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Abstract: The intermittent connection(IC) of the field-bus in networked manufacturing systems is a common but hard troubleshooting 

network problem, which may result in system level failures or safety issues. However, there is no online IC location identification 

method available to detect and locate the position of the problem. To tackle this problem, a novel model based online fault location 

identification method for localized IC problem is proposed. First, the error event patterns are identified and classified according to 

different node sources in each error frame. Then generalized zero inflated Poisson process(GZIP) model for each node is established by 

using time stamped error event sequence. Finally, the location of the IC fault is determined by testing whether the parameters of the 

fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters. To illustrate the 

proposed method, case studies are conducted on a 3-node controller area network(CAN) test-bed, in which IC induced faults are 

imposed on a network drop cable using computer controlled on-off switches. The experimental results show the parameters of the GZIP 

model for the problematic node are statistically significant(larger than 0), and the patterns of the confident intervals of the estimated 

parameters are directly linked to the problematic node, which agrees with the experimental setup. The proposed online IC location 

identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network. 
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1  Introduction 
 

Due to good real-time performance with low 
implementation and maintenance costs, CAN network has 
gained wide acceptance in various applications, such as 
distributed automation systems for automobile 
manufacturing systems, vehicle powertrain and safety 
control systems, and recently airplane sensor-actuator 
systems[1]. However, growing complexity of the 
applications in harsh environments also introduces different 
forms of interferences, such as electromagnetic interferences, 
grounding problems, bandwidth allocation problems, etc, 
which will lead to degraded network performance or even 
system level failures. Among these factors, the intermittent 
connection(IC) is one of common but difficult problems in 
practice, in the presence of transient disconnections between 
the field devices and the backbone network. Minor IC 
problem may lower the quality of service of network[2]. 
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However severe IC problem may force nodes(stations), 
sometimes ones without IC problem, switch from active 
communication to bus-off state, which results in excessive 
downtimes and unnecessary maintenance since bus-off 
nodes will be replaced directly during maintenance. In 
safety critical applications, the loss of a system node will 
lead to system-wide halt, and hence result in unexpected 
downtimes. Therefore, identify the location of the IC 
problem is important in system maintenance. However, in 
traditional offline approach, locating IC problems after the 
system shutdown is a difficult and time consuming task 
since the IC problems usually cannot be repeated while the 
system is idle. Hence, online IC fault location identification 
method is highly demanded in practice. 

In literature, a large number of studies were focused on 
network dependability. For instance, LIAN, et al[3], 
analyzed the performance of various networks under 
different structures to obtain guidance for robust controller 
design. TRAN, et al[4] studied the network vulnerabilities 
with multiple-bit error under different bit error rate 
conditions. ZHAO[5] developed a fault model to determine 
which communication link is sensitive to the interference 
imposed on the CAN network. RUFINO et al[6], deployed  
an additional CAN layer to enhance fault confinement 
mechanisms. From networked control perspective, 
HANSSON, et al[7], used the probability of missing the 
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packet transmission deadline as a measure to indicate 
whether the network communication was still dependable 
in a noisy environment. Similar concept can be seen in Ref. 
[8]. Potential solution has been demonstrated by scheduling 
a set of messages with mixed criticality in an efficient fault- 
tolerant manner to ensure user specified dependability[9–10]. 
Moreover, the logic behaviors of networked system were 
studied from discrete event system perspective for fault 
management[11]. JIANG, et al[12], proposed an event-based 
method for quantitative description of repeated failures in 
certain time intervals. ANGSKUN, et al[13], implemented an 
event-based self healing mechanism of network with a 
simulation module to recover the possible faults. 
KIRUBARAJAN, et al[14–15], developed a fault detection 
method using Markov models in large-scale systems. 
Petri-Net based alarm management is used to predict the 
hidden system faults[16]. HUANG et al[17], conducted the 
fault identification by comparing the signal signature with 
different network loads. HUANGSHUI, et al[18], presented 
a scanning based framework for online failure diagnosis, 
similar tool can be seen in Ref. [19]. However, in existing 
networked industrial systems, the information used in these 
algorithms is not generally available. 

