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Abstract: Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process 

monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix 

along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages 

for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function 

that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on 

the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling (T2) statistic are 

also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution 

analysis of different variables. For fault isolation of subspace based on the T2 statistic, the relationship between the statistic indicator and 

state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the 

robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and 

multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is 

used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research 

proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal 

component model, and sets the relationship between the state variables and fault detection indicators for fault isolation. 
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1  Introduction 
 

In many industrial processes, computerized operator 
systems for on-line diagnosis can play an important role in 
supporting operators with expert knowledge during 
production. An important aspect of the safe operation of an 
industrial process is the rapid detection of faults, process 
deviations, or other special events and the location and 
removal of the factors causing such events. However, 
hundreds of process variables may exist, and these 
variables may be recorded many times per day. Therefore, a 
method is required that can project a high-dimensional 
space into low-dimensional spaces for better analysis of 
data. This paper presents a new multivariate procedure for 
monitoring the progress of all such industrial batch 
processes. 

Principal component analysis (PCA) is a viable option 
for online fault detecting, which is suitable for complex 
processes with a large number of highly correlated process 
variables[1]. Until now, PCA has been used and extended to 
various applications[2–4]. 
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NOMIKOS, et al[5], presented muti-way PCA (MPCA) 
for monitoring batch processes in 1994. MPCA, an 
extension of PCA, was investigated to monitor batch 
processes dynamically, which has previously proven to be 
effective in capturing the dynamic pattern for a defined 
duration in batch process applications[6]. MAJID, et al[7], 
presented a new framework based on MPCA to detect 
faults in real-time in the industrial continuous aluminum 
electrolysis process, which incorporates the dynamic 
behavior of two important operations in the continuous 
aluminum electrolysis process, alumina feeding and anode 
changing. WANG, et al[8], proposed a new stage separation 
method for online monitoring and fault variable detection 
in a three-tank system based on the similarity of the loading 
matrices and singular value matrices in the same operation 
substage. MPCA can also be used to monitor the 
performance of batch control processes by building 
performance bounds based on data from batch runs 
operated at optimum conditions[9]. 

In terms of vehicle fault detection, XI, et al[10], adopted a 
redundancy analysis method and an action analysis method 
to detect failures in the automated mechanical transmission 
(AMT) system, and a fault diagnostic system of an air-drive 
AMT in a heavy commercial vehicle is developed by a 
model-based design that is well adapted to the development 
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of an automotive control system. AKIN, et al[11], presented 
a signal processing-based motor fault diagnosis scheme for 
electric and hybrid electric vehicle power train applications. 
QIN, et al[12], proposed an analytical redundancy fault 
diagnosis method of an automatic shift control system 
(ASCS). The information redundancy in the local models 
of the power train and the structural logic relations among 
the assemblages is used to detect and diagnose faults in the 
sensors, actuators, and unit assemblages of an ASCS. LIU, 
et al[13], analysed the main causes for the different types of 
faults and presented three fault diagnostic methods based 
on the construction and working principle of an AMT for a 
heavy-duty vehicle. PENG, et al[14], proposed a fault 
detection and diagnosis strategy for ASCS based on the 
behaviour trajectory of the ASCS’s hybrid system. 

In a PCA application, WEI, et al[15], proposed PCA- 
based fault detection methods for vertical rail vehicle 
suspension systems. When there is a detectable fault, the 
detector sends an alarm signal if the residual evaluation is 
larger than a predefined threshold. ROUTRAY, et al[16], 
proposed a data-driven method to detect anomalies in 
operating parameter identifiers (PIDs) and in the absence of 
any anomaly, to classify faults in automotive systems by 
analysing the PIDs collected from the freeze frame data. 
Ramahaleomiarantsoa[17] used PCA to address the problem 
of fault detection in an electric vehicle engine (EVE). 

