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Abstract: The working platforms supported with multiple extensible legs must be leveled before they come into operation. Although the 
supporting stiffness and reliability of the platform are improved with the increasing number of the supporting legs, the increased 
overdetermination of the multi-leg platform systems leads to leveling coupling problem among legs and virtual leg problem in which 
some of the supporting legs bear zero or quasi zero loads. These problems make it quite complex and time consuming to level such a 
multi-leg platform. Based on rigid body kinematics, an approximate equation is formulated to rapidly calculate the leg extension for 
leveling a rigid platform, then a proportional speed control strategy is proposed to reduce the unexpected platform distortion and 
leveling coupling between supporting legs. Taking both the load coupling between supporting legs and the elastic flexibility of the 
working platform into consideration, an optimal balancing legs’ loads(OBLL) model is firstly put forward to deal with the traditional 
virtual leg problem. By taking advantage of the concept of supporting stiffness matrix, a coupling extension method(CEM) is developed 
to solve this OBLL problem for multi-leg flexible platform. At the end, with the concept of supporting stiffness matrix and static 
transmissibility matrix, an optimal load balancing leveling method is proposed to achieve geometric leveling and legs’ loads balancing 
simultaneously. Three numerical examples are given out to illustrate the performance of proposed methods. This paper proposes a  
method which can effectively quantify all of the legs’ extension at the same time, achieve geometric leveling and legs’ loads balancing 
simultaneously. By using the proposed methods, the stability, precision and efficiency of auto-leveling control process can be improved. 
 
Key words: multi-leg platform, overdetermined problem, optimal balancing legs’ loads, supporting stiffness matrix,              

static transmissibility matrix 
 
 
 
1  Introduction* 
 

Many working platforms, such as truck-mounted radar 
system and truck–mounted missile launch system, must be 
leveled before they come into operation[1]. Their vertical 
supporting legs are extended to the ground, all the wheels 
are raised off the ground, then the working platform is 
adjusted to horizontal state by controlling the extension of 
each supporting leg. The working platform is required to 
keep this horizontal state with a very small inclination 
tolerance(usually much less than 0.1°) under each 
impossible operating mode. For some important civil 
equipments, e.g., wheeled cranes or heavy transportation 
platforms, the leveling process is also a key technical 
issue[2].  

There are two kinds of leveling process: manual and 
automatic leveling[3–4]. The manual leveling process 
measures the inclination of working platform with 
quadrants or anti-air gun instruments while adjusting the 
extension of each supporting leg manually. The automatic 
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leveling process is realized by the automatic control 
leveling hydraulic or electromechanical system, which 
usually takes only several minutes and can hold the state 
well in a long period.  

KUROKAWA, et al[5], proposed a spring method to 
automatically level  specimen surfaces for roughness 
measurement. The spring method used a part of tentative 
data points to calculate the surface inclination, so the 
surfaces were leveled with less distortion and large vertical 
measurement range can be achieved. LIU, et al[6], designed 
an automatic leveling and centering system of theodolite 
based on the algorithm of error correction and 
compensation. ZHANG, et al[7], put forward a circular 
auto-leveling strategy for a vehicle-borne platform with 
four legs. GAO, et al[8], proposed a “surface-adjust- 
surface” leveling technique, which used fuzzy decoupling 
algorithm to adjust the hydraulic legs. WU, et al[9], 
developed a novel intelligent leveling system of suspended 
access platform by adopting a same orientation pursuit 
strategy. FANG, et al[10], studied an automatic leveling 
method to calculate the regulating variables of each 
supporting point for the stage of a precision machining 
center. 