On the other hand, there are some works focused on IC 
induced fault detection and location identification. For 
example, a program called Manager was designed in the 
main network node for fault diagnosis by checking whether 
the sequence number in received message consistent with 
cache entry[20]. In industrial environment, time-based 
localization algorithm was developed for intermittent arc 
faults with fewer samples by measuring the three-phase 
voltages, currents, as well as cable parameters[21]. LEI, et 
al[22]

, developed a graph based fault diagnosis method. 
However, it was a knowledge-based method, and no 
quantitative measure was provided for decision-making. In 
addition, ZHAO, et al[23], established a statistical model to 
evaluate the distribution of error caused by IC, however, 
fault location identification was not addressed. 

As can be seen from literature, there is no systematic 
fault location identification method for IC problem on CAN 
networks that could provide quantitative measures for fault 
location decision-making. Hence, the purpose of this study 
is to develop a new model based IC fault location 
identification method that is able to model the IC induced 
network errors using a stochastic approach to describe the 
patterns of errors and identify the location of the IC 
problem using measures that have physical and statistical 
meanings. The rest of the paper is organized as follows. We 
first define the researching problem in section 2. Then in 
section 3, the proposed method will be introduced in details, 
followed by experimental setup and case studies in section 
4. Section 5 provides the conclusions and future work. 

 
2  Problem Definition 

 
As mentioned previously, an IC problem can deteriorate 

into a severe problem and result in serious system failure 
incidents if it is not treated properly. When an IC fault 
occurs, the data frames will be dropped and the error 
packets sent from the nodes in error active states will flood 
the bus. According to CAN specification[24], error packets 
sent from all of the nodes will composite an error frame, 
which consists of 6–12 consecutive dominant bits. 

In this paper, we define the occurrence of error frame as 
an error event. As seen from Fig. 1, an error event is easy to 
detect, however, inferring the cause of error event is not 
straightforward since the information embedded in the error 
packets is limited, and the corrupted transmission data are 
discarded by CAN chips. Therefore, to locate the IC 
problem, the following two challenges must be addressed. 

 

 
Fig. 1.  Example of analog waveform on CAN bus 

when an error occurs 

 

(1) How to automatically define and classify error events 
with limited information, and establish an appropriate 
model to describe the IC phenomenon whose parameters 
have physical and statistical meaning? It determines the 
quality and the quantity of the data to be collected, as well 
as the complexity of the fault location identification. 

(2) How to systematically determine the location of the 
IC problem using the model parameters? Since it is of great 
importance to find the IC location accurately before the 
system is shut down. 

To answer these questions, two assumptions are made:  
(1) there exists only one IC problem on the network and it 
is located on the drop cable of the network; and (2) the 
communication mode is polling or periodic.  

It is noticed that some interferences, e.g. localized EMI 
problem, may show similar error phenomenon as IC 
problem. The isolation of these interferences from IC 
problem requires addition causality analysis, which is 
beyond the scope of this paper.  

 
3  Proposed Methodology 

 
In this paper, a model-based method is proposed for 

online fault location identification. The basic idea of the 
proposed method is that the location of the IC fault can be 
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inferred by the patterns of the passively recorded network 
errors, which is described by the model of the faulty 
connected node. The overall procedure of the proposed 
method is illustrated in Fig. 2. Error event synchronizing is 
developed to recover the error event information upon each 
error. Then error event classification is performed based on 
the recovered information in each error for model selection. 
The most important step is error modeling, where node 
GZIP models are established using the corresponding error 
event sequences. Finally, IC location identification is 
conducted by evaluating the node GZIP model parameters. 
The details of procedure are introduced as follows. 

 

 
Fig. 2.  Function block diagram of fault location identification  

 
3.1  Error event synchronizing 

Each error event is defined by a quadruple with the 
following elements: time stamp, the length of superimposed 
error frame, the interrupted frame source(the address of 
source node), as well as the source node that initiated the 
error. Since limited information is contained in the data link 
layer, physical layer error information must be collected to 
provide sufficient diagnostic information. Therefore, 
synchronizations of the error events are conducted where 
physical layer and data-link layer parameters are 
concurrently captured and integrated. 