But there exist some potential problems with these 
applications. First, one assumption of some methods is 
batch process with strict periodicity, meaning that all 
batches have an equal duration and are synchronized[18]. 
Second, there is a need to reduce the storage amount 
required by historical data with high sampling frequency 
when the online detection calculator has limited storage 
capacity. Last, the Mahalanobis distance 2T  is often 
adopted to calculate the control limit for fault detection. 
When a fault occurs, the mapping relationship between the 
monitored indicators and the measured state variables must 
be established to realize the fault isolation function. This 
paper proposed a new subspace construction method to 
reduce the required storage capacity and to prove the 
robustness of the principal component model to the 
measurement noise. In fault isolation, the relationship 
between the control limit 2T and the system state variables 
is built when a fault occurs, and the constraints of fault 
isolation algorithm are analyzed. 

 
2  Construction of Historical Data Subspace 

 
To understand the nature of the data available with which 

to monitor batch processes, consider a typical batch run in 
which 1, 2, ,m M=  variables are measured at 

1, 2, ,l L=   time intervals throughout the batch. Similar 
batch will exist in a number of such batch 
runs 1, 2, , .n N=  All of the historical data can be 
summarized in the three-dimensional matrix ( )N M L´ ´X . 
MPCA is equivalent to unfolding the three-dimensional 

matrix ( )N M L´ ´X  into a two dimensional matrix 
( )N ML´X  by cutting each of its vertical slices 

( )N M´  side by side to the right, starting with the one 
corresponding to the first time interval, as shown in Fig. 1. 

 

 
Fig. 1.  Unfolding the historical data matrix 

 
In batch processes, the number of measurement sensor is 

assumed to be fixed, but different batches may have 
different sample points. Therefore, sensor number M is 
invariable in the two-dimensional data matrix 

( )N M L´ ´X . Because the same batch process is under 
normal operation conditions, the length of all the batches 
obeys a normal distribution, where the central limit 
theorem is effective. Batch number N is decided by the 
batches whose length is between ( 3 )L -   and ( 3 )L +  , 
where L  is average length of all the faultless batches and 
  is the standard deviation.  

The batch length L  changes from batch to batch. To 
solve the problem of different batch lengths, the data 
subspace is adopted to describe the characteristics of the 
historical data matrix at a different sample point, which is 
created by moving window along the time axis step by step. 
In Fig. 2, if the width of moving the window includes d 
sample points, the subspace data iX  at time i can be 
described as: 

 
 1 1[ , , , ],i i i i d+ + -= X x x x  (1) 

 

where ix  is the data matrix ( )N M´  at i sample 
point ( 1, 2, , 1)i L d= - + . If a batch length is shorter than 
other batches at some sample point, the batch is removed 
from the subspace and other batches are selected as the 
subspace data. In this manner, the problem of different 
batch lengths is effectively resolved, throughout the 
subspace reconstruction in the moving window along the 
time axis. 

In process fault detection, the interval between adjacent 
sample points decides the shortest response time of fault 
detection, because the system state variables are assumed to 
be constant during the interval. If a fault occurs in the 
interval, an overly large sampling interval may cause more 
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serious damage because the fault is not detected in a timely 
manner. Therefore, the process sampling frequency is 
typically and sufficiently high to describe dynamic process 
changes and guarantee the speed of fault detection. As the 
number of sample points increase, the three-dimensional 
data matrix ( )N M L´ ´X  becomes bigger and the 
degree of data redundancy increases because the process 
state variables do not change considerablely over the 
relatively short intervals. To address these issues, a new sub 
space construction method based on the kernel density 
estimation function is presented here. 

 

 
Fig. 2.  Construction of the subspace data matrix 

 
As shown in Fig. 2, every subspace matrix iX  includes 

d time slices, which are composed of d matrixes. At high 
sampling frequencies the process variables do not change 
over the window width. Therefore, this paper attempts to 
construct a new matrix i

*X to replace the original matrix 

iX  with a high degree of redundancy. The new matrix 

i
*X  is composed of the accumulation of d time slices with 

corresponding weights which are produced by kernel 
density estimation function ( )K j . The selection condition 
of function ( )K j  can be described as: 

 

 ( ) 1.K j
¥

-¥

=ò  (2) 

 

In the ith subspace, the new matrix i
*X  can be obtain by 
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where i is the number of d time slices. 
The common kernel functions, including Gaussian, 

Epanechnikov, and Triangular are shown in Refs. [19–20]. 
The expressions and curve shapes of these kernel functions 
are given in Table 1. 

