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Abstract
Fear conditioning, also termed threat conditioning, is a commonly used learning model with clinical relevance. Quantification
of threat conditioning in humans often relies on conditioned autonomic responses such as skin conductance responses (SCR),
pupil size responses (PSR), heart period responses (HPR), or respiration amplitude responses (RAR), which are usually
analyzed separately. Here, we investigate whether inter-individual variability in differential conditioned responses, averaged
across acquisition, exhibits a multi-dimensional structure, and the extent to which their linear combination could enhance
the precision of inference on whether threat conditioning has occurred. In a mega-analytic approach, we re-analyze nine
data sets including 256 individuals, acquired by the group of the last author, using standard routines in the framework of
psychophysiological modeling (PsPM). Our analysis revealed systematic differences in effect size between measures across
datasets, but no evidence for a multidimensional structure across various combinations of measures. We derive the statistically
optimal weights for combining the four measures and subsets thereof, and we provide out-of-sample performance metrics
for these weights, accompanied by bias-corrected confidence intervals. We show that to achieve the same statistical power,
combining measures allows for a relevant reduction in sample size, which in a common scenario amounts to roughly 24%.
To summarize, we demonstrate a one-dimensional structure of threat conditioning measures, systematic differences in effect
size between measures, and provide weights for their optimal linear combination in terms of maximal retrodictive validity.
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Introduction

Pavlovian fear conditioning, more recently also termed
threat conditioning (LeDoux, 2014), is a laboratory model
of aversive associative learning with translational value in
the development of clinical interventions for anxiety disor-
ders (VanElzakker et al., 2014; Bach et al., 2018; Fullana
et al., 2020; Beckers et al., 2023). In this paradigm, a
conditioned stimulus (CS+) is contingently coupled with
an aversive unconditioned stimulus (US), and a different
CS− is never paired with the US. In humans, threat con-
ditioning is commonly inferred from a difference between
conditioned autonomic nervous system (ANS) responses
to CS+ and CS− (Ojala & Bach, 2020; Lonsdorf et
al., 2017). This includes, among others, skin conductance
responses (SCR; Boucsein, 2012; Bach et al., 2010; Staib
et al., 2015, pupil size responses (PSR; Korn et al., 2017),
heart period responses (HPR; Castegnetti et al., 2016)

123

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-024-02341-3&domain=pdf
http://orcid.org/0000-0002-4606-5876
http://orcid.org/0000-0002-9964-2876
http://orcid.org/0000-0003-3717-2036


6120 Behavior Research Methods (2024) 56:6119–6129

and respiratory amplitude responses (RAR; Castegnetti et al.,
2017). In all of these measures, a CS+/CS− difference
is consistently observed during threat conditioning, and in
recall tests after consolidation. However, our understand-
ing of these measures still has at least two noteworthy gaps
to address: their inherent dimensionality, i.e., the number
of underlying factors, and the potential for their combined
utilization to enhance precision in inferring threat condition-
ing (Bach et al., 2018).

