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Abstract: As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance 
displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the 
radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, 
especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active 
magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a 
new control scheme-adaptive iterative learning control (AILC) is proposed in view of rotor frequency periodic uncertainties during the 
startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor β 
influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects. As a 
feed-forward compensation controller, AILC can provide one unknown and perfect compensatory signal to make the rotor rotate around 
its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, 
one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the 
simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed 
rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation 
scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system 
displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research 
provides a new adaptive iterative learning control algorithm and control strategy for AMB displacement minimum compensation, and 
provides some references for time-varied displacement minimum compensation. 
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1  Introduction∗

 
As emerging products and rotating machinery, active 

magnetic bearings (AMB) have been moved from 
promising concepts to practical application. It has some 
advantages over conventional bearings, which are exhibited 
as follows: contact-free support, higher speeds, and active 
control[1]. However, unbalance response synchronous with 
rotor frequency is existent because of mass unbalance and 
asymmetry, which would generate force vibrations and 
displacement vibrations. For unbalance displacement 
vibrations, corresponding compensation schemes have been 
adopted from the 1990s[2–13]. The schemes purposes are to 
make the rotors rotate around there geometry axes to 
reduce rotors radial runout. 

 

JING, et al[2], restricted the unbalance force utilizing one 
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external, and suitable force injected into the AMB system. 
HU, et al[3], achieved prior the unbalance force and couples 
through holographical spectral analysis, then calculated the 
unbalance compensatory currents and injected them into 
the control currents. Overseas, TAGUCHI, et al[4], proposed 
a vibration control system using active magnetic bearings 
to cope with a sudden sinusoidal disturbance. A new 
approach called adaptive auto-centering approach was 
presented in Ref. [5], which can perform on-line 
identification of rotor imbalance and compensate for 
transmitted force. MIZUNO, et al[6], presented a method for 
unbalance compensation in AMB to achieve displacement, 
current, or force regulation, the key of it was pole-zero 
cancellation compensation. NONAMI, et al[7], focused on 
the error of estimated frequency of disturbance and 
presented a new adaptive frequency tracking and new 
modified law, then added a corresponding signal in the 
original control system. ARIAS, et al[8], presented a LQR 
scheme for vibration control in a rotor system to reduce the 
vibrations caused by the rotor imbalance in the two disks 
using only an actuator. The compensation of the active 
magnetic bearing actuator nonlinearities was demonstrated 
in Ref. [9] for a variable force bias control. INOUE, et al[10], 

http://www.cjmenet.com.cn/�
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(taguchi%20%20n.%3cin%3eau)&valnm=Taguchi%2C+N.&history=yes�
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bInoue%2C+T.%7d&section1=AU&database=3&yearselect=yearrange&sort=yr�
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proposed a vibration control method for rotor systems 
utilizing disturbance observer. Moreover, the application of 
iterative learning control (ILC) was analyzed in the 
unbalance compensation for AMB system in Refs. [11–13], 
and achieved simulations[11] or experiments[12–13]. Various 
methods have been discussed and most of them can achieve 
satisfying control effects. However, most of the existent 
compensatory methods require AMB precise information or 
cannot achieve online displacement compensation, which 
limit the application of these approaches. 

In this paper, the AMB mathematical model is 
established and rotor system unbalance response is 
analyzed, the response can increase rotor radial runout. To 
restrain the runout, an adaptive ILC (AILC) algorithm is 
proposed as a feed-forward compensation controller (FFC). 
To improve the learning convergence speed, the error signal 
of previous control circle is used in the control output, and 
to reduce the learning effects in uncompensated frequency 
range, a novel impacting factor β as learning output 
coefficient is introduced. The role of β is to weaken ILC 
influence for AMB control system in the process from 
static state suspension to one given frequency. And the 
AILC can provide some desired and unknown signals to 
restrict the rotor to rotate around its geometrical axis by 
means of the radial magnetic bearings. Then the unbalance 
displacement compensation could be implemented. 
 
