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In the research field of acoustic propagation in excitable gases, one of the most critical parameters
is the vibrational relaxation time, which determines the frequency of the acoustic dispersion step
or the absorption maximum. In this paper, the vibrational relaxation equations given by Tanczos
[J. Chem. Phys. 25, 439 (1956)] have been applied to calculate the vibrational multi-relaxation
times in multi-component gases. The eigenvalues of the energy-transition-rate matrix are proven
to be the reciprocals of the multi-relaxation times. Comparisons demonstrate that our relaxation
frequencies calculated for various gas compositions, including carbon dioxide, methane, chlorine,
nitrogen, and oxygen, agree with the experimental data.
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I. INTRODUCTION

A sound wave passing through an excitable (poly-
atomic or diatomic) gas will continuously exchange its
mechanical energy with the kinetic energy of the con-
stituent molecules of the gas by alternating compressions
and expansions. The tendency toward equipartition of
excess acoustic energy among all the molecular modes is
a phenomenon called thermal relaxation [1]. During the
compression phase, a certain amount of acoustic energy
is fed from the translational to the internal (vibrational
and rotational) energy of the molecules through molecu-
lar inelastic collisions. During the rarefaction phase, the
translational and rotational modes ran through states
of equilibrium almost instantly (generally within a few
collisions). However, the vibrational mode is relatively
quite longer (several thousand collisions) due to its large
quantum level spacing, and thus suffers a time delay or
phase lag relative to the phase of the sound. This time
delay leads to a certain fraction of the excited vibra-
tional energy being relaxed in the form of heat to raise
the absorption and the dispersion of sound rather than
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being returned into mechanical energy after the expan-
sion is finished [2]. This time delay of vibrational energy
returning to equilibrium, namely, the relaxation time,
determines the frequency of the acoustic dispersion step
or the absorption maximum, which gives information on
the rate of molecular energy transition [1, 3, 4]. There-
fore, the calculation of the relaxation time is a key to
theoretically investigating acoustic relaxation processes
in excitable gases.

Herzfeld and Rice [5] initially assumed a relaxation
equation to describe the vibrational relaxation process as
an explanation of non-classical sound absorption. Kneser
[6] treated the vibrational energy as if it were a two-state
system to calculate the vibrational-translational (V-T)
relaxation time. Landau and Teller [7] acquired the V-
T relaxation time by considering the vibrational energy
to be a multileveled system of a harmonic oscillator.
Schwartz, Slawsky, and Herzfeld (SSH) [8] refined Lan-
dau and Teller’s theory by including a one-for-one quan-
tum exchange of vibrational-vibrational (V-V) energy
transfer in two diatomic mixtures. Tanczos [9] extended
the SSH theory to permit the two quanta for one quan-
tum V-V exchange in pure polyatomic gases. However,
these above theories for the relaxation time cannot be
used for multi-component mixtures. More recent study
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of Dain and Lueptow [10] and Petculescu and Lueptow
[11] employed the extended SSH relaxation equations to
predict the relaxational absorption of sound in ternary
mixtures. Unfortunately, their model did not provide a
theoretical derivation for calculating the relaxation times
in multi-component gases and only allowed for a one-
for-one quantum V-V exchange. Consequently, it is still
desirable to provide a physical model to calculate the re-
laxation times in multi-component gases whilst allowing
for the two quanta for one quantum V-V exchange.

In this paper, first, we give the effective isochoric mo-
lar heat (IMH) by using the temperature fluctuation ra-
tio between vibrational modes and the sound wave in
a gas mixture. Second, we extend Tanczos relaxation
equations [9] to apply to multi-component mixtures.
Third, we obtain the relaxation times from the energy-
transition-rate matrix based on the extended relaxation
equations. To our knowledge, this work is unique in that
it is the first application of Tanczos relaxation equations
to multi-component gas mixtures for calculating vibra-
tional relaxation times. We prove that the eigenvalues of
the energy-transition-rate matrix are the reciprocals of
the multi-relaxation times; there will be as many relax-
ation times as there are vibrational modes available to
a gas, but the relaxation time of the primary relaxation
process determines the frequency of the sound absorp-
tion maximum (i.e., the relaxation frequency) in most
cases.