Crucially, the physiological processes by which these
conditioned responses are elicited diverge. The electrical
conductance of the skin rises as a result of sweating but
diminishes when the sweat evaporates. The opening of these
eccrine sweat glands is triggered by the activation of sym-
pathetic sudomotor nerve fibers (Boucsein, 2012; Gerster
et al., 2018). SCR elicited during CS+ presentation are
higher than those during CS− (see, e.g. Boucsein, 2012).
Changes in pupil size are due to sympathetic innervation,
which dilates the pupil and parasympathetic innervation,
which constricts the pupil (Loewenfeld & Lowenstein, 1999;
McDougal & Gamlin, 2008). A CS−related dilation of the
pupil is a well-established phenomenon (Korn et al., 2017;
Leuchs et al., 2017; Reinhard & Lachnit, 2002; Reinhard
et al., 2006; Visser et al., 2013, 2015, 2016). The car-
diovascular system is innervated by both sympathetic and
parasympathetic branches of the autonomic nervous sys-
tem, which control heart period (the reciprocal of heart
rate; Berntson et al., 2007). Many studies have shown that
threat-predictive CS results in bradycardia, i.e. an increase
in heart period, with the fast time course suggesting a pre-
dominantly parasympathetic influence (see Castegnetti et al.,
2016, for a review of studies). Breathing is unique in that it
is primarily regulated by the ANS but can also be influenced
voluntarily (Barnes, 1986; Hlastala &Berger, 2001; Kreibig,
2010; Lorig, 2007). Although breathing patterns have been
less commonly explored in threat-conditioning experiments,
a few studies have demonstrated that threat-predictive CS
induce a decrease and later increase in respiration ampli-
tude (Castegnetti et al., 2017; Van Diest et al., 2009). Taken
together, these observations suggest that threat-conditioned
SCR and PSR are predominantly under sympathetic influ-
ence, HPR is under parasympathetic influence, and RAR
is under both. Here, we examine CS+/CS− differences in
conditioned SCR, HPR, PSR, and RAR, averaged over all
trials of an acquisition session (Lonsdorf et al., 2017). There
are several possible scenarios for the underlying structure
of the resulting measures. In the simplest case, one might
assume the existence of a single underlying (latent) CS-US
association, between-person variation in this latent associa-
tion, and a fixed mapping (e.g., scaling) from this association
onto conditioned responses. With independent observation

noise, the ensuing measures will vary systematically only
along one dimension. Different from this situation, the map-
ping from latent association to conditioned responses could
be systematically different between subsets of measures, for
example, between predominantly sympathetic and parasym-
pathetic responses. Between-person variability in these two
scaling factors could then result in a two-factorial structure.
Next, there is a possibility that observation noise in the ANS
measures co-varies. For example, a voluntary (i.e., not threat-
conditioned) deep breath affects the measured respiration
response but also the heart period response (via respiratory
arrhythmia, mediated by a mechanical influence on the vagal
nerve). Finally, it has been suggested that different autonomic
threat-learning measures may relate to different quantities in
the learning process (Ojala &Bach, 2020), based on trial-by-
trial learning trajectories (Li et al., 2011; Zhang et al., 2016;
Tzovara et al., 2018; Homan et al., 2019) or pharmacological
interventions (Bach et al., 2018). Inter-individual differences
in these different learning quantities could again affect the
inherent structure of autonomic measures. Noteworthy, for
us to be able to capture any of these scenarios, meaning-
ful between-person variability in the learning process is
crucial.

We further explored the potential benefits of combining
multiplemeasures to enhance the accuracy of inference about
whether learning has occurred, a common question for exam-
ple in preclinical intervention research (Bach et al., 2018).
Under baseline conditions, the effect size to distinguish CS+
and CS− (i.e., retrodictive validity) can be taken as a metric
for the accuracy of this inference (Bach et al., 2020, 2023)
and can be quantified, for example, by Cohen’s d. Thus, for
each measure, its effect size is fully determined by its mean
and variance across participants. If we combine measures
linearly, the weight of each measure will reflect the relative
balance of the mean of the CS+/CS− difference for this mea-
sure, and its variability. Some measures may for instance
exhibit high differences across CS+/CS− conditions, but
with substantial variability, while others may demonstrate
more modest, yet consistent, differences. These variations
could stem from factors such as observation noise or inher-
ent physiological variability. Here, we provide an empirical
analysis of the benefits of combining conditioned responses,
and provide a quantitative metric of the generalizability of
this approach, which might help planning future threat con-
ditioning studies.