2  AMB Radial Model and Displacement 

Vibration Analysis 
 
2.1  One DOF control subsystem  

To have verisimilar effects in radial four degree-of- 
freedoms (DOFs) mathematical model and the later 
simulation, this section firstly analyzes one DOF subsystem 
control principle because the decentralized control is 
adopted during the experiment. For simplicity, the analysis 
is only done in the X-direction and all the coupling effects 
among the different axes and non-collocation are ignored. 
Fig. 1 shows the control structure of one DOF subsystem of 
radial magnetic bearings.  

 
 

 

Fig. 1.  Structure of a one-DOF AMB system 

When the rotor is static stable suspense, the 
electromagnetic force influencing on the rotor can be 
written as 
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where the parameters of Eq. (1) is given in Table 1. The 
gravity of the rotor is based on the static feedback current 
Im. Here, Im0.1 A. If the rotor rotates and the 
compensation control is not added, the electromagnetic 
force is expressed by 
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where x1 is the radial vibratory displacement and ic1 is the 
control current. The Taylor Series of Eq. (2) at the point (x1, 
ic1), where x1 and ic1 are zeros, can be written as 
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where 2 2 2 3

1 0 0 0( ) /x mK AN I I xµ  is the displacement 
stiffness, and 2 2

1 0 0 0/iK AN I xµ is the current stiffness, 
their values are given in Table 1. 2 3

0 1 1 0m cAN I x i xµ    is 
an infinitesimal of higher order or nonlinear small, 
therefore, it can be ignored. Therefore, Eq. (3) can be 
replaced by 
 

1 1 1 c1,x x iF K x K i∆                (4) 
 

where xF∆ is the linear and dynamic resultant force.  
 

Table 1.  Parameters of AMB system 

                 Parameter Value 
Air permeability μ0(µV • s • (A • m)–1) 0.4π 
Pole area Acm2 2.79 
Numbers of the coils N 130 
Gap of the rotor at balance position x0mm 0.25 
Gravity acceleration in X axis and Y axis gx, gy(m • s–2) 6.93 
Bias current I0A 2 
Mass of the rotor mkg 2.8 
Transverse moments of inertia Ir(kg • m2) 0.021 4 
Polar moments of inertia Ia(g • m2) 0.764 6 
Distance of left AMB l1m 0.120 2 
Distance of right AMB l2m 0.133 8 
Sum distance of l1 and l2 lm 0.254 
Stiffness coefficient for displacement kxn(MN • m–1) 1.517 
Stiffness coefficient for current kin(N • A–1) 189.6 
Linear amplifier power gain Ga(A • V–1) 0.4 
Linear sensor gain Gs(kV • m–1) 20 
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In Table 1, n1, 2, 3, 4. According to Fig. 1 and Table 1, 
the relationship between x1 and ic1 is deduced: 
 

c1 1 s p a 1 p8 000 ,i x G G G x G            (5) 
 

where  
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Eq. (6) is a digital PID controller with incomplete 

derivation. where Kp is the proportional gain, Ti is the 
integral gain, Td is differential gain, and Td(1Tf ) is the 
incomplete differential part. The frequency characteristic of 
Eq. (6) can be achieved: 
 

p p j( j ) ( ) .sG G s ωω              (7) 

 
According to Eqs. (4)–(7), the resultant force is mainly 

influenced by the radial displacement x1 and the gain of 
PID controller, and it can provide basis for the design and 
analysis of four radial DOFs subsystems mathematical 
model.  

 
2.2  Modeling of four radial subsystems for AMB  

To synthetically analyze the generating mechanism of 
AMB radial runout and verify the feasibility and 
effectiveness of compensation scheme, the mathematical 
model of AMB four radial subsystems is established.  

