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Abstract: Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, 

high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the 

kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high 

speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the 

consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler 

method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic 

errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the 

machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine 

when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the 

running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine 

tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a 

solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well 

as selection of suitable running parameters. 
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1  Introduction 
 
Compared with serial machines, parallel kinematic 

machines(PKMs) have advantages in terms of high 
stiffness, excellent dynamic performance, large payload, 
and ease of control[1–2]. Therefore, they are increasingly 
being used in the industry, for example as machine tools, 
assembly robots, flight simulators, or radio telescopes[3–5]. 
The earliest PKMs were based on hexapods[6] which, at 
least in theory, are more precise than serial machines, as 
they do not suffer from error accumulation[7]. However, this 
is not the case in practice, where none of them are more 
accurate than conventional serial machine tools[8]. The 
main reason is that it is difficult to ensure the 
manufacturing accuracy of the spatial joints. 

To overcome this problem, planar PKMs have been 
introduced and have created considerable interest[9]. Their 
components are all jointed together by revolute or prismatic 
joints, which are much easier to manufacture with high 
accuracy. However, only few planar PKMs are used in high 

                                                                 
* Corresponding author. E-mail: jiangyao11@mails.tsinghua.edu.cn  
Supported by National Natural Science Foundation of China(Grant No. 

51272560), National Basic Research Program of China(973 Program, 
Grant No. 2011CB302404), and National Science Foundation for 
Distinguished Young Scholars of China(Grant No. 51225503) 
© Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014 

accuracy applications with success[10]. Though a number of 
inevitable errors exist in the process of manufacturing and 
assembling, they can be calculated and compensated for 
through kinematic calibration[11–12]. With further research, it 
has been found that the elongated links of PKMs can easily 
suffer from deformations during the motion process[13], 
especially at high speeds or under heavy loads. The 
deformations of the links are changing dynamically and are 
impossible to eliminate in advance. In order to reduce their 
deformations, the links can be designed to be more rigid, 
but this would increase their inertia and decrease the 
dynamic performance of the machine[14]. 

In order to improve the accuracy of the PKM during the 
motion process, it is necessary to study the kinematic errors 
of the machine caused by the deformations of its links. 
Then it can be possible to seek the solutions for improving 
the running accuracy of the machine, such as design 
optimization, suitable running parameters selection and so 
on. First of all, the dynamic model of the machine with the 
flexible components should be studied. Recently, the 
dynamics of flexible serial machines has been studied by 
many researchers[15], and numerous approaches were 
developed to predict their dynamic characteristics. By 
contrast, PKMs have relatively complicated kinematic and 
dynamic performance. A few investigations were concerned 
with the dynamics of flexible PKMs. PIRAS, et al[16], 
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studied the dynamics of a planar fully parallel robot with 
flexible links by the finite element method. The results 
showed that the configuration of the mechanism had a 
significant influence on the nature of the resulting elastic 
vibrations. ZHANG, et al[17], developed the structural 
dynamic equations of motion for a 3-PRRR parallel 
manipulator with three flexible intermediate links based on 
the assumed mode method. The modal characteristics of the 
flexible manipulator system were given. WANG, et al[18], 
utilized the Lagrange finite element formulation to derive 
the dynamic model for a flexible planar linkage of a planar 
parallel manipulator. Based on the dynamic model, PZT 
actuators were applied to effectively damp vibration of the 
flexible linkages. ZHOU et al[19], provided a vibration 
analysis model and the modeling method for a fully flexible 
3PRS manipulator. In their work, the foci are mainly on the 
vibration analysis of the flexible parallel kinematic 
machines. The accuracy of the machines and the 
corresponding influence factors, such as running 
parameters and external loads are not considered. There are 
some other articles in the literature investigating the 
accuracy analysis of the PKMs. Several performance 
indices were developed to roughly evaluate their accuracy, 
including a dexterity index[20], condition numbers and a 
global conditioning index[21]. The best accuracy measures 
included the local maximum position and orientation errors, 
given actuator inaccuracies, and mean value and variance 
of the errors over a specific workspace[22–24]. However, 
those indices are not suitable for analyzing the PKMs with 
both translational and rotational degrees of freedom[25]. 
Moreover, the dynamic characteristic of the machine and 
the flexibility of the links are not taken into account in 
these investigations. 

