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Abstract: The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current 

researches. In this paper, a physics-based modeling and simulation method for the motional cable harness design is presented. The 

model, based on continuum mechanics, is established by analyzing the force of microelement in equilibrium. During the analysis 

procedure, three coordinate systems: inertial, Frenet and main-axis coordinate systems are used. By variable substitution and 

dimensionless processing, the equation set is discretized by differential quadrature method and subsequently becomes an 

overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method. With the profile of motional 

cable harness obtained from the integral of arithmetic solution, a motion simulation system based on “path” and “profile” as well as the 

experimental equipments is built. Using the same parameters as input for the simulation and the real cable harness correspondingly, the 

issue in designing, such as collision, can be easily found by the simulation system. This research obtains a better result which has no 

potential collisions by redesign, and the proposed method can be used as an accurate and efficient way in motional cable harness design 

work. 
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1  Introduction 
 

Cable harnesses are widely used in electro-mechanical 
products with the development of electronic and optical 
communication technology. The function of cable harness 
is to transport signal and power. The product will not be 
able to work if the cable harness is malfunctioning. 
Therefore, the design rationality of cable harness is very 
important to the quality of products. 

There is a special type of cable harness named motional 
cable harness, which is able to move while the connected 
part is moving. Several problems, including bending scathe, 
fatigue scathe and collision with other parts, are related to 
motional cable harness because of the weakness in design 
method. Motional cable harness design is usually at the end 
of the whole product design circle and is carried out by 
repeatedly testing of the physical prototype, which 
increases the cost as well as designing time and reduces the 
reliability at the same time. Thus establishing a 
physics-based model and simulating the motion process of 
motional cable harness in virtual environment become an 
effective method for the problems mentioned above. 

Some related work using different approaches is listed 
below. RABAETJE[1] reported a kind of spring-mass model 
and LEON, et al[2], used a kind of finite element model to 
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simulate the deformation of the cable. LOOCK, et al[3], 
proposed a kind of mass-spring model with generalized 
springs to obtain a physically plausible real-time simulation 
for cables with moderate complexity. HERGENROTHER, 
et al[4], presented an algorithm by inverse kinematics. The 
cable is modeled by consecutive cylinder segments and ball 
joints connecting the segments. QI, et al[5], presented a 
physical beam-bending model to simulate the behavior of 
the elastic tube. SANG, et al[6], proposed a method based on 
the shape-retaining chain linked model that can handle the 
deformation of flexible object. SEONGKI, et al[7], proposed 
a continuum mechanics-based finite element adaptive 
method to perform a haptic interaction with a deformable 
object. Most models presented are not accurate enough 
because they cannot describe the twisting of motional cable 
harness accurately. 

The kinetic analogy was proposed in 1859 by Kirchhoff. 
It is the base of statics of an elastic rod. The elastic rod 
model can be used as the mechanical model for many 
objects, such as rope, drill pipe, fiber, caudex of climbing 
plants, and so on. In the oceanographic cable field, 
ZAJAC[8], COHEN[9], JAMES[10], KNAP[11–12], COYNE[13], 
LE[14], MIYAZAKI, et al[15], studied the equilibrium 
stability of rod with round cross section. VAN, et al[16–18], 
studied the flexuosity of rod with no round cross section. 
For drill pipe, SEEMANN[19], VAN, et al[20–22], studied the 
equilibrium and stability of elastic rod constrained to a 
plane and cylinder. In the molecular biology field, 
BENHAM[23–24] and LE[25–26] established a model of DNA 
based on Kirchhoff’s elastic rod theory. Though, to our best 
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knowledge, no application of elastic rod theory in motional 
cable harness simulation has been proposed yet. 

This paper consists of seven parts. The first part is the 
introduction and the second is the description of the 
modeling process. The equation set solved by the numerical 
solution method is described in the third part. Then a 
motion simulation method based on the proposed model is 
introduced in the fourth part. In the fifth part, a set of 
experimental equipment is described for the validation. The 
new prototype system developed is introduced in the sixth 
part and the conclusion is the last part. 

 
2  Physics-based Modeling Method 

 
The motional cable harness is considered to be a 

one-dimensional body instead of a three-dimensional body. 
It can be described by its centerline. The basic assumptions 
are as follows: (1) The motional cable harness is 
homogeneous, inextensible, unshearable, isotropic and 
linearly elastic. This can simplify the analysis without any 
impact on the continuity of the cable. Actually, these 
limitations can be released as the research continues. (2) 
The cross section is uniformly rounded, rigid and 
perpendicular to the centerline. That means only round 
section cable harness is discussed in this paper. (3) The 
length and curvature radius are far larger than the radius of 
cross section. This is the most situation of the motional 
cable harness. 