For the thrust force in the rotor axial can be assumed 
passing through the mass center of the rotor, and the rotor 
does not exist unbalance in axial direction, the axial 
subsystem can be separated from the other four radial 
DOFs. And the rotor force analysis in the four radial 
directions is shown in Fig. 2. Where, Og is the mass center 
and Oc is the geometric center; and each electromagnet 
force is defined as Fn (n  xjk or yjk, j  1, 2 and k  1, 2). 

 

 
Fig. 2.  Stress analysis for the radial rotor subsystems 

 
According to the motion theorem of the mass centre, the 

dynamic model of the AMB rotor is described by the 
equations as follows[14–15]: 
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Eq. (9) are the inertia force in the x and y directions, er is 

the distance between the mass center and the rotational 
center (in Fig. 3), and ω is the rotor rotational angular 
velocity. Due to the relatively smaller magnetic bearing 
stiffness, the rotor would rotate around an unknown axis 
between the principal axis of inertia and its geometric axis. 
For the rotor can be considered as a rigid body[14], its 
eccentric position in mass center section is shown in Fig. 3. 

 

 
Fig. 3.  Rotor eccentric position 

 
where r g r ,O O e c gO O e is the eccentricity, OXY 
coordinate system is fixed on the radial magnetic bearings 
center and rO ξη is the rotor rotating coordinate system. 
Geometric center movement is the key to analyze rotor 
trajectories but not mass center movement, and the 
relationship between mass center and geometric center is 
calculated 
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where xc and yc are the coordinate value of the geometric 
center. 

The vibration mechanical model in matrix form of the 
four radial subsystems is established by means of Eqs. 
(8)–(10) and the Refs. [1, 16–17], which is shown as 
follows: 
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The values and meanings of l1, l2, l, Ia and Ir, and so on, 

are given in Table 1. 
 
2.3  Vibration displacement analysis  

Eq. (11) can be expressed as 
 

c ,Mx Cx Kx Bi Ef                (14) 
 

where x [x1, x2, y1, y2]T is the displacement vector, ci  
[ic1, ic2, ic3, ic4]T is the control current vector, and f  [ xf  ,  

yf  , 0, 0]T is the harmonic disturbance forces vector. M is 
the mass matrix, C is the damping matrix, K is the 
displacement stiffness matrix, B is the current stiffness 
matrix, and E is disturbance force coefficient matrix. 

According to Eqs. (5)–(7), the matrix equations Eq. (14) 
can be transformed as 
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Eq. (16) is the AMB generalized dynamic stiffness which 

can influence rotor system moving trajectories. Moreover, 
Eq. (16) is accord with damp system forced vibration in 
harmonic force action, and it can be rewritten as[14] 
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nω  is ABM natural frequency matrix, and ζ  is its 
relative damping coefficient matrix. The solution of Eq. (17) 
can be given as 
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In Eqs. (19)–(22), T[1, 1, 1, 1] ,T ( )u t is the free 

vibration, *( )u t is harmonic forced vibration, and Bd is 
* ( )u t amplitude. Because of the relatively smaller values of a 

and ζ  in the practical AMB system, ( )u t effects for the 
whole system is weaker than *( ),u t in other words, the 
vibration displacement amplitude is mainly caused by *( ).u t   

To test the effects of *( )u t  for system vibration, rotor 
geometric center orbit and one radial DOF displacement 
curve are simulated by programming of Eq. (11). The 
solutions of Eq. (11) are the rotational displacements of the 
rotor at radial magnetic bearings. The AMB parameters in 
Eq. (11) are given in Table 1, and PID controller parameters 
are given referring to experimental PID controller: 
Kp0.585, Ti0.545, Td0.619, Tf0.753 9. Here, the 
rotational angular velocity ω is assumed to be 6 280 rads 
(200 Hz) because the unbalance vibratory displacement 
compensation will be implemented at 200 Hz, and the 
eccentricity e is assumed to be 15 μm. The rotor unbalance 
trajectory at radial MB is given in Fig. 4. 

