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Abstract
For many problems in clinical practice, multiple treatment alternatives are available. Given data from a randomized controlled 
trial or an observational study, an important challenge is to estimate an optimal decision rule that specifies for each client 
the most effective treatment alternative, given his or her pattern of pretreatment characteristics. In the present paper we will 
look for such a rule within the insightful family of classification trees. Unfortunately, however, there is dearth of readily 
accessible software tools for optimal decision tree estimation in the case of more than two treatment alternatives. Moreover, 
this primary tree estimation problem is also cursed with two secondary problems: a structural missingness in typical studies 
on treatment evaluation (because every individual is assigned to a single treatment alternative only), and a major issue of 
replicability. In this paper we propose solutions for both the primary and the secondary problems at stake. We evaluate the 
proposed solution in a simulation study, and illustrate with an application on the search for an optimal tree-based treatment 
regime in a randomized controlled trial on K = 3 different types of aftercare for younger women with early-stage breast cancer. 
We conclude by arguing that the proposed solutions may have relevance for several other classification problems inside and 
outside the domain of optimal treatment assignment.
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In clinical practice, often multiple treatment alternatives are 
available for a problem at hand. In such cases, there is a 
clear need for decision rules that indicate which treatment 
alternative should ideally be administered to each client or 
patient under study. Retrieving such optimal decision rules 
(also referred to as optimal treatment regimes) is a key meth-
odological challenge in the most topical areas of precision 
health and precision medicine (Chakraborty & Moodie, 
2013; Chakraborty & Murphy, 2014; Huang et al., 2019; 
Kosorok & Moodie, 2015; Laber et al., 2014; Lou et al., 
2018; Schulte et al., 2014; Trivedi, 2016; Whitcomb, 2019).

For the estimation of optimal treatment regimes [limited 
here to single-decision regimes (Tsiatis et al., 2020), while, 
for the time being, leaving multiple-decision regimes in a 
multistage treatment context aside], one has to rely on data 

for a sample of clients, each of whom underwent one of the 
treatment alternatives, within the context of either a rand-
omized clinical trial or an observational study. In the present 
paper we will reanalyze, as a motivating running example, 
data from a randomized clinical trial on three types of after-
care administered to 224 younger women with early-stage 
breast cancer (the Breast Cancer Recovery Project: Scheier 
et al., 2005, 2007). Prior to the aftercare, the majority of 
the women underwent a lumpectomy, removal of axillary 
nodes, and combined radiation and chemotherapy. The three 
alternative types of aftercare were (1) standard medical 
care, (2) standard medical care plus a nutrition intervention 
(how to adopt a low-fat, high-fruit/vegetable diet), and (3) 
standard medical care plus an education intervention (with 
information on breast cancer and training of coping skills). 
Before starting aftercare, 11 pretreatment characteristics 
were measured. We further focus here on improvement in 
physical functioning as outcome variable. The key question 
to be addressed then is which types of women (in terms 
of pretreatment characteristics) would improve most with 
regard to physical functioning from which type of aftercare.
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When looking for an optimal treatment regime, one typi-
cally must do so within a prespecified family or class of 
treatment regimes. In the present paper we will focus for 
this purpose on the family of classification trees, because of 
their obvious insightfulness. (For examples of classification 
trees, see Figs. 3 and 4.) At this point, however, an obstacle 
arises: The problem of estimating an optimal decision tree-
based treatment regime has been satisfactorily analyzed at a 
theoretical level (Laber & Zhao, 2015; Tsiatis et al., 2020; 
Zhang et al., 2012); a ready-made and easily accessible soft-
ware solution has further been made available for the case 
of two treatment alternatives (Holloway et al., 2023; Zhang 
et al., 2012); however, a similar readily accessible solution 
for the case of more than two treatment alternatives (as in the 
running example outlined above) is not yet available (with, 
e.g., Laber & Zhao, 2015, sharing only a very partial and 
limited piece of pseudocode in supplementary materials). In 
the present paper, we will solve for this.