Mounted on the top of an aircraft and utilizing a 
self-contained, coupled Inertial Navigation System-GPS, a 
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Stabilized Radiometer Platform(STRAP) was developed by 
BUCHOLTZ, et al[11], to deal with the offsets and 
fluctuation problem existing in solar and infrared irradiance 
measurements. The STRAP could actively keep a set of 
uplooking radiometers horizontally level within 0.02° for 
aircraft pitch and roll angles of up to approximately 10°. 
By using an air-bearing rotary stage as the supporter of an 
electrolytic cell, HAN, et al[12], used the current feedback to 
characterize the levelness of the substrate of a scanning 
electrochemical microscopy. Tuning the adjusting screws 
of the tilt stage, substrate leveling can be completed in 
minutes by observing the decreased current amplitude. In 
order to control the deformation of the heavy-weight and 
long-span work positioner of automatic riveting system, 
ZHANG, et al[13], used the finite element method to analyze 
the deformations and the out normal vectors of the drilling 
and riveting points in multi-pose space, and developed an 
iterative compensating algorithm for the deformation 
errors. 

Traditional three- or four-leg supporting platforms have 
been successfully used in many fields. Generally, the 
supporting legs are vertical to the platform at their fixed 
joint points. Since there are only three independent 
equations for a spatial parallel force system, the four-leg 
supporting platform is one time overdetermined. The 
conventional way to level a four-leg platform is to repeat 
trial and error with each individual leg one by one while 
measuring the inclination of the platform. It is time 
consuming and has poor precision[14].  

For a large-scale platform which carries tens of or even 
hundreds of tons of equipments, it often spans over ten 
meters. If only three or four legs are used to support the 
working platform, its deformation deflection will exceed 
the allowable range. In order to improve its stiffness, six or 
more legs will be used. If all of the legs are vertical to the 
platform, the six-leg platform system is three time 
overdetermined. For multi-leg platform with more than six 
legs, it is overdetermined whatever the legs are or not 
vertical to the platform. The overdetermination will bring 
two problems:  

(1) The coupling of  rigid displacements and elastic 
deformations of the leg-platform system, and the elastic 
deformation varying with the legs’ load distribution, which 
make the leveling process quite complex. 

(2) When the platform is leveled in a horizontal state, the 
load of each leg is uncertain and variable, which very likely 
leads to virtual leg phenomenon and overload leg[1]. A 
virtual leg means that its load is zero or very small by 
contrast to that of other legs.  

In present paper, an optimal load balancing leveling 
method for multi-leg flexible platforms is proposed, to 
achieve rapid leveling and load balancing of all the 
supporting legs. In section 2, the calculation of legs’ 
extension to level a rigid platform is discussed. In section 3 
an optimal balancing leg load (OBLL) model is proposed to 
calculate the ideal load of each leg. And then two kinds of 
calculation method of legs’ extension to achieve OBLL are 

studied in section 4. Based on the above work, the optimal 
load balancing leveling method is developed in section 5. 
At the end, three numerical examples solved with the 
proposed methods are given out in section 6. 

 
2  Leg Extension Calculation for Leveling  

a Rigid Platform 
 

For the convenience of discussion, a global Cartesian 
coordinate system Oxyz  is placed at the center of mass of 
the platform in horizontal state, with the x-axis forward, the 
y-axis towards the left and the z-axis upward. Besides a 
body coordinate system O x y z    coincident with the 
global system in horizontal state is built to incline with the 
platform. 

To simplify the problems, a rigid plane platform is firstly 
taken as an example for further study. The upper plot of Fig. 1 
is the horizontal state of this rigid platform, and the lower 
plot is its two dimensional inclining state. Supposing the 
two dimensional inclination(TDI) is a result of first  
rotating the platform about x-axis with an angle α, then 
rotating the platform about y-axis with an angle β. α and β 
are following the right-hand rule, and their unit is radian.  
 