II. OVERVIEW FOR A
SINGLE-RELAXATION PROCESS

When an excitable gas is at thermal equilibrium,
the translational and the vibrational instant tempera-
tures are equal: T = T vib [12]. During every acoustic
compression-rarefaction cycle, the vibrational tempera-
ture lags behind the translational (or acoustic) tempera-
ture. If T is assumed to be kept constant, T vib will finally
be in equilibrium with an external mode; i.e., the vibra-
tional energy E(T vib) will tend towards E(T ). Equilib-
rium is considered to be achieved exponentially with the
relaxation equation [13]

{E(T vib)}t−E(T ) = [{E(T vib)}t=0−E(T )] exp(−t/τ),
(1)

Where {E(T vib)}t is the value of the vibrational energy
at time t and τ is the relaxation time. When t = τ , the
equilibrium has been achieved. Because the difference
between {E(T vib)}t=0 and E(T ) is small, Eq. (1) can be
rewritten as

dE(T vib)/dt = −[E(T vib) − E(T )]/τ. (2)

In general, the degree of matching between the relax-
ation time τ and the acoustic angular frequency ω will

determine the strength of the sound relaxational absorp-
tion, i.e., how much acoustic energy will be converted to
thermal energy during the transitions [2,12]. If the re-
laxation time is long (ωτ � 1) compared to the time for
changes in the acoustic variables to take place, the inter-
nal energy state will not be populated, and there will be
no absorption; if the relaxation time is short (ωτ � 1),
the internal state will always be in equilibrium with the
external states, and the absorption will again be absent;
when the relaxation time is approaching the acoustic pe-
riod (ωτ ∼ 1), the absorption will come up. In short,
there is no acoustic relaxational absorption at very low
and very high sound frequencies, and maximum absorp-
tion emerges when a sound wave has a frequency that
approximately equate the rate of adjustment of ther-
mal equilibrium for vibrational relaxation processes. It
is this characteristic that makes possible the investiga-
tion of molecular relaxations in gases by using acoustic
measurements.

III. VIBRATIONAL RELAXATION TIMES IN
A MULTI-COMPONENT GAS MIXTURE

1. Thermodynamic Energy Change of the Gas
Mixture

In a gas mixture with W kinds of molecules, which
consists of N kinds of vibrational modes (W ≤ N), the
sound propagation with small amplitude will induce a
change in thermodynamic energy of the gases. First,
the total energy change dQ can be divided into two
parts: one belongs to the translational and rotational
modes (dE′); the other, to the vibrational mode (dE)
[1].Second, during the relaxation processes, because the
deviations of the temperatures of all molecular modes
from the equilibrium temperature T0 are small, we can
consider the value of the IMH of all modes to be the same
as the values at T0 [1,14]. Thus,

dQ = dE′+dE = C∞
V dT+

∑N

j=1
ajC

vib
j dT vib

j = Ceff
V dT,

(3)

where Ceff
V is known as the IMH, denoting the macro-

scopic “footprint” of the inability of vibrational modes to
follow the acoustic temperature fluctuations [15]. C∞

V =∑W
l=1 alC

∞
l represents the non-relaxation part of the

IMH, C∞
l is the sum of the values of the IMH for trans-

lation and rotation for molecule l, al is the mole fraction
of molecule l, and

∑N
l=1 al = 1. T vib

j is the instantaneous
temperature of vibrational mode j; Cvib

j and aj are the
IMH and the mole fraction of vibrational mode j, respec-
tively. C∞

l depends on molecular symmetry [15]: for a
linear molecule, there are three translations and two ro-
tations, so C∞

l = 5R/2 (R is the universal gas constant);
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for a nonlinear molecule, C∞
l = 3R. Cvib

j is calculated
by using the Planck-Einstein function for a harmonic os-
cillator [10];

Cvib
j = gjR

(
θvib

j

T0

)
exp(θvib

j /T0)
(exp(θvib

j /T0) − 1)2
, θvib

j =
hυj

kB
,

(4)

where h is Planck’s constant, kB is Boltzmann’s constant
and θvib

j , υj and gj are the characteristic temperature,
the vibrational frequency and the degeneracy of the vi-
brational mode j, respectively.