 
Table 1.  Expression and curve shape 

Function 
names 

Expressions Curve shapes

Gaussian 
21

( ) exp( 0.5 )
2π

K j j= -  

Epanechnikov

23 1
1 , 5 ,

54 5( )

0,  5 .  

j j
K j

j

ì æ öï ÷ï ç - <÷ï ç ÷÷çï è ø=íïïïïî ≥

 

Triangular 
1 , 1,

( )
0  , 1.

j j
K j

j

ìï - <ï=íïïî ≥
 

 
When a batch process does not contain any faults, the 

sensor measurement error and noise typically follow a 
normal distribution. Thus, this paper employs the Gaussian 
kernel function to construct the new matrix i

*X  by Eq. (3) 
in Fig. 3. A comparison of the original matrix iX and the 
new matrix i

*X demonstrates that the dimension of every 
subspace is reduced from ( )N Md´  to ( )N M´ , which 
means the storage needs of the PCA model are decreased. 
The PCA model produced by the new matrix i

*X  is more 
robust to measurement noise than the PCA model by the 
original matrix iX , particularly when every subspace has a 
large number of time slices with high data redundancy. In 
addition, the requirements for the PCA calculation are 
substantially reduced due to the reduced matrix dimensions 
of the subspace.  

 

 
Fig. 3.  Construction of new matrix i

*X  

 
3  MPCA Fault Detection 

 
As discussed in section 2, every subspace has a new 

matrix i
*X , which is used to produce the PCA model for 

fault detection. First, to eliminate the scaling effects from 
different variables, the normalisation matrix i

*X  can be 
obtained by i

*X  as follows: 
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T
1 1

1 2

1 1 1
[ 1, 1, , 1 ]diag , , , ,i i m m

ms s s
* *

´ ´
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 X X U（ ）  (4) 

 

where 1 m´U is the mean vector, ms is the standard 
deviation, and i

*X  is the normalisation matrix of i
*X . 

The PCA algorithm then decomposes the matrix i
*X  as 

the sum of the outer product of vectors jt  and jp  plus 
the residual matrix iE : 

 

 T T T

1

ˆ + ,
p m p

i j j j j i i
j j

-
*

=

= + = + =å å
=1

X TP E t p t p X E  (5) 

 

where jp is a loading vector containing the information of 
the projection space, and jt  is a score vector describing 
data intensity in the direction of projection jp [21]. Both the 
loading vectors and score vectors are orthogonal. The 
dimension of the principal component matrix ˆ

iX  is 
typically the number of the eigenvalue when the 
accumulation of the contribution rate of the eigenvalue 
exceeds 85%.  

During the fault detection process, every sampling point 
has a corresponding subspace that can be divided into two 
parts: the principal component space and the residual space. 
Therefore, the process state variable at some sampling 
point can be projected into the principal component to 
obtain the corresponding score vectors jt  and residual 
matrix iE .  

According to the residual space, squared prediction error 
(SPE) is adopted to monitor whether the process residual 
matrix is consistent with the historical model. The SPE 

statistical indicator is given as: 
 

 
2 T

T T

ˆ ˆ( )( )

( ) ,

i i i i i i

i iI

* *

* *

= = - - =

-

SPE E X X X X

X PP X
 

(6)
 

 

where P is the loading vector matrix of the principal 
component space ˆ

iX  and I is the identity matrix. The 
upper confidence limit of the SPE statistical indicator[5] can 
be described as: 
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where C  is the standard normal deviation corresponding 

to the upper (1- ) percentile and j is the eigenvalue 
number of the loading vector. 

According to the principal component space, statistical 

indicator 2T  is given to measure the variation within the 
PCA model. At the ith sampling point, 2

iT  is given as: 
 

 
T

22 0.5

1

ˆ ,
p

j j
i i

jj 
-

=

= =å å
t t
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where jt  is the score vector of the principal component 
matrix. 

From the F-distribution, the upper confidence limit is 
obtained as: 

 

 2
, , , 1,

( 1)
,p n p n

p n
T F

n p -
-

=
-

 (11) 

 

where n is the number of samples in the historical data,   
is the confidence threshold percentile, and p  is the 
number of principal components. 