 
Fig. 1.  Two states of a rigid platform 

 

 
2.1  Relationship between the TDI and the plane 

normal vector 
The base vector along the z-axis or z  -axis, i.e., the 

normal vector of the rigid plane platform, can be 
determined with three noncolinear points in the coordinate 
plane xOy  or .x O y    Supposing that the unit normal 
vector of the absolute horizontal plane xOy is  T0, 0, 1 ,  
and the unit normal vector of the plane x O y    expressed 
in the global coordinate system Oxyz is  T, , ,a b c  
according to rigid body kinematics, the relationship 
between the two normal vectors can be formulated as 
follows: 

 
0 1 0 0 0

0 1 0 0 0 ,

0 0 1

a c s

b c s

c s c s c

β β

α α

β β α α

                                                              

     (1) 
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where cos ,cβ β sin ,sβ β cos ,cα α sin .sα α  
Further rearranging Eq. (1) yields  
 

0

0 0 .

1

a c s s s c s c

b c s s

c s c s c c c c

β β α β α β α

α α α

β β α β α β α

                                                                      

       (2) 

 
The TDI direction cosine matrix can be symbolized as 

 

0 .

c s s s c

c s

s c s c c

β β α β α

α α

β β α β α

A

           

              (3) 

 
A  is an unit orthogonal matrix, i.e.,  

 
1 T . A A                     (4) 

 
Solving Eq. (2) yields  

 

tan a
c

β  , tan cos .b
c

α β            (5) 

 
Therefore,  
 

arctan ,a
c

β  arctan cos .b
c

α β
    

        (6) 

 
If α  and β  are relatively small, Eq. (6) can be 

simplified as  
 

,a
c

β  .b
c

α                   (7) 

 
If α and β  are both less than 0.052 radian (3°), the 
relative error is no more than 0.1%. 
 
2.2  Leveling displacements(leg extension)  

of reference point 
In Fig. 1, ( , , )P x y z  is an arbitrary point of the rigid 

platform in horizontal state, which moves to ( , , )P x y z     
when the platform inclines. Here, the coordinates 
( , , )x y z    is defined in global coordinate system. 
(Without otherwise specified, all the coordinates and 
displacements in this paper are defined in the global 
coordinate system.) If P is the fixed joint point of a 
supporting leg and the rigid platform, in the general 
situation there are x z  and .y z Based upon Eq. 
(3) and Eq. (4), the relationship between the coordinates of 
points P and P can be outlined as  
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.
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                                               

         (8) 

When the platform is leveled from the current inclining 
sate to the horizontal state by rotating it around a certain 
axis, the displacement of the point P to point P can be 
obtained: 
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d
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    (9) 

 
If α and β are relatively small, Eq. (9) can be simplified as 
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d
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  

 (10) 
 

Eq. (10) shows that the leveling process can be 
approximately achieved by one time Euler rotation around 
the axis  T, ,0α β  with an angle 2 2α β . Supposing 
that x z 

 and ,y z 
 and α and β are relatively 

small, from Eq. (10) we can outline 
 

,x zd d x  .y zd d y          (11) 
 

Therefore, the displacements of P can be proximately 
represented as 
 

 T0, 0, .x yβ α  d            (12) 
 

If the absolute value of α or β is not very small, the 
horizontal displacements of point P can not be ignored. 
For this case, we can divide α and β into several small 
angle steps, and repeat using Eq. (10) to calculate the 
displacement of the point P. 

For a real multi-leg supporting platform, the inclination 
angles α and β of current state are usually quite small. So 
only the vertical extensions of the supporting legs are taken 
into consideration, after ignoring its horizontal 
displacements and horizontal loads generated in the 
leveling process. If α and β are less than 0.052 radian (3°), 
the vertical extension error of Eq. (10) or Eq. (12) is no 
more than 0.1%, even if α and β are near to 0.175 radian 
(10°), the error is only about 1%. 