LIU[27] studied the rod with discretionary cross section. 
The physical character oriented model described in this 
section can be obtained on the analogy of Liu’s study. The 
reference frames and the force on microelement of 
motional cable harness are shown in Fig. 1. 

 

 

Fig. 1.  Reference frames and the force on microelement      
of motional cable harness 

 
Where in Fig. 1, 
 Oξηζ —Descartes inertial coordinate system. Point O is 

the origin. The direction of axis ζ is vertical, 
 PNBT —The Frenet coordinate system. N is normal, B 

is binormal and T is tangent, 
 Pxyz —The main axis coordinate system. Axis z 

superpose axis T, 
 θ —Angle between axis x and axis N, and between 

axis y and axis B. It means that the main axis 
coordinate system can be obtained by rotating 
the Frenet coordinate system along axis z by θ 
degrees, 

 P0 —The fixed point of motional cable harness, 
 Pl —Moving point of motional cable harness, 
 P —Discretionary point on the centre line of 

motional cable harness, 
 P¢ —Point closes to P unlimitedly, 
 R —Radius vectors from O to P, 
 r+Δr —Radius vectors from O to P¢, 
 -F —The main vector of inner force on 

microelement PP¢ at point P, 
 -M —The main vector of inner moment on 

microelement PP¢ at point P, 
 F+ΔF —The main vector of inner force on 

microelement PP¢ at point P¢, 
 M+ΔM —the main vector of inner moment on 

microelement PP¢ at point P¢. 
An arc-coordinate system is established along the 

motional cable harness. The origin of the arc-coordinate is 
P0. When the force on microelement are in equilibrium, the 
inner force and moments predigesting to P is zero. Divided 
by Δs, when Δs→0 the equilibrium functions can be 
described as 

d
,

ds
=

F
0                (1) 

 
d

,
ds

+ ´ =
M

T F 0             (2) 

 
where s —Arc-coordinate of P, 
 T —Base vector of tangent at P. 

Make the differential coefficient process in main axis 
coordinate system. Bring the projection of ω 
(curvature-twisting vector), F and M into equations. Eqs. (1) 
and (2) can be written as 
 

d
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where  Fx,y,z —Projection of main vector of inner force, 
 ωx,y,z —Projection of curvature-twisting vector, 
 kx,y —Bending rigidity of cross section along axis 

x, y, 
 kz —Torsional rigidity of cross section along axis z. 

Bring the distributed force on motional cable harness 
into equations. Eq. (3) can be written as 

 
d

,
ds

+ + =
Y

P Q f 0              (7) 

 
where 
 

T[ 0 0 0] ,x y zf f f=f           (8) 

 
and f x,y,z is the projection of distributed force on motional 
cable harness. 

 
3  Numerical Solution Method 

 
There are many ways to record the rotation of an object. 

The most widely used one is Euler angle. However, there 
might be some issues because of the singular point. Euler 
quaternion is another common method. It has no singular 
point. Therefore, it is reasonable to adopt Euler quaternion. 
There is no Euler quaternion in Eq. (7). To bring Euler 
quaternion into Eq. (7), variable substitution is necessary. 
According to the theory of unlimited small rotation of rigid 
body, curvature-twisting vector can be substituted by Euler 
quaternion 
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Bring Eq. (9) into Eq. (7). Considering that the sum of 

squares of Euler quaternion is 1, a differential-algebraic 
equation set is obtained, including an algebraic equation 
and six differential equations 
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q1(s), q2(s), q3(s), q4(s) and Fx(s), Fy(s), Fz(s) can be 

obtained from the equation set. Then the coordinate of P 
can be obtained from the integral of Euler quaternion 
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The profile of motional cable harness will be determined 

by Eq. (17). 
After dimensionless processing, the equation set is 

discretized by differential quadrature method (DQM). 
DQM was first proposed by BELLMAN, et al[28–29] in 1971 
and 1972. This method does not depend on variational 
principle and has a simple mathematical principle as well 
as high computational accuracy and low calculation 
quantity[30]. 

In DQM, the differential coefficient value at one point is 
expressed by the weighted sum of the function value of all 
the points 
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where  N —Amount of the points, 
 Aik —Coefficient, 
 xk —Value of the function at point k. 