In Eq. (3), the temperatures of all translations and
rotations are considered to be the same as the tempera-
ture of sound wave, because the energy transfer of those
modes is rapid enough to catch up with the acoustic
temperature fluctuations; however, the temperatures
of the vibrational modes are different because the
vibrational frequencies are commonly unequal. Thus,
based on Eq. (3), the effective IMH of a relaxing gas
mixture is [16]

Ceff
V = C∞

V +
N∑

j=1

ajC
vib
j dT vib

j /dT . (5)

Here, dT vib
j /dT is the temperature-fluctuation ratio be-

tween the vibrational mode j and the sound wave.

2. Extended Tanczos’s Vibrational Relaxation
Equations

To calculate dT vib
j /dT , according to SSH theory [8],

we need to consider two kinds of energy transitions: one
is the V-T energy transfer from vibrational mode j to
translational modes of molecule l; the other is the V–
V energy exchange between vibrational mode j and k.
Therefore, based on Tanczos relaxation equations [9], for
W kinds of gas components consisting of N kinds of vi-
brational modes, we can obtain the general relaxation
equations allowing for the two quanta for one quantum
V-V exchange as

dΔT vib
j

dt
= (ΔT − ΔT vib

j )kjj −
N∑

k=1,k �=j

(ΔT − ΔT vib
k )kjk, j = 1, . . . , N,

kjj = k10(j) +
V∑

k=1,k �=j

[k10
01(j, k) + 2 exp(−hυj/kBT0)k20

01(j, k) + θ−1
k k10

02(j, k)]θ−1
k θjgk,

kjk = k10
01(j, k) + 2 exp(−hυj/kBT0)θ−1

j k20
01(j, k) + k10

02(j, k)]υ−1
j υkθ−1

k θjgk,

where θj = 1 − exp(−hυj/kBTo). ΔT and ΔT vib
j de-

note the fluctuation of the translational and the vibra-
tional temperature, respectively, and the phase delay be-
tween them essentially results in the molecular relaxation
phenomena in excitable gases [1,8]. The V-T transition
rate k10(j) is the number of transitions per second per
molecule in which the energy goes from the first-excited-
vibrational level into translational motion; i.e., the state
of mode j goes from 1 → 0 and the vibrational level of
molecule l is unchanged:

k10(j) =
W∑
l=1

alZ(j, l) × P
1−0(j)
0−0(l) × [1 − exp(−hυj/kBT0)].

(6)

The V-V transition rate k10
01(j, k) is the rate when mode

j goes from 1 → 0 and mode k from 0 → 1:

k10
01(j, k) = akZ(j, k) × P

1−0(j)
0−1(k) . (7)

The V-V transition rates k20
01(j, k) and k10

02(j, k) are the
energy transition rates involving a two-for-one inter-
change of quantum:

k20
01(j, k) = akZ(j, k) × P

2−0(j)
0−1(k) ,

k10
02(j, k) = akZ(j, k) × P

1−0(j)
0−2(k) . (8)

Here, P
1−0(j)
0−0(l) is the V-T transition probability; P

1−0(j)
0−1(k) ,

P
2−0(j)
0−1(k) and P

1−0(j)
0−2(k) are the V-V transition probabili-

ties (the details of the calculation for those transition
probabilities are in the Refs. 9, 11, and 12). Z(j, l) is
the hard-sphere collision rate between a molecule having
mode j and molecule l, and Z(j, k) is the collision rate
between molecules having mode j and k[12]:

Z(j, k) = 2Nkσ2
jk(2πkBT0/μjk)1/2, (9)

where Nk = akNAP0/RT0 is number of molecules hav-
ing mode k in a unit volume (NA is the Avogadro’s
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constant and P0 is the equilibrium pressure), σjk =
(σj + σk)/2 is the molecular pair-wise collision diame-
ter, μjk = mjmk/(mj + mk) is the reduced molecular
mass of the collision pair, with mj and mk denoting the
molecular masses of the components.