If the ratio of extending speed to whole extending length 
of each leg is controlled synchronously to be same all the 
time, the fixed joint points of all the legs will maintain the 
initial geometric configurations during the whole leveling 
process, without leading to incompatible geometric 
constrains on the platform which often cause unexpected 
platform distortion. Another advantage of this proportional 
control strategy is that it can effectively reduce or even 
eliminate the leveling coupling between supporting legs. 
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3  Optimal Balancing Legs’ Loads  

for a Flexible Platform 
 

If there are more than three vertical legs to supporting a 
work platform, this multi-leg platform must be an 
overdetermined mechanical system, in that the load of each 
leg is not only influenced by the mass distribution of the 
system, but also related to the deformations of the platform 
and legs. So the geometric leveling of the platform is 
coupled with the load variation of supporting legs, which 
makes the leveling process quite complex. However, this 
problem is a double-edged sword for it provides a 
possibility of balancing the legs’ load without significant 
changing the geometry state of the platform. It will improve 
the supporting stiffness and reliability, and reduce the 
practical requirements for structural strength of the working 
platform and supporting legs, and the operating pressure of 
the hydraulic system. 

Supposing a working platform in horizontal state is 
supported with n vertical hydraulic legs, as shown in Fig. 2. 
The weight of the platform is G and the weight of all the 
legs is ignored. The horizontal coordinates of the leg i  is 
( , ).i ix y  As mentioned above, the origin of the global 
coordinate system is located at the center of mass of the 
platform.  

 

 
Fig. 2.  Multi-leg platform 

 
The ideal legs’ loads distribution is all the legs’ loads 

equal to the mean load R G n . In fact this distribution is 
almost impossible to be achieved in a real system. But we 
can take this distribution as an ideal goal to build an 
optimization model as follows:  
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


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            (13) 

 
where the three constrain equations are the static 
equilibrium equations of the spatial parallel force system, 
and iR is the vertical load of the leg i . This is an 
optimization problem with equality constraint, and can be 

solved with the Lagrange multiplier method. A Lagrange 
function can be outlined as 

 

2
1 2 3

1 1 1 1
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2

n n n n

i i i i i i
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(14) 
 

The optimal solution must be the roots of the following 
equations: 
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          (15) 

 
Substitute Eq. (14) into Eq. (15), we can obtain 
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    (16) 

 
where *

iR , the balancing load of leg i , is the optimal 
solution of optimization problem (13). Eq. (16) can be 
rewritten in matrix form: 
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   (17) 

 
Eq. (17) is a definite linear system of equations, and its 

solution  1 2

 T* * * *, , ,
n

R R RR   is just the optimal 
balancing legs’ loads (OBLL). Next, we will study the 
calculation procedure for the extension of each supporting 
leg to achieve OBLL. 

 
4  Leg Extension Calculation for OBLL 

 
It is assumed that the multi-leg platform system stands 

on the ground with all the supporting legs keeping in touch 
with the ground, which means the load of each leg is 
greater than or equal to zero, and no tension force exists in 
any leg. The current load C

iR  of leg i  ( 1, 2, ,i n  ) 
can be measured with a force sensor or oil pressure gauge, 
and the difference between this current load C

iR  and the 
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corresponding OBLL *
iR  is 

 
* C.i i iR R R∆                 (18) 

 
There are two ways to calculate the extension of each leg: 

the first only uses each individual leg’s stiffness, referred to 
as individual extension method (IEM), and the second takes 
the coupling stiffness between legs into consideration, 
referred to as coupling extension method (CEM).  

 
4.1  Individual extension method (IEM) 

IEM calculates the leg extension by dividing the load 
difference iR∆ , which is obtained from Eq. (18), with the 
corresponding equivalent leg stiffness. The own axial 
stiffness ik  of each leg can be taken as equivalent stiffness, 
then the extension of the leg i  can be calculated as 

 

.i
i

i

R
e

k
∆

                   (19) 

 
This method is hereinafter referred to as IEM1. 

We can also take the flexibility of the working platform 
at the fixed joint points into consideration, and 
quantitatively define the equivalent leg stiffness E

ik as 
follows.  

Definition 1: Ignoring any external loads (including 
weight), constraining the bottom points of all the 
supporting legs but leg i, a certain vertical force is applied 
at the bottom point of leg i to result in a unit vertical 
displacement at the bottom of leg i, the applied force is just 
the equivalent leg stiffness E

ik . 
According to the IEM, the extension of leg i  can be 

calculated as  
 

E .i
i

i

R
e

k
∆

                  (20) 

 
This method is referred to as IEM2.  