Fig. 3 briefly explains how to synchronize error events. 
From CAN specification, 6 consecutive dominant bits will 
constitute an error, which is used to trigger physical and 
data-link layer parameter acquisition. The timestamps of 
the errors are also recorded, as well as the length of 
superimposed error frames. As for the interrupted packet 
source and initiated error packet identification, recoverable 
address encoded into data packet is identified, or pattern 
recognition will be used to identify the destroyed data 
frame. The source of error frames are determined by 
comparing reference features with observed ones using 
analog features[25]. 

A sample of synchronized error event is illustrated in 
Table 1. This event can be described as follows: node 8 was 
transmitting messages when an error is detected at the 
64.410452 s. Node 9 is the first node that responded the 
error and sent the error packet, followed by other nodes, 
thus eventually resulted in a 12-bits error frame. 

 
Fig. 3.  Error event synchronizing 

 
Table 1.  Illustration for synchronized error event 

on the segment from Fig. 1 

IC 
detection 

Time stamp 
t/s 

Length of error 
frame L/bit 

Analog 
waveform 

Synchronized 
error event 

64.410 452 12 P_8, E_9 

P_8—Corrupted packet of node 8; E_9—Initiated error frame from node 9 

 
3.2  Error event classification 

In this subsection, we focused on which node an error 
event should be classified to, since statistic model needs to 
be established for each node through classified event 
sequences to reveal the relationship between network nodes 
and the error events. The classification procedure is based 
on the node status whether it is sending a data frame or 
initialing an error frame when the error event occurs.  

Fig. 4 illustrates two error scenarios when an IC fault 
occurs on the drop cable to Node k. “P_k” and “P_a” refer 
to packet sent from node “k” and node “a”, respectively. 
“E_k”, “E_a” and “E_b” stand for error packets from 
corresponding nodes. In scenario (a), node k is sending data 
frame when an IC problem occurs, all the other normal 
nodes will capture the IC induced packet logic error and 
respond at the same time. Hence, the compounded error 
frame is 6-bits long(identified as the node that provides 
maximum differential voltage). This error event is labeled 
as “T” pattern. In scenario (b), on the contrary, node error 
response is not simultaneous since IC can only affect the 
receiving result of node k. Therefore in this case node k 
will initiate the error packet, and the final length of error 
frame is 7–12 bits. Hence the error event is labeled as “R” 
pattern. 

According to IC error generation mechanism, all the 
error events can be classified into aforementioned two 
patterns. As is seen in Fig. 4, in order to locate nodes with 
IC connection problem, it must significantly demonstrate 
both patterns. To do so, the following assumptions must be 
made. 

(1) Each error event from different nodes follows a 
separate distribution. 

(2) The IC problem is consistent, so that meaningful 
distribution models can be established from the error 
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sequences.  

 

 
Fig. 4.  Patterns of error events under IC problem 

 

As seen from Fig. 4, the error events classified as “T” 
pattern can be generated only when the node with IC 
problem is occupying CAN bus the moment IC occurs, 
while “R” pattern error event can occur when the 
problematic node is in receiving mode. Hence, one can 
apply the essential diversity of the two patterns of error 
events to determine whether the node is experiencing IC 
problem. It is noted that in complex situations, node k in 
scenario (a) of Fig. 4 may occasionally send an error frame 
later than other nodes that response simultaneously, which 
results in a 7-12 bits error event. Although in this case the 
error cannot be distinguished from the error events 
generated in scenario (b), it will not affect the IC location 
identification analysis using the error events from scenario 
(a), which are usually sufficient to provide considerable 
evidence for IC problem. 

As described previously, the classification of error events 
is conducted based on the patterns of error events. For 
instance, as illustrated in Table 2, a 12-bits error event 
emerges on bus at 5.891752 s. The error frame is initiated 
by node 8, thus we classify this error event as R-type event 
by node 8. Later, another error event is observed at 
6.887714 s, which is 6-bits long. It is generated at the 
moment node 8 is sending message. Thus we classify this 
error event as T-type event by node 8.  

