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Abstract: It is a common phenomenon that the cracks originating from a hole can cause structural damage in engineering. However, the 

fracture mechanics studies of hole edge crack problems are not sufficient. The problem of an elliptical hole with two collinear edge 

cracks of unequal length in an infinite plate under uniform tension at infinity is investigated. Based on the complex variable method, the 

analytical solutions of stress functions and stress intensity factors are provided. The stress distribution along the axes and the edge of the 

elliptical hole is given graphically. The numerical results show that there is obvious stress concentration near the hole and cracks, and 

the stresses tend to applied loads at distances far from the defect, which conform to Saint-Venant’s principle. Hence, the stress functions 

are proved to be right. Under special conditions, the present configuration becomes the Griffith crack, two symmetrical cracks 

emanating from an elliptical hole, two cracks of unequal length emanating from a circular hole, a crack at the edge of a circular hole, or 

a crack emanating from an elliptical hole. Compared with available results, stress intensity factors for these special shapes of ellipses 

and cracks show good coincidence. The stress intensity factor for two cracks of unequal length at the edge of an elliptical hole increases 

with the crack length and the major-to-minor axis ratio of the elliptical hole. The stress distribution in an infinite plate containing an 

elliptic hole with unsymmetrical cracks is given for the first time. 
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1  Introduction 
 

The crack originating from a hole is an ancient problem 
in fracture mechanics. Even a small crack can lead to a 
dangerous situation. Consequently, it is of great importance 
to deal with hole-edge crack problems. BOWIE[1] first gave 
the solutions of a circular hole with a single edge crack and 
a pair of symmetrical edge cracks in a plate under uniform 
tension at infinity using the complex mapping technique. 
Because the mapping functions adopted are complicated 
and inaccurate, there are a number of papers analyzing 
stress intensity factors(SIFs) for cracks originating from a 
circular hole[2–9]. LAI, et al[10], studied the problem of a pair 
of cracks of different lengths emanating from the edge of a 
circular hole by a combined complex variable and least 
square method. ISIDA, et al[11], YAN[12], and GUO, et 
al[13–14], calculated the SIF for a single edge crack or a pair 
of symmetrical edge cracks originating from an elliptical 

                                                                 
* Corresponding author. E-mail: liush@stdu.edu.cn  
Supported by Hebei Provincial Natural Science Foundation of 

China(Grant No. A2011210033), and Foundation of Hebei Education 
Department of China(Grant No. ZH2011116)  
© Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014 

hole in an infinite plate under tension. TWEED, et al[15–16], 
used integral transforms to obtain mode III SIF for cracks 
of unequal length at the edge of an elliptic hole in an 
infinite elastic solid. GUO, et al[17–18], studied the anti-plane 
problem of two asymmetrical edge cracks emanating from 
an elliptical hole in a piezoelectric material through the 
complex variable method. LIU, et al[19–20], and DU, et al[21], 
studied the plane problem of an elliptic hole or a crack in 
transversely isotropic piezoelectric materials subjected to 
different electro-mechanical loads. By the finite element 
method, LIU, et al[22], obtained the stress distributions in 
the vicinity of the hole and crack for the plane problem of a 
plate with a crack emanating from an elliptical hole. MIAO, 
et al[23], investigated the interactions of two collinear 
circular hole cracks in an infinite plate subjected to internal 
pressure by using a hybrid displacement discontinuity 
method. 

This paper concerns with two cracks of unequal length at 
the edge of an elliptic hole in an infinite plate under tension 
by means of the complex variable method, and the 
analytical solutions of the stress functions and the stress 
intensity factor are obtained. In order to prove the 
correctness of results, numerical calculations are presented 
to graphically show stress distribution along the axes and 
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the edge of the elliptical hole. To the best of my knowledge, 
the stress distribution is given for the first time. The values 
of the stress intensity factor are calculated for the cases of 
the elliptic hole with two collinear edge cracks of unequal 
length, and its degenerated shape, such as the cross crack, 
the elliptical(circular) hole with one crack or two 
symmetrical cracks. 

 
2  Basic Equations 

 

Muskhelishvili’s method is used for stress analysis, the 
stress components x, y and xy in rectangular coordinates 
are given, in terms of the complex potentials 1(z) and 
1(z), as follows: 

 

14Re ( ),x y z   ¢+ =              (1) 

 

1 12i 2 ( ) ( ) ,y x xy z z z    é ù¢¢ ¢- + = +ê úë û       (2) 

 
where z=x+iy is the complex variable, the above bar 
denotes the complex conjugate, and the prime notation 
denotes differentiation with respect to z. 