IEM1 and IEM2 use the same assumption that the 
extension of a certain leg only leads to the load variation of 
its own, and has no influence on all of the other legs’ loads. 
It is not entirely true in real platform system, so we can not 
get the exact solution to achieve OBLL with only one time 
calculation of IEM. But we can improve the solution by 
iteration with IEM. Because IEM2 take the elastic 
deformation of working platform, it seems to be more 
precise than IEM1, however, it tends to diverge in iterative 
computation. An example is illustrated in section 6.2. 

 
4.2  Coupling extension method(CEM) 

The main idea of CEM to calculate the extension of each 
leg is: not only the legs’ own stiffness but also the elastic 
flexibility of the working platform being taken into 
consideration, and not only the influence on its own load 
but also the coupling influence on all the other legs’ load 
caused by the extension of each leg being taken into 

consideration.     
Definition 2: Ignoring any external loads (including 

weight), a set of vertical forces are applied at the bottom 
points of all the supporting legs but leg j to constraint these 
bottom points fixed in z-direction, a certain vertical force is 
applied at the bottom point of leg j to result in a unit 
vertical displacement at the bottom of leg j, the force 
applied at the bottom of leg i is the stiffness coefficient ijk . 
According to the Maxwell reciprocity, .ij jik k All 
stiffness coefficients constitute the supporting stiffness 
matrix(SSM) of a multi-leg platform system: 

 
11 12 1

21 22 2

1 2

.

n

n

n n nn

k k k

k k k

k k k

K





   



               

           (21) 

 
Noting that the summation of each row or column of the 

supporting matrix K  is equal to zero, this matrix is 
singular. Further analysis shows that if all of the legs are 
vertical to the working platform, and only the vertical linear 
displacements are taken into consideration, the whole 
leg-platform system will have three rigid DOF: translation 
along z-axis, rotation about x-axis and rotation about y-axis. 
For this case, the rank of the supporting stiffness matrix 
K  is 3n . 

The procedure of CEM is as follows: Firstly taking the 
platform weight into consideration, the vertical reaction 
force column vector CR  of all legs in current state is 
calculated or measured; Then the extension of each leg to 
achieve OBLL is solved form Eq. (22): 

 
C( ), *Ke R R               (22) 

 
where  1 2, , , ne e ee   is the extension column vector 

of each leg. 
Because the supporting stiffness matrix K  is singular 

with a rank 3n , its singularity can be eliminated by 
assuming any three extension elements of the vector e  
equal to zero. For example, assuming the last three 
extension elements equal to zero, so the Eq. (22) can be 
rewritten as 

 
C

1: ,1: 3 1: 3,1 1: ,1( ) .n n n n
*K e R R           (23) 

 
This is an quasi-overdetermined linear system of 

equations, and the least square solutions can be obtained 
with the generalized matrix inverse method[15]. Another 
way to let Eq. (23) become a determined problem is just to 
remove any three equations from it. For example, removing 
the last three equations, Eq. (23) can be rewritten as  

 
C

1: 3,1: 3 1: 3,1 1: 3,1( ) .n n n n
*K e R R           (24) 

 
Generally, the solutions of Eq. (23) have less error for 
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the whole multi-leg platform system than that of Eq. (24). 
 

5  OBLL Leveling Method for a Flexible 
Platform 

 
It is assumed that there are n  vertical legs supporting a 

flexible working platform, and m  reference points on the 
platform surface are selected to evaluate the levelness of 
the platform, generally 3m . Under the small inclination 
assumption, only the z-axis translation displacements are 
considered, and the theoretical displacement iz∆  of each 
reference points required to level the platform can be 
calculated with Eq. (9) or Eq. (10).  All of the iz∆  
constitute the displacements vector of reference points:  

 
 T

1 2, , , .mz z z∆ ∆ ∆ ∆z            (25) 
 