Under the perturbation of a sound field with small
amplitude, we can write [8]

ΔT vib
j

∼= T vib
j − T0,ΔT ∼= T − T0. (10)

As T − T0 is proportional to eiωt (i =
√−1and ω is the

angular frequency of sound wave), T vib
j − T0 will also be

proportional to eiωt. Thus, substituting Eq. (10) into
Eq. (6), we obtain the algebraic relaxation equations

yj(kjj+iω) −
N∑

k=1,k �=j

ykkjk = kjj −
N∑

k=1,k �=j

kjk, yj

= ΔT vib
j /ΔT, j = 1, ..., N. (11)

3. Calculation of Multiple Relaxation Times

We can rewrite the algebraic relaxation equations,
Eq. (11), in a matrix form as

(R + iωI)y =H, (12)

where R is called the energy-transition-rate matrix, yj =

yj , Rjj = kjj , Rjk = −kjk, Hj = kjj −
N∑

k=1,k �=j

kjk, and

j, k = 1, ..., N, j �= k; I is the identity matrix. R can be
diagonalized:

R = VΛV−1, (13)

where Λ and V are the eigenvalue matrix, and the eigen-
vector matrix of R, respectively. Substituting Eq. (13)
and I = VV−1 into Eq. (12), we have

(I + iωΛ−1)y′=H′, (14)

where y′ = V−1y and H′ =Λ−1V−1H.
From Eq. (14), we get

y
′
j =

h
′
j

(1 + iωλ−1
j )

, j = 1, 2, . . . , N, (15)

where λj is the eigenvalue of R; y
′
j =

∑N
k=1 V

′
jkyk and

h
′
j = λ−1

j

∑N
k=1 V

′
jkhk are the entries of y′ and H′, re-

spectively, and V
′
jk is the entry of V-1. Because y = Vy′,

we obtain

yj =
N∑

n=1

Vjny
′
n, j = 1, 2, . . . , N, (16)

where Vjn is the entry of V. Putting Eq. (15) into
Eq. (16), we get

yj =
N∑

n=1

Vjnh
′
n

(1 + iωλ−1
n )

, j = 1, 2, . . . , N. (17)

Because yj = ΔT vib
j /ΔT = dT vib

j /dT , substituting
Eq. (17) into Eq. (5), we rewrite the effective IMH, Ceff

V ,
of the mixture as

Ceff
V = C∞

V +
N∑

n=1

C∗
n

(1 + iωλ−1
n )

,

C∗
n = h

′
n

N∑
j=1

ajC
vib
j Vjn, n = 1, 2, · · · , N. (18)

Bass et al. [17] and Bauer et al. [18] have pointed
out that Ceff

V under a multimode vibrational relax-
ation would be expressed in a standard form of Ceff

V =
C∞

V +
∑

n C∗
n/(1 + iωτn) as a result of V-V energy cou-

pling, where C∗
n and τn are the coupled vibrational IMH

and the relaxation time for one of the single-relaxation
processes. Thus, from Eq. (18), we have proven that the
reciprocals of the eigenvalues of the energy-transition-
rate matrix R are exactly the relaxation times; that is,

τn = λ−1
n , n = 1, 2 · · ·N. (19)

Based on Eqs. (18) and (19), on one hand, multimode
vibrational relaxation is the sum of its single-relaxation
processes, one of which corresponds to a relaxation time;
on the other hand, the number of relaxation times is the
same as that of the vibrational modes available in the
gas. From Eq. (6), every V-V energy exchange couples
the differential relaxation equations because the rate at
which a given mode relaxes depends upon the states of vi-
brational excitation of all other modes [8,9]. This means
that molecular multimode relaxation is controlled by a
very strong V-V coupling, which influences both the re-
laxation frequencies and the relaxation strengths [19,20].
Therefore, the relaxation times depend on the probabili-
ties of transition between different quantum states after
a collision. That is, the relaxation time τn contains the
lifetimes of all quanta, which depend upon the transi-
tion probabilities of all V-T and V-V energy transitions.
Thus, allocating τn to a particular vibrational mode is
not possible [17].