In order to make the boundary conditions more 
manageable, it is advantageous to replace the complex 
variable z for any point in the z plane by a new complex 
variable =ei in the  plane by a conformal 
transformation z=(). Then the stress functions 1(z) and 
1(z) will be considered as functions of the parameter . 
Thus, the new notation is introduced: 
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      (3) 

 
Let  and θ be the stress components in curvilinear 

coordinates, Eq. (1) can be rewritten as  
 

4Re ( ).    + =            (4) 

 
The functions () and () can be written as   
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where X , Y represent the components of the surface forces 
per unit area at any point of the interior boundary, X and Y 
are the sums of the surface force components on the interior 
boundaries in the x and y directions. The constants B and 

iB C¢ ¢+ are related to the magnitudes of the principal 
stresses 1 and 2 at infinity, i.e., 
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      (10) 

 
where  is the angle made by 1 with x axis. 

 

3  Problem and Exact Solutions 
 

Consider two collinear edge cracks of unequal length 
emanating from an elliptical hole in an infinite plate. The 
cracks and hole are assumed to be traction free while the 
plate is subjected to uniform remote tensile stress q in the y 
direction, as shown in Fig.1. The rectangular coordinates 
system is set with the origin at the center of the elliptical 
hole and the x-axis coinciding with the line at which the 
cracks are located.  

 

 
Fig. 1.  Mapping the elliptical hole with two cracks 

 of unequal length into the unit circle 

 

3.1  Stress functions 
The conformal mapping function(GUO, et al[17–18]) is 
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Eq. (11) provides a conformal mapping from the outside 

region of the elliptical hole and cracks in the z plane into 
the interior of a unit circle in the  plane, A(a+L1, 0)→A(1, 
0), I(0, −b)→I, E(−a−L2, 0)→E(−1, 0), and G(0, b)→G. 
At the same time, the lower points H(a, 0) and D(−a, 0) are 
mapped to points H and D, the upper points H and D to 
points H″ and D″. 

Under the present loading condition, it can be seen that 
4B q= / , i 2B C q¢ ¢+ = / , 0X Y X Y= = = = . Thus 

Eq. (9) is simplified as  
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From Eqs. (11)–(12), one can obtain the following 

equations: 
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On the unit circle, since 1  = , ( ) ( )   ¢¢ = , it 

can be found that 0( ) ( ) ( )     ¢ ¢  is analytical outside 

the unit circle, and continuous outside and on the circle. 

0( ) ( ) ( )     ¢ ¢  is analytical in the circle hole, and also  
continuous inside and on the circle. Then, using Cauchy 
integral, one can obtain 
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Substituting Eqs. (14) and (17) into Eq. (7) produces 
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Clearly, both ω(ζ) and ( )   have two poles of the 1st 

order ζ=0 and ζ=∞, and 
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where “Res” denotes the residue. 
Substituting Eqs. (19)–(20) into Eq. (18), the following 

expressions can be obtained: 
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From Eq. (13), when L1=L2=0, ε1=ε2=1 can be obtained, 

the elliptic hole with two cracks of unequal length 
degenerates to the elliptical hole. From Eqs. (11)–(13) and 
(21), we have 

 

0 ( ) .
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This is just the well-known result for the elliptical hole.  
Differentiating Eq. (21) with respect to , one can obtain  
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Substituting Eqs. (14) and (21) into Eq. (8), and using 

Cauchy integral again, we have 
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Substituting Eqs. (10)–(11), (21), (24) into Eqs. (5)–(6) 

yields 
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Hence, substituting Eqs. (3) and (25)–(26) into Eqs. 

(1)–(2), the stress components x, y and xy in terms of the 
complex variable  can be obtained. These expressions are 
too lengthy to be written here. At the edge of the elliptical 
hole, there is σ=0, then, from Eq. (4), one can obtain 
σθ=4Φ(ζ).  