To summarize, the goal of this study was to (1) determine
the dimensionality of between-person variance in four differ-
ent conditioned responses including those under sympathetic
and parasympathetic influences (SCR, PSR,HPR,RAR), and
(2) to give a quantitative assessment of the improvement in
performance when these are combined.
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Method

Participants

Were-analyzednine threat-conditioning datasetswhich com-
prised a total of 256 individuals. Eight of these data sets
were included in previous publications: PubFe (Korn et al.,
2021), SC4B (Staib et al., 2021), VC7B (Staib et al., 2021b),
DoxMemP (Khemka et al., 2021), FR (Tzovara et al., 2021),
TC (Tzovara et al., 2021), FSS6B (Staib et al., 2021a), FER02
(Zimmermann et al., 2021). One experiment (FER01) is
first published here (see Table 1 for details). The datasets
used in this study are publicly available on Zenodo and can
be browsed through the community “PsPM development
data” (https://zenodo.org/communities/pspm/). The refer-
ence section of this article includes URLs to all the datasets.
Pre-processed data, including all participant- and condition-
wise response estimates, are available on OSF (https://osf.
io/cmaq7/), under ‘Learning indices/Conditions’, and the
corresponding pre-processing code under “Analyses/Pre-
processing”. An R markup file containing this analysis
(i.e., ‘combining-measures.Rmd’) can be found on the same
webpage, under ‘Analyses/Combining measures’. All exper-
iments included unique, healthy, unmedicated individuals,
recruited from the student and general population. Partic-
ipants confirmed that they had no history of neurological,
psychiatric, or systemic medical disorders, and all had nor-
mal or corrected-to-normal vision. Each study, including the
form of taking written informed consent, was conducted in

accordance with the Declaration of Helsinki and approved
by the governmental research ethics committee (Kantonale
Ethikkommission Zurich, KEK-ZH-2013-0118).

Participant exclusion criteria centered on both the absence
of a substantial portion of data, and considerations related to
learning outcomes. First, we excluded participants who had
more than 50%missing pupil size data over the time interval
from trial onset to the next trial onset, in over 50% of the tri-
als, or experienced extended detachment of SCR electrodes.
Further, we excluded all RAR measurements from dataset
FER01 due to the implausibly low registered effect size
(−0.02, as opposed to the average of−0.41 from the remain-
ing datasets) which indicate systematic technical problems.
Finally, we excluded three participants altogether on account
of their implausible conditioned response differences: (1)
dataset FER02, HPR = −162.7, more than 5 standard devia-
tions frommean across all datasets; (2) dataset FER02, SCR=
−0.40, more than 3 standard deviations frommean across all
datasets; (3) dataset SC4B, SCR= +0.75, more than 3 stan-
dard deviations from mean across all datasets. See Table 1
for a summary of excluded participants for each data set.

Stimuli and procedure

All but one experiment (TC) implemented delay threat condi-
tioningwith a 4-s CS, a 0.5-sUS, andCS-US onset interval of
3.5 s (i.e., co-termination of CS/US). TC used short-interval
trace threat conditioningwith a 3-sCSand a 1-s trace interval,
resulting in a CS-US onset interval of 4 s. Inter-trial interval

Table 1 Overview and demographics for the nine included data sets

Not all data sets included all conditioned responses. Initial N refers to the number of participants who completed the study per protocol, final N to
the number of participants included in the analysis after data quality control. When there are two rows for a dataset, the first refers to SCR data and
the second to PSR data. Demographics (sex, age), percentage of incorrect data (% incorr), and percentage of missing data (% miss; PSR: eyeblinks,
saccades, loss of fixation; SCR: artefacts) refer to the final sample. The percentage of missing data corresponds to the mean percentage of missing
values in the indices per condition. No data exclusion was applied to HPR and RAR. See 2.4. ‘Data preprocessing’, for modality-specific details

123

https://zenodo.org/communities/pspm/
https://osf.io/cmaq7/
https://osf.io/cmaq7/


6122 Behavior Research Methods (2024) 56:6119–6129

was randomly determined on each trial to be 7, 8, 9, 10, or
11 s in FER01/02, and 7, 9, or 11 s for the other exper-
iments. The reinforcement schedule of CS/US was 50%.
CS were visual, auditory or somatosensory, and summarized
in Table 1. US was a train of electric square pulses deliv-
ered with a constant current stimulator (Digitimer DS7A,
Digitimer, Welwyn Garden City, UK). US intensity was set
individually for each participant to an unpleasant but not
painful level using an ascending staircase until stimuli were
clearly painful, followed by delivery of 14 random stimuli
below this upper limit. The final stimulus intensity was set as
85% of the intensity rated by participants as clearly painful.