The specific heat of a relaxing gas, Ceff
V in Eq. (18), is

a complex value, resulting in the speed of sound ce also
being complex [2]:

ce =

√
P0

ρ0
γeff =

√
P0

ρ0

Ceff
V + R

Ceff
V

, (20)

where P0 and ρ0 are the equilibrium density and pres-
sure, respectively. Furthermore, from the expression for
the complex wave number ke = ω

c − iαr = ω
ce

, the
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frequency-dependent phase speed c and the relaxational
absorption coefficient αr can be obtained respectively
[15]. As the presence of relaxing gases is manifested by
relaxational peaks in the dimensionless absorption coeffi-
cient αλ (λ is the sound wavelength) as a function of the
sound frequency f , the absorption spectrum αλ is con-
ventionally used to emphasize the effects of relaxation on
sound absorption [12].

Moreover, acoustic absorption due to a given vibra-
tional state will be appreciable only when the period of
the sound is close to the relaxation time for the state;
thus, measuring the frequency-dependent sound absorp-
tion in gases is a powerful method to characterize vi-
brational relaxation [12,15]. Particularly, the relaxation
time τn is obtained from the measured frequency of max-
imum absorption (i.e., the relaxation frequency frelax

n )
according to the equation [1,3,16]

τn =
1

2πfrelax
n

√
(C∞

V + C∗
n)(C∞

V + C∗
n + R)

C∞
V (C∞

V + R)
. (21)

Additionally, we can give physical interpretations for the
temperature Tvib in Eq. (2) in two cases. First, for a
pure diatomic gas has only one kind of vibrational mode
that can arouse one single-relaxation process. In this
case, excited vibrational energy is converted totally into
translational energy (i.e., only V-T energy transfer oc-
curs) thus, T vib is just related to a particular mode. Sec-
ond, however, for a multimode vibrational relaxation, the
energies of all modes are coupled through rapid V-V en-
ergy exchanges [17]. (This is also shown in Eq. (18), as
each C∗

n contains part of the IMH of every vibrational
mode.) Thus, T vib is connected with all modes. Con-
sequently, the interpretation of T vib for a multimode vi-
brational relaxation becomes the temperature and the
relaxation time for a relaxation process.

IV. SIMULATION RESULTS AND
DISCUSSION

The horizontal scale of the sound absorption spec-
trum reflects the dependence of the relaxation time on
the energy exchange between molecules. For the point
with the maximum height in a sound absorption curve,
its position along the abscissa, i.e., the relaxation fre-
quency, can be determined by using the relaxation time
(see Eq. (21)). Hence, we will confirm the validity of our
proposed model by comparing theoretical calculations of
the relaxation frequencies with experiment data. Table 1
provides the collisional diameter (σ) and the depth of the
potential well (ε) of a molecule, as well as the characteris-
tic frequency, amplitude coefficient (Ā2), degeneracy (g)
and steric factor of the vibrational modes for nitrogen,
oxygen, chlorine, methane, and carbon dioxide, respec-
tively, which are necessary for our proposed model.

Fig. 1. Comparison of theoretical sound absorption spectra
with experimental data from Ejakov et al. [21] for CO2-N2

and CH4-N2 mixtures around room temperature.

Table 1. Necessary parameters for the calculation of the
vibrational energy transition probabilities for selected gases
[12,21]