In this paper, the 3-RRR PKM[26–28], a typical planar 
machine performing two translational and one rotational 
motions, is mainly discussed as the study object. Based on 
the dynamic model, a novel method is presented to analyze 
its running accuracy with the consideration of the 
deformations of its links. The remainder of this paper is 
organized as follows. In section 2, the inverse kinematics of 
this machine is analyzed. Then its dynamic model is 
constructed by the Newton-Euler method in section 3. In 
section 4, the deformations of all links under constraint 
forces and inertia forces are calculated. In section 5, the 
relationship between the accuracy of the machine and the 
deformations of the links is established. In section 6, 
numerical examples are presented. Finally, conclusions are 
given. 

 
2  Description and Inverse Kinematic Model 

 
As shown in Fig. 1, the 3-RRR PKM is composed of a 

base, a moving platform and three identical kinematic 
chains. Each kinematic chain consists of two links jointed 
together by a revolute joint, and with one end connected to 
the base at point Ai and the other end connected to the 

moving platform at point Ci by revolute joints. The 
machine possesses three degrees of freedom and is actuated 
by three motors located at points A1, A2 and A3. 

 

 
Fig. 1.  Kinematic model of a 3-RRR PKM 

 
As illustrated in Fig. 2, a base coordinate frame OXYZ is 

fixed to the base and a moving coordinate frame Txyz is 
attached to the moving platform. Another two moving 
frames Aixiyizi and Bixiyizi are mounted on links AiBi and 
BiCi at points Ai and Bi, respectively. 

 

 
Fig. 2.  Vector loop of a kinematic chain 

 
The rotation matrices of coordinate frames {T}, {Ai} 

and {Bi} with respect to {O} can be described respectively 
as 
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where i , i and  are the rotation angles of link AiBi, link 
BiCi and the moving platform, respectively. 

According to Fig. 2, the closed-loop constraint equation 
associated with the ith kinematic chain can be written as 

 

1 1 2 2 ,T i i i iL L+ = +t R C A + l l           (4) 

 
where t=(x y 0)T, TCi=(xCi yCi 0)T, and Ai=(xAi yAi 0)T

 
are 

the position vectors of points T, Ci and Ai in coordinate 
frames {O}, {T} and {O}, respectively. L1 and L2 are the 
length of links AiBi and BiCi, and li1 and li2 are their unit 
vectors. 

For a given t, taking the norm on both sides of Eq. (4) 
yields 

 

2 1 1 .T i i iL L= + - -t R C A l           (5) 

 
The only unknown in Eq. (5) is i , which can be solved 

uniquely[28] according to the assembly model in Fig. 1 and 
unit vector li1 can be determined consequently. 

From Eq. (4), unit vector li2 can be derived as 
 

( )2 1 1
2

1
.i T i i iL

L
= + - -l t R C A l         (6) 

 
The position vectors of centroids ci1 and ci2 of links AiBi 

and BiCi in coordinate frame {O} can be expressed as 
 

1 1,ci i Ai ci= +r A R r               (7) 

 

2 1 1 2 ,ci i i Bi ciL= + +r A l R r            (8) 

 

where ( )T1
1 1 0 0 ,

2
rAi
ci

L
= ( )T2

2 1 0 0 .
2

rBi
ci

L
=  

Taking the time derivative of Eq. (4) leads to 
 

( ) ( ) ( )1 1 1 2 2 2 ,T T i i i i iL L+ ´ = ´ + ´v ω R C ω l ω l
  

 (9) 

 
where vT is the velocity of point T, andω , 1iω and 2iω are the 

angular velocities of the moving platform, links AiBi and 
BiCi, respectively. 

Taking the dot product with li2 and li1 respectively on 
both sides of Eq. (9) yields 
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Taking the time derivative of Eqs. (7) and (8), the 

velocities of points ci1 and ci2 can be obtained as 

( )1 1 1 ,ci i Ai ci= ´v ω R r             (12) 

 

( ) ( )2 1 1 1 2 2 .ci i i i Bi ciL= ´ + ´v ω l ω R r       (13) 

 
Differentiating Eq. (9) with respect to time yields 
 

( ) ( )

( ) ( )
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where aT is the acceleration of point T, and ε , 1iε and 2iε are 

the angular accelerations of the moving platform, links AiBi 
and BiCi, respectively. 