 
3.3  Modeling process 

In section 3.2, for each node, the error events are 
classified as a timing sequence with different patterns. In 
order to provide statistical measures for fault location 
identification, a suitable stochastic model that reflects the 
actual distribution of error events is needed. Firstly, time 
partition window(T-Window) is used to divide the time 
sequence, thus transfer the time stamp sequences to 

counting processes of discrete events, which can be 
expressed as 

 

( ) ( ) ( ) T
1 2[ , , ] ,T nN N T N T N T=            (1) 

 
where Ni(T) denotes the numbers of error event counted in 
the ith T-Window. The introduction of T-Window converts 
our modeling objective to the distribution of NT. 

 
Table 2.  Illustration for error events classified  

into corresponding network nodes 

Node 
address 

Time stamp 
 t/s 

Pattern of 
error event 

Length of error 
Packet L/bit 

8 

5.891752 

6.887714 

7.223695 

7.247693 

     

R 

T 

T 

T 

  

12 

6 

6 

6 

  

9 

5.723759 

6.623810 

6.887728 

     

R 

R 

R 

  

12 

9 

10 

  

PLC 

10.763 559 

     
64.722 427 

R 

  
R 

12 

  
8 

 
Fig. 5 shows the overall modeling procedure. First, a 

proper model is selected to model the mixed type event 
sequences. Then parameter estimation is conducted, 
including initializing parameter, T-Window selection, 
recursive operation and checking for good-fitness of data 
distribution, in which an appreciate T-Window is very 
critical. The estimated parameters will be used for IC fault 
location identification. 

 

 
Fig. 5.  Procedure of the GZIP model parameter estimation 
 

3.2.1  Model selection 
In practice, the natural of IC problem determines that at 

majority of time, the CAN bus is normal and reliable. 
Hence there will be masses of zeros elements in NT. Hence 
Zero-Inflated Poisson is often used to model the data[23]. 
Assuming that the event follows the Poisson distribution 
with parameter  and the occurrence probability P, the 
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probability mass distribution function that shapes the 
numbers of events within certain time, denoted as X, is 
described by 

 
( 0) 1 exp( ),

exp( )
( ) .

!

x

P X p p

P X x p
x



 

ì = = - + -ïïïïí -ï = =ïïïî

        (2) 

 
As discussed above, each network node may involve two 

patterns of the error events. Hence the generalized 
Zero-Inflated Poison(GZIP) model[26], extended on the 
basis of Zero-Inflated Poisson process, can be used if each 
kind of error event follows an independent distribution. 
Therefore the mixed type error event distributions can be 
expressed as follows: 

 

1

1

( ) (1 ) ( 0)

exp( )
( 0),

!

 
n

i
i

xn
i i

i
i

P X x I X

x
x



 


=

=

= = - = +

-

å

å



≥

       

(3)

 

 
where i and i(i=t or r) are similar to parameters defined 
in Zero-Inflated Poisson model, while the index t and r 
refer to symbols of “T” pattern and “R” pattern of the error 
event, respectively. The indicator I equals 1 if 1X = , and 
equals to 0 otherwise. Hence every GZIP model consists of 
4 parameters that determine the distribution of error events. 

 
3.2.2  Parameters estimation 

Expectation-Maximization method is used for point 
estimation of the GZIP model parameters by using the 
linear recursive expression[27] : 
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where N represents the numbers of elements of NT, and 

Pr( | , )k
qi X   means the posterior probability that Xq 

comes from the ith error event given the presently iterated 

parameters 
k  calculated as follows: 
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         (5) 

 
Eq. (4) provides an effective process for parameter 

iterations. However, the initial values of GZIP model 

parameters is critical to the convergence of the estimation. 
Let us denote tmax as the time of the last sample, Ni and Ntol 
stand for the numbers of the ith error event and total 
number of the error events, respectively. The parameters in 
GZIP model can be initialized as follows:  

 

( )0 tol

max 

1 ,
  or .

,
i i

i i

N N
i t  r

N T t

 


ìï = - /ï =íï = /ïî 
       (6) 

 
Eq.  (6) provides a symmetrical initialization approach 

based on the ratio of zeros 0.  
In addition, when calculating the probability of each 

pattern of error events, the width of T-Window(T) must be 
selected appropriately. several criteria are imposed as 
follows. 