Definition 3: Ignoring any external loads (including 
weight), constraining the bottom points of all the 
supporting legs but leg j, a certain vertical force is applied 
at the bottom point of leg j to result in a unit vertical 
displacement at the bottom of leg j, in that way the vertical 
displacements of reference point i is the static 
transmissibility coefficient ijt  from point j to point i. All 
the static transmissibility coefficients constitute the static 
transmissibility matrix(STM) of a multi-leg platform 
system: 

 
11 12 1

21 22 2

1 2

.

n

n

m m mn

t t t

t t t

t t t

T





  



               

           (26) 

 
The static transmissibility coefficient does not satisfy the 
Maxwell reciprocity, i.e., ij jit t . 

The required extension of each leg, to level the platform 
which is evaluated from the displacements vector of 
reference points in Eq. (25), and to achieve the OBLL 
solved from Eq. (17), is the solution e  of the following 
linear system of equations  

 

 
C

1
( ) ( ) 1

.n
m n n m n∆

*K R R
e

T z
   

                  
      (27) 

 
The rank of the supporting stiffness matrix K  is 3n , 

which means that there must be three rows of  the matrix 
are linear dependent to other rows. On the other hand three 
reference points can exactly define a plane to evaluate the 
levelness of the platform, which is used to measure the 
levelness of platform. If 3,m   Eq. (27) is a determined 
problem and its solution is just satisfied the geometric 
leveling requirements and achieves the OBLL at the same 
time. In practical application, more than three reference 
points may be used to comprehensively and objectively 
evaluate the levelness of the platform. In this case, Eq. (27) 

will be overdetermined and only the least square solution or 
the weighted least square solution can be obtained. 

In military or civil engineering, most of the multi-leg 
working platforms adopt hydro-cylinder legs. It is more 
precise and reliable to control a hydro-cylinder leg to 
stretch out than to draw it back. For this case, we can 
increase all the elements of the solution vector e  resulted 
from Eq. (27) with a same positive value e∆  to make the 
extension of each leg nonnegative, which only vertically 
translates the whole platform without changing its levelness 
and the load of each leg. Usually, the solution of Eq. (27) 
can be modified with the following equation: 

 
* min( ), e e e                (28) 

 
where *e  is no longer the solution of Eq. (27). 

 
6  Numerical Examples 

 
6.1  OBLL calculation example 

As demonstrated in Fig. 2, a steel plane platform with 
size 2 000 mm600 mm5 mm is supported with six legs, 
which are vertically fixed with the platform at point A 
through F respectively. With the coordinate system defined 
in section 2, the horizontal coordinates and stiffness of each 
leg are listed in Table 1. Only the gravity of the platform is 
taken into consideration. The gravity acceleration is 

29.8 m sg   . This example is just to calculate the OBLL.   
 

Table 1.  XY coordinates and stiffness of each supporting leg 

Leg Coordinate xmm Coordinate ymm Stiffness k(N • mm–1) 
1 1 000 300 10 
2 1 000 300 15 
3 1 000 300 12 
4 1 000 300 20 
5 200 300 8 
6 200 300 14 

 
In ANSYS platform, using the element type SHELL63 to 

mesh the plane platform and COMBIN14 to simulate the 
six legs, the current load of each leg without any extension 
can be calculated using FEA. And the OBLL of this 
multi-leg platform system is calculated by solving Eq. (17). 
All theses results are listed in Table 2. The OBLL is more 
balancing than the current load distribution. 
 

Table 2.  Current load and OBLL of each leg 

Leg Current load C
iR N OBLL *

iR N 
1 68.45 84.49 
2 59.10 69.40 
3 30.49 69.40 
4 67.72 84.49 
5 101.77 75.43 
6 131.11 75.43 

 
6.2  Leg extension calculation examples for OBLL  

Taking the OBLL result listed in Table 2 as the objective, 
the leg extensions are calculated with IEM1, IEM2 and 
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CEM respectively. The leg extension results are taken as 
placement boundary conditions applied at the bottom node 
of each COMBIN14 element of the finite element model 
shown in Fig. 3. Then the leg loads are verified by FEA. 