The remainder of this paper is structured as follows: In 
Sect. 2 we will first formalize and analyze the primary prob-
lem that is the focus of the present paper (i.e., the lack of a 
readily accessible methodology for estimating optimal tree-
based treatment regimes in the case of strictly more than 
two treatment alternatives); subsequently, we will propose 
a solution for it. Second, we will also briefly discuss two 
secondary problems that arise during the estimation, along 
with a proposed solution for them. Section 3 will present 
an evaluation of the proposed methodology in a simulation 
study, and Sect. 4 an application of it to the data from the 
Breast Cancer Recovery Project. We will end with a few 
concluding remarks.

Method

Primary problem

Notation and formalization

The methodology we propose in the present paper is appli-
cable to data from both randomized clinical trials (RCT) 
and observational studies. For simplicity’s sake, however, 
we will chiefly zoom in on the RCT case.

We therefore assume that data are available from an 
RCT that involves I individuals, clients or patients, (1, 
…, i, …, I). In the running example of the Breast Cancer 
Recovery Project, I = 224.

In the RCT, each individual is randomly assigned to 
one out of K treatment alternatives (1, …, k, …, K). In 
the running example, K = 3. We further denote the vari-
able that indicates the treatment alternative to which each 
individual is assigned in the RCT by A.

From each individual, a set of P pretreatment or baseline 
characteristics X is collected prior to treatment assignment, 
with X = (X1, …, Xp, …, XP). In the running example, P = 11. 
In addition, an outcome variable Y is measured; without loss 
of generality, we further assume that higher values on Y are 
better.

A treatment regime g then can be defined as a mapping:

Note that this definition also includes constant functions 
as treatment regimes—that is to say, so-called trivial or one-
size-fits-all treatment regimes, which imply that all individu-
als are assigned to one and the same treatment alternative.

To formalize treatment regime optimality, we firstly have 
to prespecify a family of treatment regimes G (with most 
families also including the one-size-fits-all regimes as special 
cases). In the present paper, G is the family of classification 
trees. Secondly, we need the concept of potential outcomes 
(Rubin, 1974), with, in the case of K treatment alternatives, 
K potential outcome variables, �∗ =

(
Y∗1,… , Y∗k,… , Y∗K

)
 , 

where Y∗k denotes the outcome that would have been 
observed if the individual under study were assigned to treat-
ment alternative k. (One may note that, as each individual is 
assigned to a single treatment alternative, effectively only 
one of the potential outcome variables is observed—which 
comes down to a problem of structural missingness; we will 
return to this issue in the discussion of the secondary prob-
lems.) Thirdly, we need an optimality criterion to define 
within the search space G an optimal treatment regime gopt. 
Several criteria are possible in this regard, with the criterion 
most often used in practice being that of maximizing the 
expected potential outcome (Tsiatis et al., 2020). If we denote 
by Y∗g(�) the random variable that takes for individual i the 
value Y∗g(�(i))(i) , this criterion can be written as

Analysis of primary problem

We will now analyze the primary problem as formalized by 
Eq. (1), with G being the family of classification trees. We 
will do so while generalizing derivations by Zhang et al. 
(2012) and Tsiatis et al. (2020). Ultimately, our analysis will 
result in a (counterintuitive) transformation of our primary 
optimal treatment regime estimation problem into a super-
vised classification problem, with the truly optimal treatment 
alternative for each client acting as the “supervisor” (i.e., as 
that client’s “true class”). This is counterintuitive, indeed, 
as the truly optimal treatment alternative for each client is 

g ∶ Range(�) → {1,… , k,… ,K}

� ↦ g(�)
.

(1)gopt = argmax
g∈G

E
[
Y∗g(�)

]
= argmax

g∈G

E
�

[
E
[
Y∗g(�)|�

]]
.
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typically unknown. The key to this counterintuitive mystery 
is that, in an initial, preparatory stage, the true class for each 
client (as well as the so-called client-specific misclassifica-
tion costs that will be further explained below) will be esti-
mated on the basis of the RCT data (including the observed 
treatment assignment in that RCT). The latter will be further 
discussed below as the first of the secondary problems.