Gas
σ ε/kB Normal modes of Ā2

g
Steric

(10−10m) (K) vibration (cm−1) (amu−1) factor

N2 3.704 80.01 υ = 2331 0.0714 1 1/3

O2 3.541 88.17 υ = 1554 0.0625 1 1/3

Cl2 4.400 257.47 υ = 577 0.0282 1 1/3

υ1 = 2915 0.9921 1

CH4 3.759 154
υ2 = 1534 0.9921 2

2/3
υ3 = 3019 0.9923 3

υ4 = 1306 0.8368 3

υ1 = 1388 0.05 1

CO2 3.99 190.32 υ2 = 677 0.05 2 2/3

υ3 = 2349 0.05 1

We first consider sound absorption spectra in the mix-
tures CO2-N2 and CH4-N2. In Fig. 1, comparisons
of 20%CO2-80%N2, 80%CO2-20%N2, 20%CH4-80%N2,
and 80%CH4-20%N2 show that the theoretical absorp-
tion spectra agree quite well with the experimental data
from Ejakov et al. [21]. The total sound absorption
αλ is the sum of the relaxational parts αrλ and the
classical parts αcλ related with transport phenomena
(αcλ is calculated using the formulation of Stokes and
Kirchhoff [2]). The classical absorption is generally so
small compared with the relaxational absorption at val-
ues of f/P < 106Hz · atm−1 (1 atm = 0.101325 MPa)
that it can be considered to be negligible [12]. On the
other hand, the time between molecular collisions is in-
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Table 2. Calculations of the relaxation strengths and the relaxation times of single-relaxation processes at atmospheric
pressure (P = 1 atm or 0.101325 MPa) in the gas media shown in Fig. 1.

Gas
1 st process 2nd process 3 rd process 4 th process 5 th process

ε1 τ1/s ε2 τ2/s ε3 τ3/s ε4 τ4/s ε5 τ5/s

20%CO2-80%N2 1.85−2 9.93−6 7.76−4 5.74−5 5.36−5 1.01 3.91−11 1.86−6 \ \
80%CO2-20%N2 6.37−2 6.26−6 6.11−4 2.20−6 4.92−9 2.47−6 4.25−5 8.80−2 \ \
40%CH4-80%N2 9.87−3 3.43−6 4.05−8 6.06−10 1.40−12 2.31−9 8.96−10 8.96−9 5.74−5 1.41−6

80%CH4-20%N2 1.74−2 1.82−6 8.07−13 6.05−10 9.68−10 2.70−9 3.94−8 1.69−10 2.96−6 4.27−7

The notation xy implies x × 10y.

Table 3. Comparisons of theoretical calculations and experiment data for the relaxations of gases with different compositions
at atmospheric pressure (P = 0.101325 MPa).

Coupled vibrational Calculated Theoretical Experimental

Gas heat for the relaxation time relaxation relaxation
Temperature Reference

Composition primary process for the primary frequency frequency (K)

(J mol−1K−1) process (s) (Hz) (Hz)

N2 1.32−2 5.80 0.028 ∼0.063 297 [25]

O2 2.83−1 1.49−2 10.8 ∼10 303.2 [26]

Cl2 4.48 4.69−6 4.024 ∼4.04 296.2 [27]

CH4 2.34 1.36−6 1.275 ∼1.65 299.15 [24]

CH4 2.16 1.42−6 1.205 ∼0.955 293.9 [21]

CO2 7.57 5.01−6 4.164 ∼3.94 296.15 [22]

CO2 7.57 5.01−6 4.164 ∼3.84 296.15 [28]

CO2 7.65 4.90−6 4.274 ∼4.54 298.15 [29]

20%CO2-80%O2 1.48 1.23−5 1.374 ∼1.24 300 [30]

30%CO2-70%O2 2.17 1.08−5 1.614 ∼1.84 300 [30]

60%CO2-40%N2 4.32 7.38−6 2.554 ∼2.64 293.5 [21]

60%CH4-40%N2 1.29 2.52−6 6.634 ∼7.34 293.4 [21]

98%CO2-2%air 7.49 5.05−6 4.084 ∼4.04 298 [31]

98%CH4-2%air 2.25 1.39−6 1.235 ∼1.35 298 [31]

The notation xy implies x × 10y.

versely proportional to the pressure, making a lowering
of ambient pressure equivalent to a raising of the sound
frequency and vice versa. Thus, the sound absorption
spectrum αλ is traditionally plotted as a function of the
frequency divided by the pressure f /P [11].