 

3.2  Stress intensity factors 

The opening and sliding mode stress intensity factors KI 
and KII at the crack tip A are defined by 
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Inserting Eqs. (11) and (25) into Eq. (27), we have 
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ΙΙ 0.K =                   (29) 

 
Eq. (28) shows that stress intensity factors for cracks of 

unequal length emanating from the edge of an elliptical 
hole in an infinite plate are related to the applied 
mechanical loading, hole size and crack length. 

 
4  Numerical Results and Discussions 

 
4.1  Stress distribution  

In this section, in order to prove the correctness of the 
stress functions, numerical calculations are presented to 
graphically show stress distribution along the axes and the 
edge of the elliptical hole. Assume the dimensions of the 
hole and cracks as follows: a=2 m, b=1 m, L1=2 m and 
L2=1 m.  

Fig. 2 shows the normalized stress distribution of σx/q, 
σxy/q and σy/q along the negative x axis. The distance 
between the first point and the left crack tip is 0.01 m, and 
the range of x is from −3.01 m to −12 m. It can be seen that 
stress σx/q and σy/q decrease rapidly with x, σx/q from 
11.452 to 0, and σy/q from 12.452 to 1. Because of 
symmetry, σxy/q is always zero. There is obvious stress 
concentration in the neighborhood of the crack tip.  

 

 
Fig. 2.  Normalized stress distribution along negative axis x  

 
Fig. 3 shows the normalized stress distribution of σx/q, 

σxy/q and σy/q along the y axis. It can be seen that σx/q 

increases rapidly from −1 to 0, and σy/q first decreases 

from 0 to a negative value, then increases to 1. The 

shearing stress σxy/q isn’t always zero.  
Fig. 4 shows the variation of the normalized stress σθ/q 

with θ on the half edge of the elliptical hole when L2=1 m 
and L2=0. By Eq. (11), when L2=1 m, the rectangular 
coordinates of D″, G and H″ are −0.8614−0.5079i, 
−0.1062−0.9943i, and 0.6490−0.7608i, the corresponding 

θ are 3.6743 rad, 4.6060 rad and 5.4186 rad. When L2=0, 
the rectangular coordinates of D″, G and H″ are −1, 
−0.1886−0.9821i, 0.6228−0.7824i, the corresponding θ 
are π rad, 4.5227 rad and 5.3848 rad. It can be seen that the 
stress in the tangential direction changes obviously. 
However, for the two different cases, σθ/q=−1 at the point 
of G. The results are coincident with those in LIU, et al [22]. 

 

 

Fig. 3.  Normalized stress distribution along axis y  
 

 

Fig. 4.  Variation of normalized stress σθ/q with θ 
 
From Figs. 2−4, it can be seen that if an elliptical hole 

with two cracks of unequal length is made in an infinite 
plate, the stress distribution in the neighborhood of the hole 
and cracks changes significantly, but the stress distribution 
is practically uniform at distances which are large 
compared with the size of the defect. These phenomena 
conform to conclusions usually made on the basis of 
Saint-Venant’s principle. 
 
4.2  Stress intensity factors 

Under specific conditions, some configurations discussed 
in the exiting literatures can be simulated from the present 
results, such as the Griffith crack, two symmetrical cracks 
emanating from an elliptical hole, two cracks of unequal 
length emanating from a circular hole, a crack at the edge 
of a circular hole, and a crack emanating from an elliptical 
hole. Discussion is given as follows. 
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If b=0, L1=L2=L, Eq. (28) is reduced to ΙK =  

π( )q a L+ , which is just the well-known result of the 

Griffith crack. 
If L2=L1, Eq. (28) is the result of two symmetrical cracks 

emanating from the edge of an elliptical hole. Fig. 5 
illustrates the variation of KI with b for four different crack 
lengths when a=1 m and q=1 Pa. It can be seen that the 
result agrees to the previous work(GUO, et al[14]).  

 

 

Fig. 5.  Variation of KI with b for two symmetrical cracks 
emanating from an elliptical hole 

 

If a=b, Eq. (28) becomes the result of two cracks of 
unequal length originating from a circular hole. The 
variation of normalized stress intensity factors KI/K0 with 
a2/a for various a2/a1 is shown in Fig. 6, where a=b=1 m,  

a1=L1+a, a2=L2+a, and 0 πK q a= . In order to observe  

visually, the values of KI/K0 for a2/a=4 are listed in Table 
1. It can be seen that Fig. 6 and Table 1 are quite similar to 
those previously obtained in LAI, et al[10].  