For our analysis, we first denote

We further assume (Rubin, 2005) that Y(i) = Y∗A(i)(i) . 
If we also assume independence of �∗ and A conditional 
on X (which is trivial in case of an RCT and requires a 
so-called assumption of no unmeasured confounders in 
observational studies), it follows that

In that case, (1) can be rewritten as

This further implies that

Hence, assuming that for each client i, (estimates of) all 
�
(
k, �i

)
 values are available (and, hence, also the values 

of max
k

�
(
k, �i

)
 and argmax

k

�
(
k, �i

)
 ), on the sample level a 

classification tree g is to be looked for that minimizes

Such a tree is typically built by starting from a root node 
that includes all units (individuals), and by subsequently 
recursively partitioning each of the end nodes of the cur-
rent tree on the basis of a covariate and a split point that are 
chosen such as to minimize (2).

To arrive at a deeper understanding of Eq. (2), the inter-
pretations listed in Table 1, which involve a transition from 

E[Y|A = a,� ] = �(a,�).

�(a,�) = E
[
Y∗a|�

]
.

gopt = argmax
g∈G

E
�

[
�(g(�),�)

]
.

gopt = argmin
g∈G

E
�

[
max
k

�(k,�) − �(g(�),�)
]

= argmin
g∈G

E
�

[
1g(X)≠argmax

k

�(k,�)

(
max

k
�(k,�) − �(g(�),�)

)]
.

(2)
1

I

∑

i

1g(xi)≠argmax
k

�(k,xi)

[
max

k
�
(
k, �i

)
− �

(
g
(
�i

)
, �i

)]
.

“individual” and “treatment alternative” to the more generic 
terms of “unit” and “class” that are customary in the classifi-
cation domain, may be helpful. These interpretations imply 
that Eq. (2) comes down to a search for a classification tree 
that minimizes an average or total misclassification cost.

To further put this in a broader context, we may consider 
four different possible types of misclassification costs (sum-
marized in Table 2) that are distinguished in the classifica-
tion domain (see, e.g., Höppner et al., 2022, and references 
therein), the fourth of which applies to our primary problem.

The first line of this table corresponds to what Feng et al. 
(2021) call the “classical classification paradigm,” which 
aims to minimize the overall misclassification rate. In con-
trast, the lower three lines correspond to three types of “cost-
sensitive learning.” In particular, the class-dependent type 
implies that the misclassification cost may vary across pairs 
of true and assigned classes. Note that the index i in T(i) 
implies unit dependency only via the true class of unit i, with 
the misclassification costs being fully captured by a K × K 
matrix. Note further that the latter matrix may be asymmet-
ric, as in the example of classification of email messages 
as non-spam versus spam, where erroneously misclassify-
ing truly non-spam mail as spam may be more costly than 
the other way around. As an example of unit- (instance-, 
example-, or case-)dependent costs, one may think of credit 
scoring, where the cost of misclassifying a customer as cred-
itworthy (vs. not creditworthy) may depend on the amount 
that the customer in question wants to borrow.

In our case, Eq. (2) implies that the misclassification cost 
depends both on the client (unit) and on the treatment alter-
native (class) to which the client is (mis)classified by the 
treatment regime. Hence, we are dealing with a unit- and 
class-dependent misclassification cost, indeed.