 

 
Fig. 4.  Rotor unbalance trajectory at radial MB 
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The rotor radial vibration displacement (runout) exists in 
Fig. 4(b), and the vibration frequency coincides with the 
rotational frequency 200 Hz. The simulation result verifies 
the correctness of the analysis about Eqs. (19)–(22).   

To concretely analyze the influence of harmonic forced 
vibration on the system, the transformation of Eq. (22) is  
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In the vibration, amplitude Bd, M, m, C, er, and so on are 

depends only on the AMB rotor mechanical structure. Once 
the rotor structure has been designed, those parameters 
would be basically unchanged. The value of Bd is mainly 
affected by the generalized dynamic stiffness K and the 
rotational angular frequency ω, so, to reduce rotor radial 
displacement vibration in a fixed frequency ω, the stiffness 
K should be increased through increasing control current 
amplitudes according to Eqs. (5), (14), (16), and (23).  

In the following, methods to increase the K in Eq. (16) 
are analyzed. Because the displacement stiffness K and the 
current stiffness B are constant values in the AMB system, 
the PID controller becomes the most important part to 
increase the stiffness K. Therefore, the unbalance vibratory 
displacement compensation could be achieved through 
increasing the output gain of the controller by some control 
and compensation algorithms. 

 
3  Adaptive Iterative Learning Control 

Scheme as Feed-forward Controller 
 

3.1  Adaptive iterative learning controller 
The ILC algorithm as a controller with memory function 

is widely applied in robots or manipulators to eliminate 
periodic tracking error[18–20]. The basic principle of ILC is 
to amend the control effects of the present cycle by learning 
the error information and the stored control information of 
past control cycle, and obtain perfect and unknown control 
signal. Refs. [11–13] all adopt ILC algorithms to 
compensate rotor unbalance vibratory displacement, 
however, Refs. [11–12] do not consider the periodic 
uncertainties of rotor rotational frequency. Ref. [13] 
proposes one compensation algorithm called ALC and it 
could change the learning cycle according to rotational 
speed vibration, but, in ALC application, the learning gains 
for a set of speed points must be obtained beforehand and 
the speed points should be distributed in the required speed 
range, which maybe affect ALC application in other AMB 
systems. Furthermore, Refs. [11–13] all did not analyze the 
influence of ILC algorithms on AMB unbalance 
compensation in the startup process of the rotor system. 

In the running process of AMB rotor, it takes some time 
from static suspension to attain one fixed rotational speed. 
During the process, the speed is variable but ILC 
algorithms learning cycle is fixed, which makes previous 
learning gains be improperly added into the next control 

cycle. Large gain control errors can increase vibration and 
even make the whole system fail. To solve this problem, an 
adaptive ILC (AILC) algorithm serving as the feed-forward 
controller to implement vibratory displacement compen- 
sation is presented in Fig. 5. The control scheme consists of 
PID feedback control system, AILC feed-forward compen- 
sation controller and generalized plant. The PID controller 
can steady the whole system and improve the anti- 
interference ability, and the action of AILC is to make the 
learning gain accurately track the expectant orbit. The 
generalized plant includes power amplifier, electromagnetic 
coils, and rotor system.  

 

 
Fig. 5.  AILC compensation principle of AMB system 

 
To improve control performance and enhance the 

convergence rate of the learning law, there are two 
modifications in AILC. The first one is enhancing the error 
information action of previous control period, and the 
second one is proposing a novel impacting factor β as the 
coefficient of the learning vk. β can reduce the effects of 
learning gain to the control system when rotor speed is not 
coincide with the learning cycle of AILC. AILC can 
implement vibratory displacement compensation without 
any information of the generalized plant, and it will not 
increase the interference of the feedback controller. Only 
the expectant signal yd and the output of the sensor yk are 
needed in AILC, here, yd is 2.5 V witch is defined as the 
balance position of rotor during static suspension. The error 
signal between yd and yk is iteratively learned, then, the 
perfect and unknown control signal uk is obtained as the 
input signal of the power amplifier. 

