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By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-
polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed
of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular
in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have
studied the band structure as a function of the size of the rods. We have also studied the flat bands
appearing in the band structures and have shown that for frequencies around the surface plasmon
frequency, the modes are highly localized at the interface between the metallic rods and the air
background.
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I. INTRODUCTION

In recent years, the study of periodic dielectric struc-
tures called photonic crystals (PCs) has received cosider-
able interest because of their ability to prevent the prop-
agation of electromagnetic (EM) waves in a certain fre-
quency range known as the photonic band gap (PBG).
PBG crystals enable the manipulation of EM waves in
many elaborately designed ways [1–4]. Depending on
the constituent materials, PCs can be categorized into
two classes. One is dielectric photonic crystals (DPCs),
and the second is dispersive photonic crystals such as
metallic photonic crystals (MPCs). MPCs are interest-
ing for different applications such as practical filters [5,
6], polarizers [7] or waveguides [8]. The band structure of
photonic crystals has been extensively studied for many
structures with different geometry of rods [9–12]. Sev-
eral approaches such as the plane wave method (PWM)
[13–15], the transfer matrix method (TMM) [16] and the
finite difference time domain (FDTD) method [17–19],
have been employed to calculate the photonic band struc-
tures for 2D and 3D DPCs. The PWM method is quite
useful and is highly efficient for calculating the photonic

∗E-mail: aliasgharsedghi@gmail.com; Fax: +98-4712224927

band structure of PCs. In this method, the material is as-
sumed to be independent of the frequency and an eigen-
value problem is formulated to solve for the eigenfrequen-
cies of the given wave vector in the irreducible Brillouin
zone. For dispersive materials, because of the frequency
dependence of the dielectric constant, the characteris-
tic matrix is frequency dependent, which consequently
renders the conventional PWM difficult to handle. How-
ever, because of the convergency problem, calculating
the H-polarization band structure of MPCs by using
this method is impossible. Several theoretical methods,
such as the revised plane wave method (RPWM) [20,21],
the Korringa-Kohn-Rostoker (KKR) method [22,23], the
multiple scattering method (MSM) [24,25] and the mul-
tiple multipole (MMP) method [26], have been employed
to study the photonic band structures of dispersive PCs.
More recently, the efficient Dirichlet-to-Neumann (DtN)
map method, which is a powerful tool for calculating the
band structure of photonic crystals composed of disper-
sive materials [27,28], especially for H-polarization, has
been proposed. The DtN map is an operator that maps
the wave field on the boundry of a unit cell to its normal
derivative there. The main advantages of this method
are as follows: (i) Eigenvalue problems contain relatively
small matrices. (ii) Unlike other methods based on cylin-
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Fig. 1. (Color online) Two-dimensional photonic crystal
with a square lattice of circular rods and the corresponding
first Brillouin zone.

drical wave expansions, such as the KKR method, sophis-
ticated lattice sum techniques are not needed.

In this paper, we consider 2D PCs with a square lat-
tice composed of circular rods embedded in an air back-
ground. Here, the rod material is selected to be metallic
so that it is dispersive and has a frequency-dependent
dielectric constant. Because of the importance of the
PBG in filtering and waveguide applications, we have
studied how the size of the metallic material can affect
the band gap properties for H-polarization. This work
has already been done for E-polarization. Moreover, we
discuss the properties of the flat bands appearing in the
H-polarization band structures. The most significant fea-
ture of H-polarization is the existence of surface plasmon
modes that are highly localized around the interface be-
tween the metal and the surrounding dielectric.

II. MODEL AND METHOD OF
CALCULATION

We consider a two-dimensional photonic crystal com-
posed of circular metallic rods (parallel to the z-axis)
with a dielectric constant εa obeying the Drude model
[29] in an air background, εb = 1. The geometry of
the system is illustrated in Fig. 1. For in-plane prop-
agation of an EM wave in 2D PCs, the H-polarization
(the transverse electric (TE)) and the E-polarization (the
transverse magnetic (TM)) modes are known to be in-
dependent eigenmodes that can be studied separately.
Because the band structure of metallic photonic crystals
for E-polarization has been extensively studied before,
we here restrict ourselves to the H-polarization.

In order to describe the propagation of electromagnetic
waves in a 2D PC, one can use the Helmholtz equation
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) + k2
0H = 0. (1)

Here, k0 = ω/c is the vacuum wave number, c is the
speed of light in vacuum, and ε is the dielectric con-
stant, which is a periodic function with the periodicity

of the lattice constant. For computing the band structure
of our system, we use the recently-developed DtN map
method, which is a highly efficient approach for calcu-
lating the band structure of dispersive photonic crystals
[27]. In this method, one needs the matrix form of an
operator that maps H on the boundary of the square
unit cell to the normal derivative of H on the boundary.
In our system, this matrix can be efficiently calculated
by using the following cylindrical wave expansion:

H(x, y) =
+∞∑

m=−∞
CmΦm(r, θ) , Φm(r, θ) = φm(r)eimθ,

(2)

where m is an integer, r and θ are polar coordinates, and
φm(r) is related to the Bessel functions Jm and Ym as

φm(r) =
{

AmJm(k0nar) , r < R,
BmJm(k0nbr) + Ym(k0nbr) , r > R.