Table 1   Interpretation of terms of Eq. (2)

Term in Eq. (2) Interpretation

g
(
�i

)
= c Class (treatment alternative) to which unit (individual) i is assigned according to classification tree g

argmax
k

�
(
k, �i

)
= T(i) True class (optimal treatment alternative) for unit (individual) i

1g(�i)≠argmax
k

�(k,�i) Whether or not unit (individual) i is misclassified by classification tree g
[
maxk �

(
k, �i

)
− �

(
g
(
�i

)
, �i

)]
= mic

Misclassification cost implied by erroneously assigning unit (individual) i to class (treatment alter-
native) c instead of to its true class (optimal treatment alternative) T(i)

Table 2   Types and forms of misclassification costs

Misclassification cost Type Form

mic = mcc Constant 1 × 1 scalar
mic = mccT(i) c Class-dependent K × K matrix
mic = mcci Unit-dependent I × 1 vector
mic = mcci c Unit- and class-dependent I × K matrix
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Solution to the primary problem

In the search for a readily accessible software tool for esti-
mating classification trees with minimal misclassification 
cost, an obvious choice is the mainstream package for tree 
estimation rpart (Therneau et al., 2022). The rpart pack-
age can deal with misclassification costs of different types: 
A constant cost is the default option, the class-dependent 
case can be dealt with by making use of the option of a 
loss matrix, and the unit-dependent case can be handled by 
using the option of case weights. For the unit- and class-
dependent case, however, the situation is somewhat differ-
ent. If K = 2 and if correct classifications go with a zero 
cost, one can make use of the fact that the I × 2 misclassi-
fication cost matrix can be reduced to a vector of length I; 
the latter can be included in rpart via the weight vector. If 
K > 2, however, so far no solution has been made available.

We propose for this purpose a novel code snippet mul-
tivalued, a fully documented version of which (including 
all code used in the analysis of the running example, as 
reported below) is available through GitHub (https://​github.​
com/​KULeu​ven-​PPW-​OKPIV/​multi​valued), and a signifi-
cant part of which is also available in the online supplemen-
tary material. This code snippet is to be used in conjunction 
with rpart, and is based on the following building blocks:

1.	 The option in rpart to make use of a user-defined split-
ting function (Therneau, 2022)

2.	 The possibility to enter in the optional cost matrix in 
rpart a rectangular I × K matrix

3.	 The possibility to enter in the weight vector of rpart the 
unit numbers, which subsequently can be used to select 
for each unit the relevant row from the cost matrix

Note that the user-defined splitting function implemented 
in the code snippet implies that in the tree building, the total 
misclassification cost as formalized by Eq. (2) is directly 
minimized (rather than the Gini index that is used as default 
criterion in rpart). Note further that, whereas utilizing a 
user-defined split function in rpart can slow down the pack-
age’s execution (Therneau, 2022), in our case the slowing 
down appeared not to be prohibitively large (with, e.g., each 
of the analyses in our illustrative application taking less than 
one second).

Secondary problems

Two secondary problems show up in the estimation of tree-
based optimal treatment regimes and require a satisfactory 
solution. The first of these pertains to the estimation of the 
true class and the misclassification costs for each client. This 
is hampered by the structural missingness in typical obser-
vational studies and RCTs on treatment evaluation, which 

is because every individual is assigned to a single treatment 
alternative only. This implies that for each individual, a sin-
gle potential outcome is known. In the literature, various 
solutions have been proposed to deal with this issue (Laber 
& Zhao, 2015; Tsiatis et al., 2020; Zhang et al., 2012). A 
first of these comes down to (the estimation of) a regression-
based outcome model, in which the outcome is modeled 
as a function of baseline characteristics, treatment assign-
ment, and the interaction between them (Tsiatis et al., 2020). 
This approach (also called Q-learning, with “Q” referring 
to “quality”), though, strongly depends on whether the out-
come model in question has been correctly specified. As 
a way out, one may consider relying on flexible modeling 
solutions, such as random forests (Laber & Zhao, 2015). 
Still another possibility is to revert to more robust estima-
tors of potential outcomes and their contrasts (Tsiatis et al., 
2020; Zhang et al., 2012); such estimators include inverse 
probability weighted estimators (IPWE, with the probabili-
ties in question pertaining to propensity models to deal with 
observational studies), and augmented inverse probability 
weighted estimators (AIPWE, with the augmentation per-
taining to a term stemming from an outcome model). A 
particularly promising characteristic of AIPWEs is their so-
called double robustness, meaning that they can be shown to 
be consistent if the propensity model or the outcome model 
has been correctly specified (with the propensity model 
being trivially correct in the case of an RCT).