 

 

Fig. 6.  Variation of KI/K0 with a2/a for two cracks 
of unequal length emanating from a circular hole 

 
If a=b, and L2=0, Eq. (28) degenerates into the result of 

a crack at the edge of a circular hole. Fig. 7 shows the 
variation of the normalized stress intensity factors KI/K0 
with L1/b when a=b=1 m and L2=0. The results are 

identical to those previously obtained in TWEED, et al[3]. 
 

Table 1.  K K0 /  for a pair of cracks emanating 
from a circular hole (a2/a=4) 

Ratio 
a2/a1 

Present 

 0 P
K K

Ref. [10] 

 0 L
K K  

Difference 

   
 
0 0

0

%P L

P

K K K K

K K
 





1.0 1.996 1 2.015 3 –0.96 

0.9 2.057 7 2.066 5 –0.43 

0.8 2.129 8 2.129 8 0.00 

0.7 2.216 8 2.209 7 0.32 

0.6 2.325 7 2.313 0 0.55 

0.5 2.468 0 2.451 3 0.68 

0.4 2.665 2 2.646 3 0.71 

 

 

Fig. 7.  Variation of KI/K0 with L1 /b for a crack  
at the edge of a circular hole 

 

If L2=0, Eq. (28) is simplified to the result of a single 
edge crack emanating from an elliptical hole. The 
expression of KI is the same as that given by GUO, et al[13]. 
Fig. 8 illustrates the variation of KI with b for four different 
values of L1 when a=1 m and q=1 Pa. It can be seen that as 
b increases, the value of KI first increases, and reaches the 
maximum value, then decreases to a stable value. In 
addition, the value of KI also increases with L1 at a given 
value of b.  

 

 

Fig. 8.  Variation of KI with b for a crack emanating 
 from an elliptical hole 
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Figs. 9 and 10 illustrate the variation of KI with L1 for 
two cracks of unequal length at the edge of an elliptical 
hole. In Fig. 9 L2=3 m, b=1 m and q=1 Pa, and a=5 m, 
b=1 m and q=1 Pa in Fig. 10. It is found that the value of 
KI increases as the ratio of a/b and the crack length become 
larger. 

 

 

Fig. 9.  Variation of KI with L1 for two cracks of unequal 
length emanating from an elliptical hole(L2=3 m) 

 

 

Fig. 10.  Variation of KI with L1 for two cracks of unequal 
length emanating from an elliptical hole (a/b=5) 

 
If a=0, Eq. (28) represents the result of asymmetrical 

cross-shaped cracks. Especially, when L2 is also equal to 
zero, Eq. (28) denotes the result of T-shaped cracks. Finally, 
the variation of KI with b for the cases of asymmetrical 
cross-shaped cracks and T-shaped cracks are shown in Figs. 
11 and 12, respectively. As shown in Fig. 11, when L1= 
L2=5 m, the value of KI is not influenced by b. If L2 is 
smaller than L1, it increases with b. On the other hand, if L2 
is greater than L1, it decreases as b increases. Furthermore, 
when b is great enough, the value of KI for any L2 is close 
to 3.9633 N • m–3/2, which corresponds to the case of 
symmetrical cross-shaped cracks of L1= L2=5 m. It can be 
observed that the curves in Fig. 12 are similar to those in 
Fig. 8. The differences are that the values of KI for 
T-shaped cracks are smaller than those for a crack 
emanating from an elliptical hole when L1 is the same. 

 

 

Fig. 11.  Variation of KI with b for asymmetrical 
 cross-shaped cracks (L1=5 m) 

 

 

Fig. 12.  Variation of KI with b for T-shaped crack 

 
5  Conclusions 

 

(1) The analytical solutions of the stress functions and 
the stress intensity factor are derived for the problem of an 
elliptical hole with two cracks of unequal length in an 
infinite plate under remote tension.  

(2) There is always a compressive stress that equals the 
applied tension stress at two ends of the minor axis for 
different elliptical shapes.  

(3) The stress intensity factors for some particular 
hole-edge cracks are in good agreement with the existing 
results.  

(4) The stress intensity factors increase with the crack 
length and the major-to-minor axis ratio of the elliptical 
hole. 

(5) For symmetrical cross-shaped cracks, the stress 
intensity factor isn’t influenced by the length of the 
semi-minor axis. 
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