Through the same method as above, the magnitude of the 
angular accelerations of links AiBi and BiCi, and the 
accelerations of points ci1 and ci2 can be obtained 
respectively as 
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3  Inverse Dynamic Model 

 
In order to analyze the kinematic errors of the moving 

platform caused by the deformations of the links, all the 
applied forces should be computed. Therefore, the dynamic 
model of the machine is constructed by utilizing the 
Newton-Euler method. The force analysis diagrams of link 
BiCi, link AiBi and the moving platform are shown in Figs. 
3, 4 and 5, respectively. 

 

 
Fig. 3.  Force analysis diagram of link BiCi 

O T

O T

O T

O Ai

O Ai

O T

O T

O T

O Ai

O Bi

O T O T

O AiO Ai

O Bi O Bi



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·893·

 
Fig. 4.  Force analysis diagram of link AiBi 

 

 
Fig. 5.  Force analysis diagram of the moving platform 

 

According to Fig. 3, the force balance equation of link 
BiCi can be expressed as 

 

2 ,Bi Ci i+ + =F F f 0              (19) 

 
where 2 2 2f ai cim=-  is the inertial force of link BiCi, m2 is 
its mass, and FBi=(FBiv FBil 0)T and FCi=(FCiv FCil 0)T 
represent the constraint forces at points Bi and Ci. 

Taking moment about points Bi and Ci, the moment 
balance equations of link BiCi can be obtained as 

 

( )2 2 2 2 2 ,Bi ci i i Ci iL´ + ´ + =R r f l F n 0       (20) 

 

( )2 2 2 2 2 2 2 ,Bi ci i i i Bi iL L- ´ - ´ + =R r l f l F n 0    (21) 

 
where 2 2 2i i= -n J ε is the inertial moment of link BiCi, and 

J2 is its moment of inertia. 
From Eqs. (20) and (21), FCiv and FBiv can be obtained as 
 

( )( )3 2 2 2 2 ,Civ Bi ci i iF L=- ´ +e R r f n       (22) 

 

( )( )3 2 2 2 2 2 2.Biv Bi ci i i iF L L=- - ´ +e R r l f n    (23) 

 
According to Fig. 4, the force balance equation of link 

AiBi can be described as 
 

1 ,Ai Bi i- + =F F f 0               (24) 

where 1 1 1i cim=-f a  is the inertial force of link AiBi, m1 is 
its mass, and FAi=(FAiv FAil 0)T represents the constraint 
force at point Ai. 

Taking moment about point Ai leads to 
 

( )1 1 1 1 1 ,Ai ci i i Bi i AiL´ - ´ + + =R r f l F n n 0     (25) 

 
where 1 1 1n J εi i=-  is the inertial moment of the link, J1 is 

its moment of inertia, and nAi is the driving torque. 
Referring to Fig. 5, the force balance equation of the 

moving platform can be described as 
 

3
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,F F F 0T Ci
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+ - =å              (26) 

 
where F aT Tm=-  is the inertial force of the moving 
platform, m is its mass, and Fext=(Fextx Fexty 0)T is the 
external force acting on the moving platform. 

Taking moment about point T leads to 
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where Mext is the external moment acting on the moving 
platform, R= (Rx Ry 0)T is the position vector of the mass 
center of the moving platform in coordinate frame {O}, 

= -n Jε is the inertial moment of the moving platform, 
and J is its moment of inertia. 

Combining Eqs. (26) and (27) yields 
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Then FBi can be obtained according to Eq. (19) as 
 

2 .Bi Ci i=- -F F f                (30) 

 
The driving torque nAi can be obtained from Eq. (25) as 
 

( )1 1 1 1 1.Ai Ai ci i i Bi iL=- ´ + ´ -n R r f l F n      (31) 

 
4  Deformation Analyses of the links 

 
The deformations of the components during the motion 

process will affect the accuracy of the machine. Compared 
with the links, the moving platform is more rigid, and its 
deformation can be negligible. Here, the deformations of 
the links will be investigated. 