A second secondary problem to be dealt with is the issue 
of replicability. This is an issue of concern because of the 
replicability crisis in many disciplines of science, including 
not least in psychology (see, e.g., Klein et al., 2018). Moreo-
ver, the issue is of particular relevance in the estimation of 
treatment regimes, and more generally in exploratory sub-
group analyses in clinical applications, as in the past such 
analyses have not infrequently led to conclusions that could 
not be replicated (e.g., Rothwell, 2005). As a consequence, 
some authors even disposed of exploratory subgroup analyses 
as “data dredging” (Feinstein, 1998; Rothwell, 2005). This 
replicability problem relates in part to the structural missing-
ness referred to above and the estimation uncertainty implied 
by it. Furthermore, it also immediately relates to the fact that, 
compared to main effects, considerably larger sample sizes 
are needed for a reliable estimation of treatment by subgroup 
interactions, and in particular for the detection of qualitative 
or disordinal such interactions that constitute the basis of 
nontrivial treatment regimes (Brookes et al., 2004). On top 
of all this comes the long-known problem of instabilities of 
trees with regard to variables and split points (Breiman et al., 
1984). (One might argue that the mainstream package for tree 
estimation rpart includes a cross-validation procedure, which 
could be considered as a kind of protection to safeguard rep-
licability; yet, in the package, cross-validation is used only 
in a pruning procedure after the tree building, and as such 

https://github.com/KULeuven-PPW-OKPIV/multivalued
https://github.com/KULeuven-PPW-OKPIV/multivalued
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only yields a limited way out for the instabilities issue.) As a 
solution for all these problems, we propose making an appeal 
to multiverse analysis (Steegen et al., 2016), that is to say, to 
make use of a broad range of analysis options, and to subse-
quently check which results consistently emerge across this 
range.

Simulation study

We set up a Monte Carlo simulation study to evaluate the 
performance of three variants of the methodology to estimate 
optimal tree-based treatment regimes in RCTs for which we 
proposed an accessible software solution. The three variants 
are based on three different ways to estimate the true class 
and the misclassification costs for each client: (1) a flexible 
outcome model based on random forests (more information 
on which will be provided in the Application section), (2) 
a classical AIPWE approach based on a linear regression 
outcome model (that includes all baseline covariates and 
their interaction with treatment) and theoretical propensity 
probabilities, and (3) the same AIPWE approach in which 
the theoretical propensity probabilities are replaced by 
empirical proportions (which, somewhat paradoxically, has 
been shown to yield a more efficient estimation: see Tsiatis, 
2006, p. 206; Tsiatis et al., 2020, p. 44–46). We wanted to 
evaluate the performance of these methods across a range 
of settings that varied in terms of data characteristics that 
could affect that performance. In particular, we generated 
data 

(
Yi,Ai,X1i,… ,X5i

)
,  i = 1,… , I , with 

(
X1,… ,X5

)
  iid 

standard normal, A multinomial with P
(
A = ak

)
=

1

K
, and Y 

generated according to

with θ a prespecified constant, gopt
(
�i

)
 the truly optimal 

treatment alternative for individual i as defined below, and 
Ei standard normal. In the data generation, we further sys-
tematically varied the following four data characteristics 
in a full factorial design (with 500 data sets within each 
cell):

(1)	 The number of arms in the RCT, K = 3, 4
(2)	 The sample size per arm, nK = 50, 100, 200
(3)	 The effect size of the difference in outcome between 

optimal and non-optimal treatment alternatives in each 
relevant subgroup, θ = 0.50, 1

(4)	 The true optimal treatment regime (OTR) underlying 
the data, based on three scenarios—a tree-based, a non-
tree-based, and a one-size-fits-all or trivial one—as 
depicted in Fig. 1

We subjected each simulated data set to each of the three 
OTR estimation methods under study in conjunction with 
rpart. For the pruning of the estimated optimal tree-based 
treatment regimes, we used 20-fold cross-validation.