 
4  MPCA Fault Isolation  

 
Fault causes an unpermitted deviation of at least one 

characteristic property or parameter of the system from 
acceptable/standard condition[22]. And fault isolation is to 
isolate the process state variable that causes an 
unacceptable deviation of the system characteristic property 
after fault detection. 

 
4.1  Fault isolation based on the SPE statistic 

Assuming that the SPE statistical indicator is greater than 
the confidence threshold at the ith sample point, it is 
believed that process state is abnormal and a fault occurs at 
that moment. According to Eq. (6), the SPE statistical of 
the mth state variable can be calculated by 

 

 2ˆ( ) , 1, 2, , ,im im im m M*= - = SPE X X  (12) 

 

where im
*X is the measured value of the mth state variable 

at the ith sample point, and ˆ
imX  is the estimated value of 

the mth state variable at the ith sample point. 
When a fault occurs, the deviation caused by the fault 

occupies a major influence factor in the deviation. 
Therefore, the variable with the greatest contribution to the 
SPE statistical indicator is most likely the failure source 
(FS), which can be described as: 

 
 { | max( )}, 1, 2, , ,m imFS x m M= = SPE  (13) 

 

where mx  is the mth state variable. 
 

4.2  Fault isolation based on the 2T statistic 
According to Eq. (10), if 2

iT beyond the upper limit 
2

, ,p nT   at the ith sample point, a fault is believed to occur. 
The statistical indicator 2

iT  is calculated by the eigenvalue 

j  and score vector jt , which is the projection of process 
state variables in the principal component space. Therefore,  
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the mapping relations between the score vector jt  and the 
process state variables must be established for fault 
isolation. 

Assuming that the jth process state variable have a fault 
at the ith sample point. Then, Eq. (8) indicates that 

T
j j jt t  is the largest contribution to the statistical 

indicator 2
iT . According to Eq. (5), this value can be 

expressed as 
 

T 2 2
1 11 1 1( ) ( + + )

,k k M k k m mk

k k k

x p x p

  
´= =
   t t X p

 (14) 

 

where 1 M´X  is the measured value of the process state 
variable, kp is the loading vector, 1mx is the element of 
matrix 1 M´X , mkp is the element of matrix kp , and k  
is the eigenvalue ( 1, 2, , ; 1, 2, , ).m M k p= =   Eq. (14) 
can be simplified as: 
 

 
2 2T

1 1( ) + ( )
= ,j jk j jkk k

k k k

x p x p

  

»

 t t
 (15) 

 
where   is ignorable error. The deviation caused by faults 
is the main part of an unacceptable deviation from the 
process. Therefore, the contribution between the different 
score vectors can be described as 
 

 
2 2 2TT T
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Eq. (16) can also be given as 
 

 T T T 2 2 2
1 1 1 2 2 2 1 1 2 2( ):( ): :( ) : : : .k k k j j jk kp p p     » t t t t t t  

(17) 
 

In the principal component space, the factor loading 
matrix A  is used to describe the fluctuations in the 
process state variables assigned to different score 
vectors ( 1, 2, , ; 1, 2, , )m M k p= =  : 

 

 ,mk mk kA p =  (18) 

 

 2

1

1.
p

mk
i

A
=

=å  (19) 

 

By inserting Eq. (18) into Eq. (17), the equation can be 
obtained as 

 
T T T 2 2 2

1 1 1 2 2 2 1 1 2 2

2 2 2
1 2

: : : : : :

: : : .

k k k j j jk k

j j jk

p p p

A A A

     » = 



t t t t t t
 

(20)
 

 

Because every subspace has its own loading vectors and 
eigenvalue, Eq. (20) proves the relationship between the 
score vector and the factor loading matrix A . When a fault 
occurs at the ith sample point, judging by the statistical 
indicator 2T , it first calculates a different score vector as 

the form shown in Eq. (17) and sorts from largest to 
smallest. Then, the factor loading matrix A  of the ith 
subspace is calculated according to Eq. (18). Finally the 
state variable whose factor loading vector jA  satisfies the 
relation in Eq. (20) is most likely to be the fault source 
that caused the main deviation of the process state variables. 
To improve the sequence matching success in the case of 
noise and error, the maximum value matching method is 
adopted. In this method, the sequence for searching for the 
fault variable only includes the largest value. The largest 
value in the sequence carries the main deviation, which is 
produced by a fault. 