(3)

Here, na =
√

εa , nb = 1, and R is the radius of the
metallic rod. By using the Bloch theorem and applying
the boundary conditions of the electromagnetic fields at
the interface of the rods, we find that the method leads
to the following generalized eigenvalue problem [27]:
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Here, the eigenvalue λ, which is related to the Bloch wave
vector, and other quantities are introduced in Ref. 27.
For a given frequency ω, this generalized eigenvalue equa-
tion can be solved numerically to obtain the photonic
band structure.

III. RESULTS AND DISCUSSION

In this paper, the photonic band structures of 2D PCs
for H-polarization are calculated using the Dirichlet-to
Neumann map method. The considered photonic crystal
with a square lattice is composed of metallic circular rods
embedded in an air background. The metal is a disper-
sive material and has a frequency-dependent dielectric
constant. The dielectric constant for a metal is given by
the Drude model [29], and the plasma frequency is set
to be ωpa/2πc = 1. In a practical point of view, metals
with a high electron density and thus a high plasma fre-
quency, such as silver (Ag), can be a proper candidate.
The plasma frequency of Ag is 13.6× 1015Hz, and from
the normalization relation, lattice constant of the metal-
lic photonic crystal, a, is 0.138 μm. A total of 9 points on
each edge of the unit cell were used in the calculations,
which ensured sufficient convergence for the frequencies
of interest. Our main goal here was to study the mod-
ification of the band gap spectrum when the size of the
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Fig. 2. Variation of the normalized value of band gap width
with the radius of the rods, R/a.

scatterers was varied. Thus, the radius of the circular
rods was treated as an adjustable parameter to obtain
the maximum photonic band gap.

Our calculations show that some PBGs exist in the
band structures. We have chosen the most important
PBGs, which have the largest widths. Figure 2 presents
the normalized width of these PBGs as a function of
the size of the rods. This figure shows that the maxi-
mum width of the first PBG has a magnitude of �ω =
0.0872(2πc/a) at R = 0.46a and the second PBG has a
magnitude of �ω = 0.1016(2πc/a) at R = 0.35a. The
photonic band structures of these optimum PBGs are
displayed in Fig. 3. We consider Fig. 3(b) to be the
photonic band structure with the largest PBG. This fre-
quency spectrum shows that the PBG lies between fre-
quencies 0.8663 and 0.9653 in units of (2πc/a).

As this figure shows, in addition to the PBG, there
is a flat band region. These flat bands, which disap-
pear in the case of the E-polarization mode, are located
in the vicinity of ωa/2πc = 0.7071, known as the sur-
face plasmon frequency ωsp. In this frequency range,
the dielectric constant of the rods approaches to minus
one (εa = −1). When the surface plasmon frequency
ωsp is approached, the number of flat bands is increased,
and a dense region is formed. To provide more insight,
we illustrate the field distributions of the two surface
plasmon modes in Fig. 4. Clearly, the H field distribu-
tions are highly localized around the interface between
the metallic rods and the air background, and when the
frequencies of the modes approach the surface plasmon
frequency, the localization length (decay length along the
normal to the interface) of these modes decreases and the
number of field nodes increases.

Fig. 3. Photonic band structures for H polarization at
optimum values of (a) R = 0.46a and (b) R = 0.35a.

Fig. 4. (Color online) H field distribution of surface plas-
mon modes with frequencies (a) 0.6835 and (b) 0.6931 in units
of 2πc/a at the X and the M points, respectively.

IV. CONCLUSIONS

In conclusion, we have used the Dirichlet-to-Neumann
method to perform a detailed numerical analysis of the
photonic band structures of 2D MPCs with a square lat-
tice composed of metallic rods embedded in an air back-
ground. The rods have circular cross sections. In our
calculations, H-polarization is considered. We have in-
vestigated how the size of scatterers can affect the pho-
tonic band structures. We have also demonstrated the
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existence of two major PBGs. Among these PBGs, the
largest PBG has a magnitude of �ω = 0.1016(2πc/a) at
R = 0.35a. This result could be useful in designing 2D
photonic crystals with large PBGs in frequency ranges
of interest. We have also studied the flat band region
appearing in the band structure corresponding to the
maximum PBG. We have shown that the field distribu-
tions are highly localized around the interface between
the metallic rods and the air background, and when the
frequency of the modes approaches the surface plasmon
frequency, the localization length (decay length along the
normal to the interface) of these modes decreases and the
number of field nodes increases.
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