(1) Statistical meaning should be guaranteed, namely, 
 

, 0 and 1,   0, or .i i i
i

i t  r   º =å≥         (7) 

 
(2) The fitted GZIP model musts consist of zeros. That is, 

0 0 > . 

(3) The fitted model should reflect the diversity of 
different error events. Hence 2 test is used to minimizing 
the difference between fitted model and empirical data. In 

2  test, if a model has k (e.g., k=4 in GZIP model) 
parameters, then the class of data is at least k+1. In our 
application, let us denote  Gf   and  Ef   as the 
distribution density function of the GZIP model and 
empirical data, respectively, and the optimal T-Window can 
be obtained by 

 

( )( ) ( )( )
2

5 0
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Since solving Eq. (8) requires Eq. (6), iterative parameter 

estimation procedure for GZIP model is developed. For 
further discussion, we denote the estimated parameters as 

( )ˆ ˆ : , , , .t t r r       

The likelihood confidence region estimation is applied to 
calculate the confidence intervals of parameters in GZIP 
model. The confidence region  ¢  with significance level  is 
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Because of the complicated structure in Eq. (9) with 
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multiple parameters ( ), , ,t t r r    ¢ ¢ ¢ ¢ ¢= , a standardization 

parameter exploration procedure is applied to handle two 

parameter changes: single ( ) or i i t r ¢ = changes and 

single i ¢ changes. Suppose i changes to ,i +  k 

( , { , })k i k t r¹ Î also needs to be changed to satisfy 

1,i
i

 ºå  and hence the corresponding strategy is 

  
,

1

.
1

i
i

k
k

 













ì +ïï ¢=ïï +ïíïï ¢ =ïï +ïî

              (10) 

 
Compared with the changes on i, single shift on i does 
not affect other parameters.  
 
3.4  IC fault location identification 

Fault location identification is conducted by interpreting 
the confident intervals of the parameters of the GZIP 
models. As described previously, “T” pattern error events 
occurs only when the faulty node is sending packets, such 
6-bits long error events could not occur to a normal node. 
Therefore we focused on the confidence interval of 
parameters of the “T” pattern error events It. Therefore the 
location of IC is can be determined if the “T” pattern error 
events of the node is significant statistically. Fig. 6 shows 
the procedure for IC location identification. A node is 
labeled to have IC problem only if its corresponding GZIP 
model parameter t is statistically significant, that is, zero is 
not included in the confident region It. Otherwise this node 
is normal with 1- confidence level. In the case that two or 
more IC problems exist concurrently, the fault location 
identification procedure remains unchanged. 

 

 
Fig. 6.  Evaluation criterion for identifying problematic node 

 

4  Case Study 
 

4.1  Test-bed setup 
To demonstrate the proposed fault location identification 

method, laboratory experiments have been conducted. A 
3-node experimental CAN network system is illustrated in 
Fig. 7(It should be noted that the proposed method is 
general to more nodes.) The network is set to communicate 

at 5´105 bit/s using polling mode with 10 ms polling 
intervals controlled by a PLC scanner module. The IC 
problem is emulated on a drop cable through a high-speed 
on-off switch controlled by a computer, and the switching 
interval(Δt) between two adjacent disconnections event 
follows a Poisson distribution exp( ) !tp t  = - / . In 
this case study, the average switching interval is set to 
75ms. The duration of each disconnection is half bit width. 
Moreover, an FPGA based error detector has been 
developed to provide trigger signal to multi-layer data 
acquisition system (DAQ) upon each error. The constructed 
test-bed is shown in Fig. 8.  

 

 
Fig. 7.  Schematic of experiment design for IC 

 

 

Fig. 8.  Layout of test-bed 

 
4.2  Result analysis 

 
4.2.1  Model evaluation 

Since each node will show different node-error 
interactions under IC problem, GZIP models for each node 
are constructed. Fig. 9 illustrates the modeling result of 
node 8. As seen from the figure, the fitting distribution with 
the expected model parameters  

[ ] [ ]( )ˆ ˆ : ,  ,  , 0.323 9,  1.447 5,0.620 7 ,3.657 9t t r r      =
 

is very close to the empirical data histogram. Furthermore, 
the peak value of probability density is reached when the 
number of error events within the T-Window is between t 
and r , which indicates that the two patterns of error events 
has been sufficiently shaped by these two sets of 
parameters together while “T” pattern error events tend to 
play a dominant role. 
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Fig. 9.  GZIP modeling result for node 8 