In the fault isolation process, there are two constraints to 
guarantee the effectiveness of the diagnostic results: 

(1) The error   ignored in Eq. (15) does not change 
the sequence shown in Eq. (16). It can also be expressed as 
the consistency between the sequences 

 

 
2 2 2

1 1 1 2 1

1 2

( ) + ( ) + ( ) +
: : : ,j j j j j jm

m

x p x p x p

  
    

  (21) 

 
and  

 

 
2 2 2

1 1 1 2 1

1 2

( ) ( ) ( )
: : : .j j j j j jm

m

x p x p x p

  
  

  (22) 

 
If the score value of different loading vectors are close to 

each other and the error   is ignored, the result of the 
fault isolation may be incorrect because of the sequence 
change. 

(2) The fault isolation result is unique. According to the 
factor loading matrix A , every process state variable has 
its own factor loading vector jA  which describes the 
projection relationship between the state variable and the 
different loading vector jp . Thus, M state variables have 
M sequences, and there may exist two or more sequences 
that can match the sequence calculated in Eq. (17). In that 
case, the fault isolation cannot be determined between the 
matched sequences. 

 
5  MPCA Algorithm Flow 

 
MPCA fault detection and isolation include offline and 

online parts. The offline part is used to preprocess the 
historical data and generate the principal component model 
in a different subspace, as shown in Fig. 4. Three 
dimensional historical data ( )N M L´ ´X  are unfolded 
along the time axis to obtain a two-dimensional matrix 

( )N ML´X  for subspace construction. Based on a 
moving fixed-width window, matrix ( )N ML´X  is 
decomposed into multiple subspace matrices iX . In the ith 
subspace, a kernel function is adopted to reconstruct matrix 

iX  to obtain a new subspace matrix i
*X . In order to 

eliminate the different variable scaling effect, the new 
subspace matrix i

*X  is normalized for matrix i
*X . Then, 

the principal component algorithm is used to extract the 
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eigenvector and eigenvalue from the normalized matrix 

i
*X . During the loop, the eigenvector, eigenvalue, mean 

vector and variance vector in the ith subspace are stored for 
online fault detection. 

 

 

Fig. 4.  MPCA offline algorithm flow 

 
After the offline part, each subspace’s principle 

component model can be built and saved. These models are 
then used for fault detection and isolation during the online 
monitoring of the process. In Fig. 5, the process sensor 
measurement i

*X  at the ith sampling point is handled by 
Eq. (4) with the mean vector and the variance vector of 
the corresponding subspace. Then, the SPE statistic 
indicator and the 2T statistic indicator are calculated 
separately for fault detection. If the statistic indicator is 
beyond the upper confidence limit, a fault occurs and the 
algorithm of fault isolation presented in section 4 is 
adopted to find the fault source in the process state 
variables. 

 

 
Fig. 5.  MPCA online algorithm flow 

 
6  Fault Detection and Isolation Experiments 

 
To verify the accuracy of the algorithm, improved 

MPCA fault detection and isolation are adopted to monitor 

the automatic shift control system in an AMT vehicle. The 
ASCS, being the outcome of upgrading the traditional 
vehicular transmission system by applying high 
technologies, is the typical application of integrated 
technology of mechanism, hydraulics and electronics to 
wheeled vehicle, which has experienced significant growth 
worldwide in recent years. The ASCS of wheeled vehicle 
can be divided into several parts, including sensors, 
electronic control unit (ECU) and actuators[23–25]. 

In Fig. 6, the basic working principal of an AMT system 
is shown to have sensors to collect the system state 
information, an ECU to generate commands and actuators 
to simulate the driver control to respond and complete 
commands by clutch engagement and disengagement, 
shifting gears, and engine speed control, etc.  

1) The ECU is the core of the ASCS, it controls the 
actuators based on the signals from sensors and can also 
communicate with the engine ECU through a CAN bus.   

2) The sensors reflect the vehicle’s running status and the 
driving intentions from the driver, which are arranged in 
different sections of the vehicle, such as the multifunctional 
handled gear selector, vehicle speed sensor and the clutch 
on-off status sensor. 

3) Finally, the actuators realize automatic control of the 
transmission gear ratio and the clutch engaging and 
disengaging control. 