Several experiments used two CS+ (FER01/02, SC4B,
FSS6B, VC7B) and some of these used two CS− (SC4B,
FSS6B, VC7B). We averaged over both CS of the same type,
under the assumption that learning is not different between
the two CS sets, and that averaging will simply increase the
signal-to-noise ratio for all measures equally, thus not affect-
ing their dimensionality or most discriminant combination.
We note that for FER01/02, both CS+ were of the same
type (triangles of different colors). For SC4B/FSS6B/VC7B,
where they were of different types within the same sensory
modality, there was no indication of different learning for the
two qualitatively dissimilar CS sets. For experiments with an
incidental task of indicating CS (physical) identity on each
trial (FER02, PubFe, SC4B, DoxMemP, FSS6B, VC7B),
trialswith an incorrect responsewere excluded from the anal-
ysis.

Data recording

All experiments took place in a soundproof chamber. The
same recording systemswere used for all studies. Pupil diam-
eter and gaze direction were recorded using an EyeLink 1000
System (SR Research, Ottawa, ON, Canada) at a sampling
rate of 500 Hz. Calibration of gaze direction was performed
with the nine-point calibration protocol implemented in the
EyeLink 1000 software. Participants placed their heads on a
chin rest at a distance of 70 cm in front of the monitor (Dell
P2012H, 20” set to an aspect ratio of 5:4, 60-Hz refresh rate).

The output signal of all other physiological measures was
digitized at a sampling rate of 1000 Hz using a DI-149 AD
converter (Dataq Inc., Akron, OH, USA) and recorded with
Windaq (Dataq Inc.) software.

Skin conductance electrodeswere placedon the thenar/hy-
pothenar of the left hand forFER01/02, and thenon-dominant
hand for all other data sets. We used 8-mm Ag/AgCl cup
electrodes (EL258, Biopac Systems Inc., Goleta, CA, USA)
and 0.5% NaCl gel (GEL101, Biopac Systems Inc., Goleta,
CA, USA; Hygge and Hugdahl, 1985). Skin conductance
signal was amplified with a SCR coupler/amplifier (V71-23,
Coulbourn Instruments, Whitehall, PA, USA).

ECGwas recorded with four 45-mm, pre-gelled Ag/AgCl
adhesive electrodes attached to the four limbs. The experi-
menter visually identified the lead (I, II, III) or the augmented
lead (aVR, aVL, aVF) configuration that displayed the high-
est R spike and only recorded this configuration. Data were
pre-amplified and 50-Hz notch-filtered with a Coulbourn
isolated five-lead amplifier (LabLinc V75-11, Coulbourn
Instruments, Whitehall, PA).

Respiratory time series were collected with an aneroid
chest bellows (V94-19, Coulbourn Instruments, Whitehall,
PA, USA) and differential aneroid pressure transducer (V94-
15,Coulbourn)fitted around the rib cageover the lower endof
the sternum. The signal was amplified using a resistive bridge
strain gauge transducer coupler (V72-25B Coulbourn).

Data preprocessing

For data pre-processing and parameter extraction, we used
MATLAB (VersionR2019a,MathWorks, Natick,MA,USA)
and PsPM (Psychophysiological Modeling, https://bachlab.
github.io/PsPM/, Version 5.1.1), a MATLAB toolbox for
model-based analysis of psychophysiological data (Bach &
Friston, 2013; Bach et al., 2018).