 
4.1  Deformation analysis of link BiCi 

Both ends of link BiCi are connected by passive 
frictionless revolute joints, where its bending deformation 
only occurs under the inertia moment of the link, which is 
relatively smaller than the constraints forces of the link. 
Besides, its maximum bending deformation occurs near the 
middle region of link BiCi, so its influence on the kinematic 
error of the end point of the link BiCi is small. Therefore, 
only the tension and compression deformation of link BiCi, 
which can also be called axial deformation, is taken into 
consideration. The forces acting on link BiCi is shown in 
Fig. 6, where pi2(x) represents the distributed load on the 
link and can be described as 

 

( ) 2 2
2

2

,i x
i

m
x

L

-
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a
p               (32) 

 
where ai2x is the acceleration of the point on link BiCi at 
coordinate x. 

 

 
Fig. 6.  Forces acting on link BiCi 

 
The axial force of link BiCi at coordinate x can be written 

as 
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The axial deformation of link BiCi can be described as 
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where S2 is the cross-sectional area of link BiCi, and E is the 
elastic modulus. 

 
4.2  Deformation analysis of link AiBi 

Unlike link BiCi, one of the ends of link AiBi is connected 
to the motor shaft, which can be considered as a fixed end. 
So it will also tend to be bending deformation except for 
axial deformation. 

The forces acting on link AiBi are shown in Fig. 7, where 
pi1(x) represents the distributed load on the link and can be 
described as 
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L
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where ai1x is the acceleration of the point on link AiBi at 
coordinate x. 

 

 
Fig. 7.  Forces acting on link AiBi 

 
The axial force of link AiBi at coordinate x can be written 

as 
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The axial deformation of link AiBi can be described as 
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where S1 is the cross-sectional area of link AiBi, and 
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in Fig. 8. 
 

 
Fig. 8.  Bending deformation diagram of link A

i
B

i
 

 
The bending deformation of link AiBi is caused by 

distributed load pi1(x) and constraint force FBi. In order to 
simplify the problem, the bending deformation can be 
solved by the superposition method. 

Set point Ai as a fixed end, the deflection of point Bi 
under constraint force FBi can be described as 
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where I1 is the moment of inertia of link AiBi, and 

( )T

1 1 1 0 .i i y i xl l^ = -l  

The deflection of point Bi under distributed load pi1(x) 
can be described as 
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Therefore, the total bending deformation of point Bi is 
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The position error δ ip of point Bi caused by the bending 

deformation can be considered as the angular error δ i of 
link AiBi, which can be described as 

 

1δ δ .i ip L = /                 (41) 

 
5  Accuracy Analysis of the Moving Platform 

 
The deformations of links AiBi and BiCi will lead to 

kinematic errors of the moving platform, including the 
position errors( x and y ) and the rotation error(  ). 
Taking the deformations of the links and these kinematic 
errors into account, Eq. (4) should be rewritten as 
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( )T
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δ i is the angular error of link BiCi. 

Subtraction of Eq. (4) from Eq. (42) and ignoring the 
higher order items yields 

 

1 1 1 1 2 2 2 2δ δ δ δ δ δ .T i i i i i i iL L L L+ = + + +t R C l l l l    (43) 

 
Taking dot product of Eq. (43) with li2 at both sides 

yields 
 

( ) T T
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The relationships between the deformations of the links 

and the kinematic errors of the moving platform can be 
obtained from Eq. (44) as 
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From Eq. (45), the kinematic errors of the moving 

platform can be expressed as 
 

1
1 1 2 2 .-=D E E D                (46) 

 
Eq. (46) can be deduced further on by replacing the 

deformations of the links with the expressions calculated 
above. 
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The relationship between FBil and FCil can be obtained 
from Eq. (19) as 

 

2 2.Bil Cil i iF F= + l f   

            

(47) 

 
Substituting FCil for FBil in Eqs. (34), (37) and (41) yields 
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(48) 

( )
2
1

1 2
1

δ ,
3i i i Cil i

L
F b

EI
 ^= +l l

           

(49) 

( )2
2

2

δ ,i Cil i

L
L F c

ES
= +

             

(50) 

 
where 

2
1 1 1 1 2 1 2 2 2

1
,

3i i i i Biv i i i ia m L F ^= + +l l l l l f     

 

1 1 1
1 2 1 2 2 2

11
,

40
i

i i i Biv i i i i

m L
b F

 ^ ^ ^=- + +l l l l l f     

 

( ) 2 2
2 2 1 1 1 1 1 1 2 2 2 2 2

1 1
.