 
For comparison, the parameters of GZIP model for each 

single node are shown in Table 3. As it can be seen in the 
table, t and t of node 9 and PLC all equals to 0, thus their 
GZIP models degraded into Zero-Inflated Poisson 
distribution, since no “T” pattern error events exists. 
Reasonable interpretation can be made from Fig. 10 where 
the characteristic of Zero-Inflated Poisson for node 9 have 
been revealed, that is, the probability density decreases 
sharply against the increasing numbers of error events, 
since the distribution is represented by “R” pattern error 
events with Poisson parameter t=2.572 9. Moreover, since 
node 9 provides maximum differential signal voltage, it is 
identified as the source of initiated error packets when 
several nodes send error packet simultaneously. Hence a 
local maximum is observed in Fig. 10. In addition, the 
GZIP modeling result for the error event for PLC is shown 
in Fig. 11. 

 
Table 3.  Parameters of GZIP model of each node 

Property Node 8 Node 9 PLC 

T-Window t/s 

t 

t 

r 

r 

0.8160 

0.3239 

1.4475 

0.6207 

3.6579 

0.8310 

0 

0 

0.7057 

2.5729 

4.1620 

0 

0 

0.7090 

1.3264 

 

 
Fig. 10.  GZIP modeling result for node 9 

 

The estimated parameters in Table 3 show a preliminary 
answer to the IC location identification problem, where the 
GZIP model for node 8 shows two patterns of error events. 
Hence, node 8 can be preliminary identified to have IC 

problem. However, further analysis needs to be conducted 
by determining whether the result is statistically sound. 

 

 
Fig. 11.  GZIP modeling result for PLC 

 
4.2.2  Final fault location identification 

Given significance level =0.05, the confidence intervals 
It of GZIP model parameters for each node are listed in 
Table 4. As it can be seen from the table, every parameter 
interval includes its estimated value in its corresponding 
GZIP models, which demonstrates the effectiveness of the 
proposed confidence region computation method. Detailed 
calculations for the parameters are illustrated in Fig. 12. 

 
Table 4.  Parameter confidence intervals of each node 

Node 

address

t t 

Lower limit Upper limit Lower limit Upper limit

8 0.282 0 0.328 5 1.424 6 16.475 7 

9 0 3.9×10–4 0 +∞ 

PLC 0 5.1×10–4 0 +∞ 

 

 
Fig. 12.  Likelihood confident intervals of model  

parameters for the network nodes 
(The likelihood functions are denoted by line with "+" maker) 

 
According to the criterion of fault location identification 

procedure in Fig. 6, we can determine that node 8 is the 
problematic node with IC problem, since t of node 8 is 
significant. On the contrary, It from both node 9 and PLC 
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include 0. In addition, the upper limits of t from node 9 
and PLC are all sufficiently small, which means no “T” 
pattern error events are possible to occur on these two 
nodes. Therefore, with 962 errors collected in this study, 
the 6-bits long error events observed on CAN bus are 
totally from node 8 associated with random IC faults, 
which agrees well with the experimental setup where IC 
problem is set on the drop cable to node 8. Additional 
analysis shows that It of normal nodes would remain stable 
when the sample size increases, which ensures the 
robustness of fault location identification method proposed. 

 
5  Conclusions 

 
(1) A novel model based IC location identification 

method is developed for IC fault detection and isolation on 
CAN network using error event sequence information.  

(2) A GZIP model based IC location identification 
algorithm is developed to determine whether a network 
node is problematic or not by testing the parameters of the 
GZIP model using the confident intervals of the parameters. 

(3) Experiments are conducted to illustrate the proposed 
method on a 3-node CAN network testbed. Experimental 
results show that when the IC problem is located on a drop 
cable, the parameters of GZIP model for the corresponding 
connecting node are statistically significant. 

Future work will be focused on the complex IC 
situations where multiple IC problems on different 
locations, including both drop cable and backbone of the 
network. 
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