SCR artefacts were detected via an initial automatic qual-
ity assessment excluding data outside of the normal range
of 0.05-60 µS or with a slope higher than 10µS s−1. Sub-
sequently, SCR data were visually examined, a process
which included rejection/confirmation of detected artefacts,
and detection of additional artefacts. Those artefacts were
marked, and if they were shorter than 2 s, then corre-
sponding data points were linearly interpolated for filtering
and excluded for model inversion. For longer artefacts,
the remaining data intervals were separately filtered and
analyzed. We filtered SCR data (first-order bidirectional
band-pass Butterworth filter, 0.0159-5 Hz) and downsam-
pled to 10 Hz (Bach et al., 2010; Staib et al., 2015). To
estimate the amplitudes of anticipatory SCR, we used a con-
strained dynamic causal model (DCM) with fixed dispersion
but flexible latency for the anticipatory response during CS,
and fixed dispersion/latency for the US- or US omission-
evoked response, as implemented in PsPM (Bach et al., 2010;
Staib et al., 2015). This approach estimates sudomotor nerve
(SN) activity, given observed changes in skin conductance,
under a linear time-invariant model of the SN-SCR relation-
ship (Bach et al., 2010) and provides trial-by-trial estimates
of the conditioned response amplitude (Bach et al., 2018).
These were then averaged within each participant and con-
dition.

The EyeLink 1000 System uses an online parsing algo-
rithm to detect saccades and eye blinks,whichwere excluded.
Preprocessing followed the procedure by Kret and Sjak-Shie
(2019) as implemented in PsPM 5.1.1. This procedure iden-
tifies valid samples by range, speed, edge, trendline, and
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isolated sample filtering. The data of the two eyes were aver-
aged if they were both recorded andmissing data points were
linearly interpolated. Pupil data were filtered (lowpass But-
terworth filter, cut off 50 Hz) and downsampled to 100 Hz.
Finally, pupil size data for which combined gaze direction
was outside ± 5◦ visual angles around the fixation points
were treated as missing data points and were excluded for
analysis as in previous work (Korn et al., 2017). To estimate
the conditioned pupil response amplitude on a condition-
by-condition level, we used the general linear convolution
model (GLM) implemented in PsPM and developed by Korn
and Bach (2016).

QRS complexes were detected from ECG data using a
modified Pan and Tompkins algorithm (Paulus et al., 2016)
to create heartbeat time stamps. These were transformed into
an interpolated heart period signal specifying an upper and
lower limit for heart periods of 0.4 and 1.2 s respectively;with
an interpolation sampling rate of 100 Hz. Then, the heart
period time series were band-pass filtered with a bidirec-
tional Butterworth filter (0.015-0.5 Hz) and down-sampled
to 10 Hz, we used the default GLM implementation in PsPM
to estimate the amplitude of conditioned HPR (Castegnetti
et al., 2016).

Raw respiratory traces were converted to interpolated res-
piration amplitude time series with a previously published
respiratory cycle detection algorithm and a 10-Hz sampling
rate (Bach et al., 2016). After the respiration amplitude time
series were band-pass filtered with a bidirectional Butter-
worth filter (0.01-2 Hz), we estimated the amplitude of RAR
with the default GLM implemented in PsPM (Castegnetti et al.,
2017).

Due to our method of interpolating data and the use of
a convolution model, responses to the US can affect the
response even before theUS occurs. This is whywe excluded
reinforced trials (i.e., when US is present) from all statistical
analyses.

Statistical analyses

A publicly accessible R MarkDown document containing
our statistical analyses can be found on OSF (https://osf.io/
cmaq7/, under “Analyses/Combiningmeasures”). Our analy-
ses focus on the CS+/CS− ANS measurement difference for
each participant. We scaled the measurements by dividing
the differences by the standard deviation of the originating
dataset, to account for potential trivial differences in the scal-
ing of themeasurement system. The effect size for CS+/CS−
differences was expressed as Cohen’s d.