2 6i i i i i i i i ic m L L m L é ù= ´ - - +ê úë ûl ε l l l f   

 
Substituting Eqs. (48), (49) and (50) to Eq. (46) yields 
 

1 T
1 1 2 2 ,-= +D E E KE F N

            

(51) 

 
where 

( )T
1 2 3 ,C l C l C lF F F=F  

 
3 3 3

1 1 2 1 1 2 1 1 2

1 1 2 1 1 2 1 1 2

diag ,
3 3 3

L L L L L L L L L

ES EI ES ES EI ES ES EI ES

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
K  

 
1

1 2 ,-=N E E KG  
 

( )T
1 1 1 2 2 2 3 3 3 .a b c a b c a b c=G  

 
Substituting Eq. (28) to (51) yields 
 

( )T1 1
1 1 2 1 2 ,- -= + = +D E E K E E Q N MQ N

     

(52) 

 

where ( )T1 1
1 2 1 2 .- -=M E E K E E  

The foregoing analysis shows that the deformations of 
the links will lead to the position errors and the rotation 
error of the moving platform. Among those, the rotation 
error does not affect the accuracy of the center of the 
moving platform, so the accuracy of the machine can be 
measured by the total position error defined as 

 

( ) ( )2 2
δ δ .e x y= + (53) 

 
6  Numerical Simulation 

 
The geometrical and material parameters of the machine 

shown in Table 1 are used to study the accuracy of the 
machine when running the typical path. 

 
Table 1.  Related parameters of the machine 

Parameter Value 

Radius of the moving platform r / mm 150 
Radius of the fixed platform R / mm 600 
Length of link AiBi  L1 / mm 500 
Width of link AiBi  b1 / mm 30 
Height of link AiBi  h1 / mm 30 
Length of link BiCi  L2 / mm 500 
Width of link BiCi  b2 / mm 30 
Height of link BiCi  h2 / mm 30 
Thickness of the moving platform H / mm 30 
Density of the material ρ / (g • mm–3) 7.9 
Elastic modulus of the material E / GPa 210 

 
6.1  Workspace and motion planning 

The workspace of the machine is presented in Fig. 9. In 
this workspace, a circle path is selected, with its center 
point at (0, 0) mm and a diameter of 350 mm. 

 

 
Fig. 9.  Workspace and path 

 
The acceleration characteristics of the moving platform 

when following this path should be planned. One of the 
most common methods is the S-Shape curve to impact, and 
the acceleration of the moving platform is given by 
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(54) 
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where a0 is the maximum acceleration, td the time in 
acceleration and deceleration phases, and Tt the total 
motion time. The velocity v and displacement s can be 
obtained by integration. 

 
6.2  Simulation examples for the accuracy 

of the moving platform 
Eq. (52) indicates that the precision of the moving 

platform will be affected by the performance of matrix M. 
Matrix M is only defined by the geometrical parameters 
and the pose of the machine. Therefore, it can be used to 
optimize the design of the machine through further 
processing, such as normalization. The performance of 
matrix M can be evaluated by its condition number. A 
smaller condition number will ensure a better performance 
of the matrix. Here we can use its condition number for 
predicting the performance of this machine. The condition 
number of matrix M along the selected path is shown in Fig. 
10. 

 

 
Fig. 10.  Condition number of matrix M along the path 

 
It can be seen that on points 1 to 3, where condition 

number reaches the maximum, matrix M has the worst 
performance, whereas matrix M has the best performance 
on points 4 to 6. The central angle of the circle path and the 
condition number of matrix M on each point are shown in 
Table 2. 

 
Table 2.  Central angle and condition number on each point 

Point number Central angle θ / (°) Cond(M) C 

1 71.16 2993.04 

2 191.16 2993.04 

3 311.16 2993.04 

4 116.04 166.75 

5 236.04 166.75 

6 356.04 166.75 

 
To obtain a better comparison of the performance of the 

machine on the six points, the total position error graphs of 
the moving platform on each point under unit sphere force 
are given in Fig. 11. The size of the total position error 
graphs are expanded to 10 000 times to get a clear view. 