We focused on four performance aspects:

(1)	 The expected outcome of each estimated regime, in 
terms of its normalized performance gain (NPG), 
which compares the benefit gained by administering 
that regime over administering the marginally best 
treatment alternative aopt to the benefit that could have 
been gained theoretically,

Yi = 1.0 + 0.25X1i + 0.25X2i − 0.25X5i − �1ai≠gopt(�i) + Ei,

Fig. 1   True optimal treatment regimes used in simulation study with tree-based (row 1), non-tree-based (row 2), and one-size-fits-all or trivial 
(row 3) scenario and with three (column 1) and four (column 2) treatment alternatives
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where E
(
Y∗ĝopt

)
 and E

(
Y∗aopt

)
 were calculated on the basis of 

a simulated “super-sample” of 106 observations generated 
on the basis of the true model underlying the simulated data.

(2)	 Classification accuracy, that is, the proportion of 
patients assigned to their truly optimal treatment alter-
native.

(3)	 The “Type I error rate” (with a slight abuse of termi-
nology), that is, the proportion of data sets in a cell 
generated under a one-size-fits-all scenario for which 
a method erroneously yielded a nontrivial estimated 
OTR.

(4)	 The “Type II error rate” (with again a slight abuse of 
terminology), that is, the proportion of data sets in a 
cell generated under a nontrivial scenario for which 
a method erroneously yielded a one-size-fits-all esti-
mated OTR.

To identify the most important effects, we subjected the 
four outcome measures to a repeated-measures ANOVA, 
with the within-factor pertaining to the type of OTR esti-
mation method and the between-factors to the data charac-
teristics. We will further only discuss effects with an effect 
size η2 ≥ 0.05 (see Table 3).

Sizable main effects were primarily found, the contents 
of which can be derived from Table 4. As could have been 
expected, a better performance (in terms of expected out-
come and classification accuracy) was found for tree-based 
as compared to non-tree-based scenarios, for a larger effect 
size of the differences in outcome between optimal and non-
optimal treatment alternatives, and for larger sample sizes. 
Furthermore, inferential error rates appeared to be better 
as well in the case of a larger effect size of the differences 
in outcome between optimal and non-optimal treatment 
alternatives, and of larger sample sizes; in addition, the ran-
dom forest-based method appeared to yield slightly better 
inferential results, with for the “Type I error rate” this being 

NPG =
E
(
Y∗ĝopt

)
− E

(
Y∗aopt

)

E
(
Y∗gopt

)
− E

(
Y∗aopt

) ,
especially true in the case of smaller sample sizes per treat-
ment arm (Fig. 2).

Illustrative application

Analysis

The data of the Breast Cancer Recovery Project are publicly 
available as part of the R package quint (Dusseldorp et al., 
2016, 2022). As already indicated above, all code for the 
analyses described in the present section is available through 
GitHub (https://​github.​com/​KULeu​ven-​PPW-​OKPIV/​multi​
valued) and in the online supplementary material.

We analyze the Breast Cancer Recovery data, with all 11 
pretreatment characteristics measured at baseline as covari-
ates, including age, physical functioning, and number of 
comorbidities (such as diabetes, migraine, arthritis, angina, 
…), and with physical functioning measured at 9-month 
follow-up minus physical functioning measured at baseline 
(i.e., improvement in physical functioning) as outcome vari-
able; note that possible objections against the use of a change 
score as an outcome variable (e.g., Senn, 2006) do not apply 
here, as we also included physical functioning at baseline as 
covariate. We estimate the misclassification costs via, on the 
one hand, a flexible outcome modeling technique, that is to 
say, random forests, and, on the other hand, AIPWE.