The functions of AILC can be introduced by the iterative 
formulas in discrete domain. The error formula is given as 

 
s( ) ( ) ( ), 0, 1 , { },k d k

f
e n y n y n n n Z

f
 
       

    (24)     
  

where n is the sampling points, fs is the sampling frequency, 
f is the rotary frequency of the rotor, Z is the aggregate of 
all integers, and k is repetitive learning number.  

The update learning law of AILC is summarized as 
 

1 1( ) ( ) ( ) ( 1).k k k kv n Pv n Qe n Q e nβ         (25) 

 
The learning law of original ILC (OILC) in Ref. [18] 
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was given as 
 

1( ) ( ) ( ).k k kv n v n Qe n               (26) 

 
Where in Eqs. (25) and (26), P, Q and Q1 are the linear 
operators to improve the control performance of ILC 
algorithms, which should be determined by experiment 
debugging. Here, ( 1)ke n and Q1 are added into Eq. (25) 
as the modified link, so as to enhance the learning 
convergence rate by more utilizing the control error 
information, and the action of β is to implement adaptive 
compensation. 

To understand the action of AILC better, the control 
input signal of generalized plant is written as 

 
( ) ( ) ( ),k ku n c n v nβ                (27) 

 
where uk(n) is the controller input, c(n) is PID controller 
output, vk(n) is the learning gain of AILC, and β is the 
impacting factor of vk(n). The last objective is to obtain 
perfect controller signal ud when having infinitely iterative 
learning, then make the error signal become zero. It should 
be satisfied as  
 

lim ( ) ,k dk
u n u


 lim ( ) 0.kk

e n


         (28) 

 
3.2  Convergence analysis  

The convergence of relational expressions of Eq. (28) 
will be proved when adding PID feedback controller in Fig. 
5. The discrete transfer function of the learning law of Eq. 
(25) can be calculated by 

 
1

1 1( ) ( ) ( ) ( )k k k kV z PV z QE z Q E z zβ 
      

1
1( ) ( ) ( ),k kPV z Q Q z E zβ           (29) 

 
where 1z represents the lag operator in time domain, and it 
could make the sampled signal lag one period. This is the 
reason why the former error information is added into the 
modified learning law of AILC.  

The PID controller with incomplete differential part is 
given in time domain according to Eq. (6): 

 

d
P p 0i f

1 d( ( ))( ) ( ) ( ) ( )d .
1 d

t T e tc t G t K e t e t t
T T t

 
      

  

 (30) 
 
The difference equation of Eq. (30) can be calculated by  
 

d
p 0

0i f 0

1 ( ) ( 1)( ) ( ) ( ) .
1

n

i

T e n e nc n K e n T e n i
T T T

         
  

 (31) 
 
The discrete function of Eq. (30) is deduced as 

10 d
p 1

i f 0

1( ) 1 (1 ) ( ).
(1 )1

T T
C z K z E z

T T Tz




 
       

  (32) 

 
The z-transform of the control signal function of Eq. (27) 

is deduced by 
 

( ) ( ) ( )k kU z C z V zβ     

10 d
p 1

i f 0

11 (1 ) ( ) ( ).
(1 )1 k

T T
k z E z V z

T T Tz
β



 
       

  (33) 

 
Here, assuming 
 

10 d
p 1

i f 0

1( ) .
11 (1 )

(1 )1

H z
T T

k z
T T Tz





 
     

  (34) 

 
The discrete function of error signal can be obtained as 
 

( ) ( ( ) ( )) ( ).k kE z U z V z H zβ        (35) 
 

Putting Eq. (35) into Eq. (29), we can obtain 
 

1
1 1

1
1

( ) ( ) ( )( ( ) ( ))
( ) [ ( ) ( )] ( )

k k k k

k

V z PV z Q Q z U z V z
H z P Q Q z H z V z

β β
β






    

   
 

1
1( ) ( ) ( ).kQ Q z H z U z           (36) 

 
Eq. (37) gives the transformation in limit calculation at 

the two sides of Eq. (36): 
 

( ) lim ( )kk
V z V z 

   

1
1

1
1

( ) ( ) ( )
lim .