 

 
Fig. 3.  FEA model of a multi-leg platform 

 
Although the results obtained from IEM1 do not 

converge to the exact solutions with only one time 
computation, by taking the boundary conditions applied 
with calculated extension displacement as a new current 
state, the results can be gradually improved by carrying on 
several iterations. Further study shows that IEM1 is linearly 
convergent. In Fig. 4, the first results are the current legs’ 
load without any extension, the others are the results of 
each iterations. The results of the last three iterations are 
very close to the OBLL. The iteration results of IEM2 are 
shown in Fig. 5. Obviously they are divergent. 

 

 
Fig. 4.  Iteration of IEM1 

 

 
Fig. 5.  Iteration of IEM2 

 
To use CEM to calculate the leg extensions, the 

supporting stiffness matrix (SSM) listed in Table 3 is 

calculated firstly in ANSYS according to the Definition 1. 
 

         Table 3.  SSM of a six-leg platform      Nmm 

Leg 1 2 3 4 5 6 
1 2.149 8  0.576 4  1.013 0  1.858 7  1.573 4  0.845 7  
2 0.576 4  2.758 1  1.903 9  1.145 8  2.181 7  0.758 1  
3 1.013 0  1.903 9  2.899 1  0.349 6  0.890 9  2.549 5  
4 1.858 7  1.145 8  0.349 6  2.389 5  0.712 8  2.039 9  
5 1.573 4  2.181 7  0.890 9  0.712 8  3.755 1  1.603 7  
6 0.845 7  0.758 1  2.549 5  2.039 9  1.603 7  4.589 5  

 
Supposing the last three legs’ extension are zero, the one 

time computation results with CEM are compared with the 
last iterations results of IEM1 in Table 4. 

 
Table 4.  Results of IEM1 and CEM 

Leg 
OBLL 

*
iR  N 

IEM1 

 

CEM 

Extension 

ie mm 
Load  

iR N 
Extension 

ie mm 
Load  

iR N 

1 84.49 22.09 84.46  0.18 84.49 
2 69.40 19.37 68.90  23.77 69.40 
3 69.40 47.99 69.03  28.97 69.40 
4 84.49 17.83 83.94  0.00 84.49 
5 75.43 63.95 75.97  0.00 75.44 

6 75.43 66.62 76.35  0.00 75.44 
 
 

6.3  Optimal load balancing leveling example 
Taking the point (100, 50, 0) as rotation center, firstly 

rotating the platform demonstrated in Fig. 2 about an axis 
parallel to the global x-axis positive direction with an angle 
1°, and then rotating it about an axis parallel to the global 
y-axis positive direction with an angle 2°, then the key 
points of A through F are moved to A through F, and the 
key point initially coinciding with the global origin O is 
moved to O. Still taking the global coordinate system as 
reference, and supposing all the legs remain vertical state 
(along with the global z-axis direction), i.e., the whole 
structure obeys the small displacement hypothesis, the 
coordinates of each key points after inclination are listed in 
Table 5. We now take the key points E, F and O as 
references to level the platform, in other words, the three 
key points should have the same z coordinate in the end.   

 
Table 5.  Coordinates of key points after inclination 

Point 
Coordinate 

xmm 
Coordinate 

ymm 
Coordinate 

zmm 
A  997.78 300.57 61.901 
B  997.35 299.35 77.602 
C   997.72 300.56 67.136 
D  997.41 299.34 72.366 
E   199.30 299.84 21.801 
F   199.67 300.07 11.336 
O  0.030 5 0.007 6 2.618 

 
According to Definitions 1 and 2, the supporting stiffness 
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matrix (SSM) and static transmissibility matrix (STM) after 
inclination are listed in Tables 6 and 7 respectively. All the 
coefficients are obtained with FEA.  