Eq. (18) can be written in matrix as 
 

(1) (1) .=x A x                (19) 
 
The 2 rank differential coefficient can be expressed by 
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Eq. (20) can be written in matrix as 
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Use Lagrange function to be the test function. The 

elements of coefficient matrix can be obtained by 
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There are some methods to get the points. Many studies 

have revealed that Chebyshev method is one of the most 
effective among these methods.  

In Chebyshev method, the points can be obtained by 
 

1 cos[( 1)π / ( 1)]
,

2i

i N
s a

- - -
=         (23) 

 
where  a—Length of the solution region. 

Then the differential equations can be discretized into 
algebraic equations by DQM. 

There are five groups of boundary conditions, including 
two groups of mechanical boundary conditions, two groups 
of geometrical boundary conditions and one group of 
position boundary conditions. Three groups of the boundary 
conditions are required during the numerical solution 
method, including two groups of mechanical boundary 
conditions and one group of position boundary conditions 
or two groups of geometrical boundary conditions and one 
group of position boundary conditions. It is very difficult to 
obtain the mechanical boundary conditions because there is 
no effective method to measure the force at the end of the 
motional cable harness. The geometrical boundary 
conditions are easy to obtain. They can be determined by 
the rigid part connected with the motional cable harness. 
Thus the geometrical boundary conditions are preferred to 
be used in numerical solution method. 

The boundary conditions used in numerical solution 
method are 
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where  qo —Euler quaternion of the fixed point, 
 ql —Euler quaternion of the moving point, 
 Rl —Vector from the fixed point to the moving 

point. 
The length of the motional cable harness has to be 

constant during the motion simulation process. This can be 
ensured in the theory of the integral process described by 
Eq. (17). However, sometimes it is very difficult to be 
ensured in numerical solution process due to the limitation 
of the amount of points. The problem can be solved by 
adding this following equation into the equation set 
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Now an overdetermined equation set is obtained, 

including Eqs. (7) (discretized), (24) and (25). It can be 
solved by Levenberg-Marquardt method. 

Levenberg-Marquardt method is presented by 
LEVENBERG[31] and reminded by MARQUARDT[32] in 
1963. The algorithm of Levenberg-Marquardt method can 
be described as 
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      (26) 

 
where  Ji —Jacobian matrix of the equation set, 
 Fi —Value of the equation set, 
 Di —Scale matrix. 

The loop will not end until μi < err. 
When q1k, q2k, q3k and q4k, k=1, 2, , N, are obtained, the 

profile of motional cable harness can be determined by Eq. 
(17). 

 
4  Motion Simulation Method 

 
4.1  Data structure 

The data structure of the motion simulation method is 
based on “Path” and “Profile”. “Path point” is the element 
of “Path”. “Node” is the element of “Profile”. “Path”, “path 
point”, “Profile”, and “node” are shown in Fig. 2. The 
“Path” in Fig. 2 is composed of 10 “path points” and the 
“Profile” in Fig. 2 is composed of 11 “nodes”. 

The content of a “Path” is the positions and rotation 
matrices of all “path points” which belong to the “Path”. 
The structure of a “Path” is 
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1 1 2 2[ ] [ ] [ ] ,M M
i i i i i ié ù

ê úë ûr A r A r A      (27) 

 
where  ri

k —Position of the “path point”, 
 Ai

k —Rotation matrix of the “path point”. 
 

 

Fig. 2.  “Path” and “Profile” 

 
The content of a “Profile” is the positions and rotation 

matrices of all “nodes” which belong to the “Profile”. The 
structure of a “Profile” is 

 

1 1 2 2[ ] [ ] [ ] ,j j j j j j
N Né ù

ê úë ûr A r A r A      (28) 

 
where  rk

j —Position of the “node”, 
 Ak

j —Rotation matrix of the “node”. 
 

4.2  Motion simulation generation process 
The motion simulation generation process contains 3 

main steps: dispersion, computation and display. 
The trail of the moving point is a continuous curve. A 

spatial step is given to disperse the trail into a series of 
discontinuous points. These points are called sampling 
points. The position and the rotation matrix of each 
sampling point are recorded. qo, ql can be obtained from the 
rotation matrix of the fixed point and the rotation matrix of 
the sampling point. Rl can be obtained from the position of 
fixed point and the position of the sampling point. When 
“dispersion” is done, a list of position and rotation matrices 
of sampling points will be obtained. Actually, this list is the 
“Path” of the moving point. A “dispersion” example is 
shown in Fig. 3. 