1 [ ( ) ( )]
k

k

Q Q z H z U z
P Q Q z H zβ







  
        (37) 

 
If P and β all are 1, at the same time, the following 

inequality is satisfied by[18] 

 
1

1[ ] ( ) 1.P Q Q z H zβ β 


          (38) 

 
Eq. (37) can be simplified by 

 
( ) lim ( ) ( ).k dk

V z U z U z 
           (39) 

 
That is, the controller signal ( )ku z is replaced by ( )kv zβ  
when infinite iteration is operated, and the error signal will 
become zero. According to Eqs. (35) and (39), the error 
signal can be shown as 
 

lim ( ) ( )[ lim ( ) lim ( )]
( )[ ( ) ( )]

k kk k k

d

E z H z U z V z
H z U z V z

β

β
  



  

 
 

( )[ ( ) ( )] 0 .d dH z U z U zβ            (40) 
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The convergence of AILC has been demonstrated 
according to Eqs. (39) and (40), and a perfect controller 
signal ud has been obtained as power amplifier input. 
Therefore, the AILC algorithm as the feed-forward 
compensation controller can be adopted in the application 
of AMB unbalance vibratory compensation. 

According to the startup time and the variability of the 
rotor frequency from static suspension to one fixed speed, 
the equation of β  is given as 

 

,
n

d

f
f

β
     

               (41) 

 
where f is the rotor frequency, fd is a given frequency, the 
action of n is to reduce the value of β when f is far away 
from fd, usually, n is greater than 2. In the startup process, 
due to ,df f the value of β  should be very small, it can 
weaken the influence of Vk on the AMB generalized plant. 
However, β will be close to 1 if ffd, it can enhance the 
effect of repetitive learning and can make the error signal to 
converge toward zero. 
 
4  Simulation of the Two Algorithms 

 
In view of only having good learning performance for 

one fixed frequency of OILC and AILC algorithms, here, 
the compensatory frequency is supposed as fd200 Hz. 
Because A/D sampled frequency fs20 kHz, the range of n 
can be calculated by [0, 99]n  according to Eq. (24), that is, 
it has 100 memory points in one control period. Table 2 
gives the weight coefficients of the learning laws of AILC 
and OILC in Eq. (25) and Eq. (26). The learning effects 
about both laws are displayed in Fig. 6. 

 
Table 2.  Weight coefficients of AILC and OILC 

AILC OILC 
P Q Q1 P Q 

0.995 0.7 0.3 0.995 1.0 

  

 
Fig. 6.  Tracking abilities of AILC and OILC 

 
Fig. 6 shows the asymptotic convergence about the two 

ILC algorithms, however, AILC has better convergent 
speed than OILC. 

AILC and OILC algorithms are separately added into the 

Eq. (11) according to Eqs. (5), (25)–(27) to verify the 
advantage of AILC. The parameters of AMB system in Eq. 
(11) and PID controller are the same as them in Fig. 4. Here, 
the rotational frequency f is also assumed to be 200 Hz, and 
the eccentricity e is also 15 μm. Fig. 7 shows the rotor 
orbits and radial runout displacements with AILC 
compensation, and Fig. 8 shows the rotor trajectory with 
OILC compensation.  