For the random forests, we make use of the ranger pack-
age (Wright & Ziegler, 2017), with default values for the 
tuning parameters (including 500 trees per forest, and with 
the square root of the total number of variables as the size 
of the random subset of variables that are considered for the 
splits in each tree). Moreover, we impose the constraint that 
the treatment assignment variable is always a member of the 
subset of variables considered for splits, to avoid a bias of the 
random forest towards trivial one-size-fits-all regimes (which 
would be implied by a random non-inclusion of treatment 
assignment). Importantly, the constraint mentioned above is 
that treatment assignment is always considered for the splits; 
therefore, it always leaves room for trees without treatment 

Table 3   Effect size (η2) of effects in simulation study with η2 ≥ .05

Outcome variable

Effect Normalized performance gain Classification accuracy “Type I error rate” “Type II error rate”

Sample size per arm .16 .05 .07 .33
Effect size .20 .08 .66 .35
Scenario .23 .59 .07
Method .11 .05
Method * Sample size per arm .05

https://github.com/KULeuven-PPW-OKPIV/multivalued
https://github.com/KULeuven-PPW-OKPIV/multivalued
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assignment as splitting variable and, hence, without treatment 
effect heterogeneity. Ultimately, it will be up to the data to 
decide whether or not treatment effect heterogeneity will be 
in place in the random forest. This further implies that the 
constrained random forest approach can perfectly lead to one-
size-fits-all estimated optimal treatment regimes (as will also 
appear below).

For the AIPWE, we use for the propensity part both the 
theoretical probabilities and the empirical proportions of 
individuals assigned to the three treatment arms (standard 
medical care: 0.34, nutrition: 0.35, education: 0.31); for 
the outcome model part, we use a regression model that 

includes as predictors all baseline characteristics as well as 
their interactions with treatment assignment.

For the multiverse analysis, in addition to using both ran-
dom forests and AIPWE for the misclassification cost esti-
mation, and in addition to the use of both theoretical prob-
abilities and empirical proportions for the inverse probability 
weighing, we use for the random forests three random starts; 
furthermore, we repeat the 20-fold cross-validation five times 
for the pruning in rpart. All this results in 3 (random forest 
start) × 5 (pruning cross-validation) = 15 random forest-based 
solutions, and 2 (probabilities vs. empirical proportions) × 5 
(pruning cross-validation) = 10 AIPWE-based solutions.

Results

Out of the 15 random forest-based solutions, nine solu-
tions are a tree with a root only, that is to say, a trivial, 
one-size-fits-all treatment regime in which all individuals 
are assigned to education; furthermore, five solutions are a 
nontrivial regime that involves the baseline characteristics 
age, number of comorbidities, and physical functioning at 
baseline. This regime is graphically represented in Fig. 3. It 
implies that relatively younger women with a higher number 
of comorbidities (such as diabetes, migraine, etc.) and a rela-
tively higher level of physical functioning at baseline should 

Table 4   Marginal means on four outcome variables for categories of five design variables in simulation study. Marginal means for main effects 
with effect size η2 ≥ .05 are depicted in bold

Outcome measure

Effect Normalized performance gain Classification accuracy “Type I error rate” “Type II error rate”

Number of arms
  3 .43 .75 .17 .08
  4 .32 .67 .15 .10

Sample size per arm
  50 .23 .64 .20 .16
  100 .38 .71 .15 .08
  200 .53 .79 .13 .03

Effect size
  0.5 .24 .64 .24 .14
  1 .52 .79 .07 .04

Scenario
  Tree .53 .68 NA .07
  Non-tree .23 .48 NA .11
  Trivial NA .97 .16 NA

Method
  AIPWE empirical proportions .37 .71 .17 .11
  AIPWE probabilities .39 .71 .19 .09
  Random Forest .37 .72 .11 .06

Fig. 2   Method by sample size per arm interaction for outcome meas-
ure “Type I error rate” in simulation study



	 Behavior Research Methods

ideally receive the nutrition intervention, whereas relatively 
older women should ideally receive standard medical care. 
Finally, one nontrivial solution involves age only.