Fig. 6 presents a composition diagram of an ASCS. The 
ECU computes the shifting points based on the current 
vehicle speed and the accelerator pedal position, and then 
generates the control instructions to drive the gear selecting 
and shifting actuator, the automatic clutch actuators and the 
engine coordinating control via the CAN bus to fulfill the 
automatic shifting control task. 
 

 
Fig. 6.  AMT system structure diagram 

 

Thus, to monitor the ASCS performance while the AMT 
vehicle is running, the process state variables are selected 
based on the AMT working principal in Table 2. The ECU 
temperature 3x and electric current 6x  are important 
parameters to reflect the ECU working state. The Oil 
pressure 4x  is measured by the hydraulic oil source which 
provides hydraulic power for the ASCS. There are three 
hydraulic cylinders for selecting gear position, shifting gear 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·1053·

and clutch control. Then, the corresponding mechanism 
displacement 1x , 2x  and 5x  can be measured for process 
monitoring, as shown in Table 2. 

 
Table 2.  Process state variables 

Variable symbol Variable physical meaning Physical units
x1 Shifting gear displacement mm 
x2 Selecting gear displacement mm 
x3 ECU temperature ° 
x4 Oil pressure MPa 
x5 Clutch displacement mm 
x6 ECU electric current A 

 
As an example to monitor the vehicle driving in gear 1, 

100 batches in gear 1 without fault are selected as the 
historical data to the build MPCA model. The length of 
these batches varies with normal variations, including an 
approximate duration of 300 sample points, as shown in Fig. 7.  

 

 

Fig. 7.  Sample points in different batch 

 

6.1  Comparison between traditional MPCA  
and improved MPCA 

To prove the superiority of the new subspace construction 
method, the same historical data in Fig. 7 are used to build 
the MPCA model respectively based on the traditional 
MPCA and improved MPCA mentioned in section 2, 
respectively. Then, new process data without a fault are 
selected to test these MPCA models, and the results are 
shown in Figs. 8(a) and 8(b). A comparison of Figs. 8(a) 
and 8(b) indicates that the model based on the improved 
MPCA is more robust to noise than the traditional MPCA 
model, which effectively decreases the disturbance on fault 
detection and reduce the storage amount for the subspace.  

Fault detection using the traditional and improved 
MPCA is compared in Figs. 9(a) and 9(b) for the case in 
which a fault occurs. The results indicate that the indicator 
from the improved MPCA is more sensitive to faults than 
the traditional MPCA. 

 
6.2  Fault detection and isolation with SPE statistic 

based on the improved MPCA  
Fig. 10 demonstrates that an abnormal process with a 

length of 285 sample points exceeds the SPE confidence 
limit at the 98th sampling point. Therefore, the deviation of 
the process state variables is not consistent with the 
residual model of the subspace at that moment, and a fault 

occurs. As mentioned in section 5, a fault detection result is 
sent into the fault isolation module for fault diagnosis when 
failure occurs. The contribution rate of the different state 
variables to the SPE statistical indicator is shown in Fig. 11 
for fault isolation. There is no discernible rule regarding the 
contribution rate before the 98th sampling point. However, 
after the 98th sampling point, the contribution rate of the 
process state variable 5x  is much larger than that of the 
other variables, indicating that 5x  resulted in the SPE 

statistical indicator bigger than the confidence limit and is 
most likely to be the fault source. The artificial diagnostic 
result is that the plectrum of the clutch displacement sensor 
becomes rusty and deformed, which results in the error in 
the clutch displacement signal 5x shown in Fig. 12. 

 

 

Fig. 8.  Comparison of the traditional and improved 
MPCA with faultless process data 

 

 

Fig. 9.  Comparison of the traditional and improved  
MPCA with a fault in the process data 
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Fig. 10.  SPE fault detection based  
on improved MPCA model 

 

   

Fig. 11.  Contribution rate of the process state  
variables to SPE 

 

 