 
        Table 6.  SSM of the six-leg platform    Nmm 

Leg 1 2 3 4 5 6 
1 2.155 2 0.579 3 1.017 0 1.863 3 1.575 9 0.846 3 
2 0.579 3 2.764 4 1.907 2 1.150 7 2.185 1 0.756 5 
3 1.017 0 1.907 2 2.905 8 0.351 3 0.890 2 2.554 4 
4 1.863 3 1.150 7 0.351 3 2.396 3 0.712 6 2.044 9 
5 1.575 9 2.185 1 0.890 2 0.712 6 3.761 1 1.602 8 
6 0.846 3 0.756 5 2.554 4 2.044 9 1.602 8 4.599 3 

    
       Table 7.  STM of the six-leg platform     mmmm 

Point 1 2 3 4 5 6 
E   0.197 0  0.273 1  0.111 3  0.089 1  0.529 9  0.200 3  
F   0.060 5  0.054 0  0.182 5  0.146 1  0.114 5  0.671 5  
O  0.116 4  0.064 7  0.008 4  0.087 8  0.318 8  0.420 6  

 
The current loads and OBLL after inclination are 

recalculated, the leg extensions are calculated with Eq. (27) 
and Eq. (28), and the leg loads and the z  coordinate 
position of the reference points are verified with FEA in 
ANSYS. 

The leg loads before and after leveling are listed in  
Table 8, and the z  coordinate position of the reference 
points before and after leveling are listed in Table 9, where 
uz  is the displacement of reference points before leveling 
caused by elastic deformation, z uz  is the vertical 
position of reference points before leveling caused by rigid 
rotation and elastic deformation, uz   is the displacement 
of reference points after leveling resulted from leg 
extensions and elastic deformation, and z uz   is the 
vertical position of reference points after leveling resulted 
from rigid rotation, leg extensions and elastic deformation. 
The z-axis deformation contour and y-direction view of the 
multi-leg platform ofter leveling are shown in Fig. 6. From 
y-direction view, the plane, defined by the reference point   
E', F' and O', is placed in the horizontal state. 

 
Table 8.  Extension and load of each leg 

Leg 
Current load 

C
iR N 

OBLL 
*
iR N 

Extension 

ie mm 
Final load 

iR N 

1 69.97 84.49 14.69 84.49 

2 59.18 69.40 138.60 69.40 

3 30.53 69.40 129.29 69.40 

4 67.78 84.49 0.00 84.49 

5 101.68 75.43 74.79 75.44 

6 131.02 75.43 60.28 75.43 
 

          Table 9.  Location of reference points       mm 

Point 
Displacement  

before leveling 
uz  

Location  
before leveling 

z uz  

Displacement  
after leveling 

uz  

Location 
 after leveling 

z uz  

E   12.71 34.51 65.36 43.56 
F   9.36 20.69 54.90 43.56 
O  12.62 15.24 46.18 43.56 

 
Fig. 6.  z-axis deformation of the six-leg platform (mm) 

 

 
7  Conclusions 

 
(1) With the small rotation angle synthesis, the 

displacement of reference or leg extension can be 
approximately calculated from Eq. (10) or Eq. (12). For 
large rotation angle case, the rotation angle can be divided 
into several small angle increments and calculated 
iteratively. Controlling the extending speed of each leg 
proportion to its corresponding needed whole extension 
synchronously will reduce or even eliminate the 
unexpected platform distortion and leveling coupling 
between supporting legs. 

(2) For overdetermined structures, the reaction force 
distribution can be optimized by slightly regulating the 
initial displacement of the boundary DOFs, in which the 
key problem is to determine the supporting stiffness matrix 
of the boundary DOFs. 

(3) Combining the supporting stiffness matrix and static 
transmissibility matrix, the geometry leveling and OBLL 
problem can be solved simultaneously with Eq. (27). And 
this method can be further applied to general 
overdetermined structures to achieve controlling the 
displacements of reference DOFs and optimizing the 
reaction forces distribution.  
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