 

 

Fig. 3.  Path dispersion 

After the “dispersion”, we need to load the position and 
the rotation matrix of the first sampling point for 
computation. Then bring the boundary conditions got from 
computation into the model described in section 2. Solving 
the equation set by the method described in section 3 is the 
next step. The profile of the motional cable harness is 
obtained. Move on to the next sampling point and repeat 
the operation until the last sampling point is finished. After 
the computation of all the sampling points, a list of 
“Profile” will be obtained. 

“Display” is to use the “Profile” from the list one by one 
and display them on the screen. One problem could be 
caused by the discord between spatial step and temporal 
step. For example, suppose the spatial step is 1 mm and the 
temporal step is 0.02 s. The moving point moves 1 mm 
within 0.2 s. Thus, only the profiles at 0 s and 0.2 s will be 
computed. The profiles at 0.02 s, 0.04 s, , 0.18 s will be 
omitted. This will result in the display discontinuous. An 
interpolation method is applied to deal with this problem. 
The interpolated spatial step is computed by 
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              (29) 

 
where  nΔt—Amount of the moments between the two 

sampling moments. 
In this way the omitted profiles can be computed by Eq. 

(29). 
 

5  Experimental Verification 
 
A set of experimental equipments is established to verify 

the accuracy of the model and the effect of the simulation 
method presented in this paper. The measuring system of 
the equipments is based on binocular vision. Different 
components of the system are shown in Fig. 4. 

 

  
Fig. 4.  Experimental equipments 

 
The physical characteristic parameters of the motional 

cable harness used in the experiment are measured by 
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experiment and shown in Table 1. The same values were 
used in the simulation. 

 
Table 1.  Parameters in simulation and experiment 

Parameter Value 

Bending rigidity kx, ky/(mN • m2) 0.134 5 
Torsional rigidity kz/(mN • m2) 2.448
Diameter d/mm 4 
Length l/m 0.18 
Density ρ/(kg • m–3) 557.1 

 
The motional cable harness is a beeline and turns 180° 

widdershins at one end from origin. The mechanical 
boundary conditions described in Oξηζ coordinate system 
are shown as follows, P0(0, 0, 0), i0=(0, 0, 1), j0=(1, 0, 0), 
k0=(0, 1, 0), Pl(0, l, 0), il=(0, 0, -1), jl=(-1, 0, 0), kl=(0, 
1, 0). Then one end moves toward the other. The 
comparison pictures between simulation and experiment 
are shown in Fig. 5. It can be seen that the cable harness 
deformation of wrapping from twist in both virtual and real 
environments. And the deformation occurred at the same 
position of the cable with the same extent. 

 

  

  

  

  
Fig. 5.  Comparisons between simulation and experiment 

 
The experiments in different degrees are also 

implemented. The trend of the motion is almost the same as 
the one at 180°. Only the extent is a little different. One 
thing should note that the model proposed in this paper can 
be used only within 360°. 

The motional cable harness is quite different from the 
object focused on in the previous mechanical study because 
of its strong flexibility. It is validated by the experiment 

that the model presented in this paper can describe the 
complex profile of motional cable harness accurately and 
the simulation method is effective. 

 
6  Prototype System for Motional Cable 

Harness Design 
 
A prototype system named “Motional Cable Harness 

Design and Simulation System (MCHDS)” is developed 
based on the physics-based model and simulation method 
presented in this paper. This system is a part of “Virtual 
Assembly Process Planning (VAPP)” system. Engineers 
can design as well as simulate the motion process of 
motional cable harness to predict any problems there might 
be. The flow chart of design and motion simulation is 
shown in Fig. 6. 

 

 
Fig. 6.  Flow chart of design and motion simulation 

 
With the developed prototype system, a comparison 

between the original design and modified design is shown 
in Fig. 7. The original design with an apparent collision 
(left in Fig. 7) was redesigned by lengthening the motional 
cable harness. Then the new collision-free design is shown 
in the right picture. 

 

 
Fig. 7.  Comparison between the original design                 

and modified design 
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7  Conclusions 

 
(1) In this paper, a physics-based model of motional 

cable harness based on elastic rod theory is presented. The 
model was verified more accurate and effective than 
geometric model and spring-mass model when simulating 
the deformation of this special kind cable harness. 

(2) A set of experimental equipments was established 
along with the motion simulation method. According to the 
comparison between the simulation result and experimental 
result, the experimental verification system and the 
simulation system are reliable. 

(3) The developed system is a new efficient motional 
cable harness design tool in avoiding many potential issues, 
which is of crucial importance in more and more complex 
products. 
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