Fig. 12.  Fault result 

6.3  Fault detection and isolation with 2T statistic 
based on the improved MPCA  

To compare the fault isolation between SPE statistic and 
2T  statistic, the abnormal process data in section 6.2 is 

used as the object of fault isolation for the 2T  statistic. 
Fig. 13 demonstrates that the abnormal process with the 

length of 285 sample points exceeds the 2T  confidence 
limit at the 98th sampling point. Thus, a fault occurs at the 
98th sampling point. After fault detection the result is sent 
into the fault isolation module. In the 98th subspace, it has 
three principal components according to the contribution 
rate of the eigenvalue. The fault isolation module can then 
calculate the relation between the different score vectors 
according to Eq. (16): 

 

 T T T
1 1 1 2 2 2 3 3 3: : =0.22 : 0.68 : 0.08.  t t t t t t  (23) 

 

 
Fig. 13.  Fault detection based on the T2 static 

 
In the 98th subspace, there are six state variables ix  and 

three principal component loading vectors ip . Therefore, 
the factor loading matrix 6 3́A  can be calculated 
according to Eq. (18). This paper identifies one state 
variable between ix ( 1,2, ,6)i =   to satisfy the 
relationship shown in Eq. (20). 5x  is identified by 

 

 2 2 2
51 52 53: : 0.24 : 0.70 : 0.05.A A A =  (24) 

 

The consistency between Eq. (23) and Eq. (24) proves 
that the state variable 5x  is the fault source. However, the 
isolation result must be detected according to the conditions 
mentioned in section 4.2. 

(1) Error   detection. According to Eq. (23) and Eq. 
(24), neglecting the error   doesn’t change the following 
sequence: 

 

 

2 2 2
15 51 15 52 15 53

1 2 3

2 2 2
15 51 15 52 15 53

1 2 3

( ) + ( ) + ( ) +
: :

( ) ( ) ( )
: : .

x p x p x p

x p x p x p

  

  

  
=

  

  
 

(25)

 

 

Therefore, the isolation result neglecting the error   is 
effective. 

(2) Uniqueness of the fault isolation result. In a factor 
loading matrix 6 3́A , only the sequence of the state 
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variable 5x  satisfies the relation in Eq. (20).  
A statistical method is adopted to improve the corrective 

rate of fault isolation. As seen in Fig. 13, every sample 
point has its own principal component model, so every 
sample point has its own fault isolation. Therefore, after a 
fault occurs, the isolation results of each subspace are 
counted to determine the most likely fault source. Fig. 14 
presents the rate at which state variable 5x  is the fault 
source after the 98th sampling point. Initially, the curve 
fluctuates wildly Because a poor fault isolation result has a 
significant impact on the rate when there are a small 
number of isolation results. However, as the number of 
isolation results increase, the rate curve becomes smooth 
and clearly exhibits an increasing trend with the rate at 
which the state variable 5x  is the fault source approaching 
95%. As a result this statistic method effectively improves 
the robustness of fault isolation to unexpected disturbance. 

 

 
Fig. 14.  Rate at which x5 is the fault source 

 
The result of fault isolation between SPE statistic and 
2T  statistic is consistent, thus validating the correctness of 

the improved MPCA algorithm. 
 

7  Conclusions 
 
(1) The structure of a new subspace based on the kernel 

density estimation function is presented according to 
traditional MPCA algorithm. The new subspace reduces the 
storage required and is more robust to noise, as 
demonstrated by the experiments in section 6. 

(2) A fault detection experiment based on the SPE and 
2T statistics is presented. The fault detection result 

demonstrates the accuracy and effectiveness of the 
algorithm.  

(3) Fault isolation based on the SPE statistic is realized 
by an analysis of the different variable residual 
contributions when a fault occurs.  

(4) The algorithm of fault isolation based on the 2T  
statistic is established in section 4.2. The relationship 
between the statistic indicator and state variables is 
constructed and presented in Eq. (20). When a fault occurs, 
the most likely fault source in the process state variables 
can be ensured by sequence matching according to the 
contribution of the different score vectors. Then, it is 
necessary to check whether the result of the fault isolation 

satisfies the two constraints in section 4.2 to guarantee the 
validity of the fault source.  

(5) Every sample point after a fault has its own subspace 
and fault isolation result. A statistic method is adopted in 
Fig. 13 to improve the fault isolation’s robustness to 
unexpected disturbances. As a result, it sets the relationship 
between a single subspace and multiple subspaces to 
increase the corrective rate of fault isolation. 
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