Fig. 11 reflects the stiffness of the machine on each point 
at a certain extent. A longer length from the curve to the 
point means that the machine has a worse stiffness along 

the direction with longer length. It can be clearly seen that 
the size of the total position error graphs on points 1 to 3 
are much larger than those on points 4 to 6. This indicates 
that it is easier for the machine to suffer from deformations 
on points 1 to 3 than on points 4 to 6 under the same force. 

 

 
Fig. 11.  Total position error graphs of the moving 

 platform on each point 

 
The total position errors of the moving platform when 

following the circle path with two different maximum 
accelerations are shown in Fig. 12. In this simulation, td is 
2s, and a0 is 150 mm/s2 and 200 mm/s2, respectively. One 
can see that the maximum position error of the moving 
platform occurs near where the condition number of matrix 
M is also at its maximum. Moreover, the magnitude of the 
acceleration will have great influence on the accuracy of 
the machine. Though the maximum acceleration is 
increasing only from 150 mm/s2 to 200 mm/s2, the 
maximum position error of the moving platform nearly 
doubled. 

 

 
Fig. 12.  Total position errors of the moving platform 

 during motion process 

 
6.3  Influence of external loads on the accuracy 

of the machine 
The machine will inevitably suffer external loads during 

the motion process, so it is necessary to analyze its capacity 
in resisting their influence. The circle path is still selected 
for analyzing the influence of the external loads on the 
accuracy of the machine. 
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The direction with the worst stiffness of the machine 
along the path is shown in Fig. 13. The length of the line on 
each point represents the total position error of the moving 
platform under unit force along the direction with the worst 
stiffness, which can also be called flexibility. The sizes of 
the lines are expanded to 10 000 times to get a clear view. 
One can see that the direction of the worst stiffness varies 
along the path. It can be inferred that when the direction of 
the external loads coincides with the line, they will have a 
remarkable negative influence on the accuracy of the 
machine. So in order to decrease the negative influence of 
the external loads, they should be applied perpendicular to 
the direction of the worst stiffness as far as possible. 

 

 
Fig. 13.  Direction of the worst stiffness along the circle path 
 
The flexibility of the machine along the circle path in 

directions X and Y is shown in Fig. 14 from which the 
stiffness performance of the machine on directions X and Y 
can be clearly obtained. 

 

 
Fig. 14.  Flexibility of the machine along the circle path 

in direction X and Y 
 
An external load of 1 N is applied separately on the 

center of the moving platform in direction X and Y during 
the motion process. In this simulation, the maximum 
acceleration a0 is 200 mm/s2. The total position errors of 
the moving platform without external load and under 
external load are all given in Fig. 15. The accuracy of the 
machine under external load is clearly decreased in the 
region where its flexibility is relatively large. 

In the previous simulation, the inertia forces are also 
acting as external loads. In order to reduce their influence, 
the magnitude of the external load is increased to 10 N. The 

total position errors of the moving platform under such 
external load in direction X and Y are shown in Fig. 16. It 
can be clearly seen that the curves are almost in accordance 
with the curves of the flexibility of the machine in X and Y 
direction in Fig. 14. 

 

 
Fig. 15.  Total position errors of the moving platform 

under force 1N in X or Y direction 
 

 
Fig. 16.  Total position errors of the moving platform 

under force 10 N in X or Y direction 

 
 

7  Conclusions 
 

(1) Based on the dynamic model constructed by the 
Newton-Euler method, a simple explicit expression is 
derived to calculate the position error of the machine taking 
into consideration the deformations of the links. 

(2) The running parameters, especially the magnitude of 
the maximum acceleration, will have great influence on the 
accuracy of the machine. 

(3) The external loads will deteriorate the accuracy of the 
machine tremendously when their direction coincides with 
the direction of the worst stiffness of the machine. 

(4) The method can be applied to the other PKMs and 
serial machines to analyze their running accuracy. It also 
provides a feasible solution for the design optimization as 
well as selection of running parameters of the machine. 
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