Interestingly, all four spectra in Fig. 1 have only one
absorption peak. Because an absorption peak corre-
sponds to a relaxation process, this means that only one
significant relaxation process is formed and only a single
relaxation time is observed in those four mixtures. This
phenomenon actually exists in most excitable gases [1,
12]. However, according to Table 1, for example, there
are four kinds of vibrational modes in the CO2-N2 mix-
ture. Based on Eq. (19), there would have four single-
relaxation processes in the mixture. Schafer first recog-
nized that a single relaxation time would be observed

even when more than one mode is relaxing as long as the
energy relaxes by a fast V-V exchange through a gating
mode, but his derivation failed to consider the quantum
nature of the V-V energy exchange [3]. Thus, we need to
give an other interpretation to avoid this contradiction.

As defined by Kneser [22], the relaxation strength of
a single-relaxation process is

εn =
C∗

nR

(C∞
V + C∗

n)(C∞
V + R)

. (22)

Moreover, because generally C∗
n � C∞

V at room temper-
ature, Eq. (22) can be simplified as εn ≈ C∗

nR/(C∞2
V +

C∞
V R). Table 2 gives the calculated relaxation strengths

and relaxation times (at P = 1 atm) for all single-
relaxation processes in the four mixtures of Fig. 1. We
find that only the relaxation strength of the 1 st single-
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relaxation process is significant (i.e., the 1 st single-
relaxation process is the primary relaxation process)
while the strengths of the other single-relaxation pro-
cesses are too small to be considered. Thus, although
there will be as many single-relaxation processes with
different relaxation times as there are vibrational modes
available in the gas, most of these processes will have
small relaxation strengths; thus, their contributions to
sound absorption can be ignored in practice. A similar
interpretation can also be given qualitatively by using
the phenomenological theory from BASS et al. [23]. As
a consequence, in most cases, we just need to focus on
the primary relaxation process, which corresponds to the
single-relaxation process with the maximum strength εn

or the maximum coupled vibrational IMH C∗
n.

Table 3 shows comparisons between theoretical calcu-
lations and experiment data for the relaxation frequen-
cies of various gas compositions (P = 1 atm). For each
composition in Table 3, according to the experimental
data, only one peak appears in the absorption spectrum
[18, 25–30]. Hence, we only need to investigate the re-
laxation time of the primary relaxation process. For N2,
because the relaxation frequency is far below the mea-
surement capability, the experimental data actually did
not catch up with the true relaxation frequency, resulting
in a slight discrepancy between the theoretical and the
experimental results. For CH4, the theoretical value is
midway between the experimental data from Gravitt et
al. [24] and Ejakov et al. [21] For 20%CO2-80%O2 and
30%CO2-70%O2, the small difference may come from
the sensitivity of the relaxation frequency in gases to
impurities. For example, small concentrations of water
can cause a large shift of the relaxation frequency [21].
For 100%O2, 100%Cl2, 60%CO2-40%N2, and 60%CH4-
40%N2, our theoretical calculations agree well with the
experiments. For the ternary mixtures 98%CO2-2%air
and 98%CH4-2%air (where air is supposed to be com-
prised of 78% N2 and 22% O2), our results are also con-
sistent with the experimental data. Overall, comparisons
in Table 3 further validate our proposed model for cal-
culating the vibrational relaxation times.

V. CONCLUSION

In this paper, we have provided a theoretical physi-
cal model that allows for the two quanta for one quan-
tum V-V exchange to calculate the vibrational relaxation
times in multi-component excitable gases. The eigenval-
ues of the energy-transition-rate matrix of the algebraic
relaxation equations are proven to be the reciprocals of
multi-relaxation times. We have quantitatively demon-
strated that a vibrational multimode relaxation will have
multiple relaxation times and that their number is equal
to that of the vibrational modes available in gas. One
of the multiple relaxation times includes lifetimes of all
quanta, which depend upon the transition probabilities

of all V-T and V-V energy transitions, and every relax-
ation time is related with all vibrational modes. More-
over, for most excitable gases, the relaxation frequencies
calculated from the relaxation times of the primary pro-
cesses are the relaxation frequencies.

Just as the SSH theory is limited for applications in the
calculation of energy transition probabilities in strongly
polar gases [8,12], the same deficiency also exists in our
proposed model. Thus, in the future, some modified the-
ories [11,32,33] should be used to enhance our model to
accommodate polar gases with high concentrations.
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