 

 
Fig. 7.  Rotor trajectory with AILC compensation 

 

 
Fig. 8.  Rotor trajectory with OILC compensation 



 
 
 

GAO Hui, et al: Unbalance Vibratory Displacement Compensation for Active Magnetic Bearings 

 

·102· 

In Fig. 7(a), the rotor has perfect rotary trajectory in the 
process of unbalance compensation of AMB system. While 
in Fig. 8 there is some interference, which may affect 
control system stability. And the convergent speed in Fig. 
8(b) is slower than that in Fig. 7(b). From Fig. 7 and Fig. 8, 
the AILC algorithm has better compensation effects than 
OILC in the application of AMB unbalance vibratory 
displacement compensation. 

 
5  Experiment Results 
 

Fig. 9 shows the factual AMB system, which is 
accordant with the structure in Fig. 5. Rotor system, thrust 
magnetic bearings, radial magnetic bearings and power 
amplifier construct the generalized plant. Both PID control 
and AILC feed-forward compensation programs are 
implemented by PC, DSP2407A and PCI card. Furthermore, 
sensor drive can change displacement signals into voltage 
signals for processing, and the motor drives the rotor. 

 

 
Fig. 9.  Factual AMB operational system  

 
The unbalance compensation is implemented at 200Hz, 

and some relevant coefficients of AILC are assigned as 
follows: fd200 Hz, Q0.7, Q10.3, and P0.995. The 
rotational frequency f in Eq. (41) is computed by the CAP 
unit and the Periodic Interrupt of DSP through the pulse 
signal, and the signal comes from one small trough on rotor 
surface. The parameters of PID feedback controller are 
compatible with those adopted in the previous simulation. 
Fig. 10 shows the waveforms of rotor displacements and 
control currents in the experiment of AMB system with and 
without AILC at 200 Hz. In Fig. 10(a), the rotor radial 
displacement curve (v1 in Fig. 1) with compensation 
becomes straightness compared to the displacement without 
compensation, while the amplitude of the control current 
with AILC is bigger than that without AILC in Fig. 10(b), 

it is conformable to the analysis in section 2. 
 

 
Fig. 10.  Waveforms of displacements and control currents  

with and without compensation at 200 Hz 
 
In other words, to enhance the active control effects and 

amplify the generalized dynamic stiffness, the control 
current should be increased. Fig. 11 gives the amplitude of 
the radial runout according to FFT and the relationship 
(v120 000x1) between displacement voltage v1 and radial 
runout x1, and Fig. 12 gives the FFT of currents. The two 
FFT are achieved through dealing with the data of those 
curves stored in oscilloscope. The relevant amplitudes are 
given in Table 3. 

 

 
Fig. 11.  Amplitude of radial runout at 200 Hz 

 

 
Fig. 12.  Amplitude of control current at 100 Hz 
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Table 3.  Values of displacement and current amplitudes    
with and without AILC 

Without AILC With AILC 
Displacement 

x1μm 
Current 
ic1A 

Displacement 
x1μm 

Current 
ic1A 

11.5 0.25 1.0 0.47 
 

From Fig. 11, Fig. 12, and Table 3, the amplitude of 
radial runout is reduced from 11.5 μm to 1.0 μm after using 
AILC, while the amplitude of compensated current is 0.22 
A bigger than that of the original current without AILC 
compensation. The above results prove that the radial 
displacement fluctuations of the system with feed-forward 
compensation are obviously reduced. The reduction of 
displacement can improve the rotor rotating precision, and 
reduce machining error effectively in an AMB rotating 
tool. 
 
6  Conclusions 
 

(1) The rotor radial runout orbits are achieved through 
solving those mechanical matrix equations. As the runout is 
undesirable in application, the AILC method is proposed to 
compensate the unbalance effects of rotor runout.  

(2) AILC algorithm can adaptively and iteratively learn 
frequency-variable rotor radial displacement signals and 
implement well compensation at one fixed rotary 
frequency.  

(3) AILC algorithm can significantly reduce the rotor 
runout and has a better robustness compared to OILC for 
variable rotor speed. Furthermore, AILC can provide 
probability for variable speed unbalance compensation. 
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