Out of the 10 AIPWE-based solutions, 6 solutions pertain 
to a trivial, one-size-fits-all treatment regime in which all 
individuals are assigned to education; 2 solutions pertain to 
the nontrivial regime that is graphically represented in Fig. 4 
and that involves the number of comorbidities once as the 
only covariate (with women with a relatively higher number 
of comorbidities ideally being assigned to the nutrition inter-
vention); 1 nontrivial solution further involves the number 
of comorbidities twice and 1 nontrivial solution involves the 
number of comorbidities twice in addition to age.

Discussion

The whole of our analyses yielded only fairly weak evidence 
for a nontrivial optimal treatment regime, with 60% of both 
the random forest- and the AIPWE-based solutions being of 
the one-size-fits all type, and with the education interven-
tion overall seeming the most beneficial. That being said, 9 
out of the 25 obtained solutions included some indication 
that clients who suffer from a higher number of comorbidi-
ties (diabetes, migraine, arthritis, angina, etc.) might benefit 
more from a nutrition intervention.

With about 75 clients per arm, this RCT can be situated 
between the first and the second sample size levels of the 
simulation study in the previous section. This goes with 
somewhat higher “Type I” and “Type II” error rates, which 
further adds to a somewhat higher inferential uncertainty.

Concluding remarks

In this paper we proposed a readily accessible methodology 
for estimating optimal classification trees that minimize a loss 
function involving a unit- and class-based misclassification 
cost in the case of a classification problem with K > 2 classes. 
In conjunction with a multiverse approach to both misclassifi-
cation cost and tree estimation, the proposed methodology pro-
vided an insightful but shaded solution to a problem of optimal 
treatment assignment with K > 2 treatment alternatives.

We focused here on the use of our proposed methodology 
within the context of RCTs. The methodology, however, 
and in particular the AIPWE variant with propensity prob-
abilities, is in principle also applicable to data from obser-
vational studies. To be sure, this type of application requires 
the (untestable) assumption that there are no unmeasured 
covariates that are associated with both treatment assign-
ment and the potential outcomes (“no unmeasured con-
founders”: Tsiatis et al., 2020, p. 27ff.)—in addition to other 
assumptions such as the requirement that the probability for 
assignment to each treatment alternative be strictly positive 
in each area of the covariate space.

The proposed methodology was introduced as a tool to 
estimate optimal tree-based single-decision regimes that 
involve K > 2 treatment alternatives. However, in line with 
the suggestion made by Holloway et al. (2023) for their K = 2 
method, by calling our proposed methodology repeatedly, its 
use can also be extended to multiple-decision regimes in a 
multistage treatment context (with the additional option to 
include in that case at some decision point also all evolving 
client information available at that point as covariates).

The proposed methodology was further introduced as a 
tool to address treatment-related decisions in a clinical con-
text. That being said, though, the methodology could also be 
used to address formally similar problems in different areas. 
As a first example, one may think of the choice between K > 2 
types of churn management in customer retention (Lemmens 
& Gupta, 2020), which is a context where misclassification 
cost can be taken literally and expressed in monetary terms. 
As a second example, one may think of an identification of 
optimal data-analytic regimes in data-analytic benchmarking 
that involves a comparison of K > 2 data-analytic methods 
(Doove et al., 2017); otherwise, the latter type of applica-
tion is technically simpler, as in a benchmarking context the 
outcome of all methods under study when applied to a data 
set at hand is typically known.

Fig. 3   Nontrivial random forest-based optimal decision tree for 
Breast Cancer Recovery data

Fig. 4   Nontrivial AIPWE-based optimal decision tree for Breast Can-
cer Recovery data
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Finally, multiverse approaches similar to the ones that we 
proposed and applied to cope both with replicability chal-
lenges in optimal treatment regime estimation and with sta-
bility challenges in tree-based analyses, may be applied more 
broadly as well. As examples one may think of optimal tree-
based treatment regime estimation in the case of two treat-
ment alternatives, of optimal treatment regime searches within 
families of regimes other than the tree-based ones, and of tree 
analyses based on structures other than simple classification 
trees, such as regression trees and model-based recursive par-
titioning (Zeileis et al., 2008).
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