory in which α′ plays
the role of G or |θ|. A unique feature of string theory
due to the existence of α′ is T-duality [11], which is a
symmetry between small and large distances, symboli-
cally represented by R ↔ α′/R. This symmetry implies
the existence of a minimum length scale in spactime and
signifies an intrinsic noncommutative spacetime geom-
etry. The T-duality is a crucial ingredient for various
string dualities and mirror symmetry. For the very sim-
ilar reason, gravity in string theory also basically arises
in the context of emergent gravity although many string
theorists seem to be reluctant to accept this interpre-
tation. Recently, Blau and Theisen vividly summarized
this picture in their review article [92]:

There are basically two approaches to for-
mulate a quantum theory of gravity. The
first treats gravity as a fundamental interac-
tion which it attempts to quantise. In the
second approach gravity is not fundamental
but an emergent phenomenon. String the-
ory falls into the second category. It has the
gratifying feature that not only gravity but
also the gauge interactions which are medi-
ated by a spin one gauge boson are emergent.
String theory thus provides a unifying frame-
work of all elementary particles and their
interactions: it inevitably and automatically
includes gravity (in the form of a massless
traceless symmetric second-rank tensor exci-
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tation of the closed string, identified with the
graviton) in addition to gauge forces which
arise from massless excitation of the open or
closed string (depending on the perturbative
formulation of the theory).

We think the emergent gravity we have discussed so
far is very parallel to string theory in many aspects. We
may understand this wonderful similarity by noticing the
following fact [7]: A Riemannian geometry is defined by
a pair (M, g), where the metric g encodes all geometric
information, while a symplectic geometry is defined by a
pair (M,ω), where the 2-form ω encodes all. A basic con-
cept in Riemannian geometry is a distance defined by the
metric. One may identify this distance with a geodesic
worldline of a “particle” moving in M . On the contrary,
a basic concept in symplectic geometry is an area defined
by the symplectic structure. One may regard this area
as a minimal worldsheet swept by a “string” moving in
M . In this picture, the wiggly string, so a fluctuating
worldsheet, may be interpreted as a deformation of the
symplectic structure in spacetime M . Then, we know
that a Riemannian geometry (or gravity) is emergent
from wiggly strings or the deformation of the symplec-
tic structure! Amusingly, the Riemannian geometry is
probed by particles while the symplectic geometry would
be probed by strings.

Hence the emergent gravity we have reviewed in this
paper may be deeply related to string theory. This may
be supported by the fact that many essential aspects of
string theory, for example, AdS/CFT correspondence,
open-closed string duality, noncommutative geometry,
mirror symmetry, etc. have also been realized in the
context of emergent noncommutative geometry. Thus,
we may moderately claim that string theory is simply a
“stringy” realization of symplectic or Poisson spacetime.

There are many important issues that we didn’t even
touch on. Although we have speculated that matter
fields can emerge from stable localized geometries de-
fined by noncommutative �-algebra, we could not un-
derstand how particle masses can be generated from the
noncommutative �-algebra, in other words, how to real-
ize spontaneous electroweak symmetry breaking or the
Higgs mechanism. We believe this problem could be
deeply related to the question of how the extra inter-
nal space F for weak and strong forces in Section IV is
dynamically compactified. We don’t know this yet even
though we have some vague ideas. Thus, from the back-
ground independent formulation of quantum gravity, the
Standard Model is completely unexplored territory. The
emergent spacetime picture may present a radically new
understanding of the Standard Model.

We have no idea how supersymmetry arises from
a background-independent quantum gravity theory or
what the role of supersymmetry is in the emergent ge-
ometry and emergent matter. We do not know how to
break it, but this issue should be understood in the near
future.

Though we have tried to concretely formulate emer-
gent gravity as much as possible, a rigorous math-
ematical formulation of emergent gravity, especially
background-independent quantum gravity, is highly de-
manded. We think that the Lie algebroid may be a useful
mathematical framework for emergent gravity. Here, we
will introduce the definition of a Lie algebroid [77] only
to appreciate some flavor of its mathematical structure
for emergent quantum gravity. Progress along this line
will be published elsewhere.

A Lie algebroid is a triple (E, [·, ·], ρ) consisting of a
smooth vector bundle E over a manifold M , together
with a Lie algebra structure [·, ·] on the vector space Γ(E)
of the smooth global sections of E, and a morphism of
vector bundles ρ : E → TM , called the anchor map,
where TM is the tangent bundle of M . The anchor map
and the bracket satisfy the Leibniz rule such that

[X, fY ] = f [X, Y ] + (ρ(X)f) · Y (295)

for all X, Y ∈ Γ(E) and f ∈ C∞(M). Here, ρ(X)f
is the derivative of f along the vector field ρ(X). The
anchor ρ defines a Lie algebra homomorphism from the
Lie algebra of sections of E, with Lie bracket [·, ·], into
the Lie algebra of vector fields on M , i.e.,

ρ
(
[X, Y ]

)
= [ρ(X), ρ(Y )]. (296)

If M is a Poisson manifold, then the cotangent bundle
T ∗M → M is, in a natural way, a Lie algebroid over M .
The anchor is the map π� : T ∗M → TM defined by the
Poisson bivector π. See Eq. (224). The Lie bracket [·, ·]
of differential 1-forms satisifes [df, dg] = d{f, g}π for any
functions f, g ∈ C∞(M), where {f, g}π = π(df, dg) is
the Poisson bracket defined by π. When π is nondegen-
erate, M is a symplectic manifold, and this Lie algebra
structure of Γ(T ∗M) is isomorphic to that of Γ(TM). A
noncommutative generalization, i.e. {f, g}π → −i[f̂ , ĝ]
,
seems to be possible.

Because background-independent quantum gravity
does not assume any kind of spacetime structure, a natu-
ral question is then why spacetime on large scales is four
dimensions. If gravity is emergent from gauge field inter-
actions, we may notice that electromagnetism is now only
a long-range force in Nature. Weak and strong forces are
short-range forces, so they will affect only microscopic
structure of spacetime. Then, we may infer that only
electromagnetism is responsible for the large-scale struc-
ture of spacetime. In this regard, there is a funny co-
incidence [40]. If we compare the number of physical
polarizations of photons and gravitons in D dimensions
and find the matching condition of the physical polariza-
tions, we get a cute number: �(Aμ) = D−2 = D(D−3)

2 =
�(gμν) ⇒ D = 1 or D = 4, where � denotes the num-
ber of polarizations. Of course, we have to throw D = 1
away because it is not physically meaningful. Does this
unfledged math have some meaning?
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