Dimensionality of ANSmeasures

We conducted an exploratory factor analysis (EFA) to probe
the latent dimensionality of the between-person variance

of our measures. This analysis included participants from
two sources: (1) the largest single dataset FER02, which
encompasses all measures, and (2) all datasets. FER02 offers
homogenous data, but has limited sample size. On the
other hand, incorporating participants frommultiple datasets
provides a much larger sample size, but may suffer from sys-
tematic differences in ANS measures (e.g., owing to task
peculiarities, such as the different types of CS, or experi-
menter differences). This analysis was carried out using the
full range of measures available as well as subsets of three, as
larger samples were available for some subsets of measures.
We used the ‘fa’ function from R package psych, version
2.2.9, and the ‘paran’ function from package paran, version
1.5.2, as well as custom R code to compute empirical p val-
ues. The factors yielded by the procedure were left unrotated.
Our parallel analysis approach retained components whose
eigenvalues were larger than in randomized data at a signifi-
cance level of p ≤ 0.05 (Glorfeld, 1995).

Combining ANSmeasures optimally

We investigated whether a linear combination of measures
could achieve a higher Cohen’s d than the best-performing
measure for a given dataset. The optimal weights can be
obtained analytically by maximizing the quantity d, i.e.,
Cohen’s d for combinations of measures.

Consider a vector of weights w and the vector of mea-
surements xi for each of S participants, indexed by i . The
combined measure for participant i is given by wtxi . The
empiricalmean and standard deviation of thismeasure across
participants are givenbyμ = wtm andσ = √

wt�w, respec-
tively, wherem = 1

S

∑
S xi is the mean measurement vector

and� = 1
S−1

∑
S(xi −m)(xi −m)t is the covariance matrix

of the xi ’s.
To maximize d, we can equivalently maximize d2 =

wtmmtw
wt�w , which is the objective function of Fisher’s linear

discriminant analysis (LDA). This equivalence arises from
the fact that maximizing Cohen’s d is the same as maxi-
mizing the ratio of the between- and within-class covariance
matrices of two classes: one which includes the set of mea-
surement differences, and the other consisting solely of the
origin. Optimal weights for LDA can be found in multiple
ways, with the solution w∗ ∝ �−1m (see Bishop, 2006,
for a brief derivation). To give a geometric sense of the result,
note that the weights are oriented towards the direction of the
mean of measurement differences, which prioritizes mea-
surements that are highly discriminating; multiplying by the
precision matrix �−1 rotates the mean vector to maximize
precision, penalizing directions in which measurement dif-
ferences are more variable.

Our analyses drew participants from all datasets, and con-
sidered all subsets of 2–4measures, to offer some insight as to
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whichmeasures are most effective in different combinations.
Note that the datasets used in this study were not originally
collected with the specific objectives of our current paper in
mind. Consequently, there are variations in the number of
recorded measures between datasets (Table 1). These differ-
ences resulted in variations in sample sizes whenmerging the
datasets according to all subsets ofmeasures (Tables 2 and 4).
Our analyses further ramified in terms of thewaywe obtained
and tested optimal weights. Specifically, we report on per-
formance both (1) in-sample, i.e., using the same dataset to
find optimal weights and comparing the ensuing combined
measure to the best individual measure - but also (2) out-of-
sample (OOS), testing how the optimal weights found in a
(training) portion of data might generalize when deployed
on the leftover (test) portion of data. The two approaches
are complementary. The first allows us to draw inferences
about the highest effect size that can be achieved by com-
bining measures within a dataset, while enabling us to infer
the corresponding weights. On the other hand, the second
approach probes the capability of these optimal weights to
generalize beyond the given dataset. It yields estimates for the
expected performance of the derived weights when applied
to new data, as well as measures of uncertainty associated
with those estimates. To compute the average OOS perfor-
mance and the uncertainty estimates around it (which we
report as 90%confidence intervals)weused the packagenest-
edcv (github.com/stephenbates19/nestedcv), which applies a
correction to the (biased) uncertainty estimates which arise
from conventional repeated cross-validation (Bates et al.,
2021). Specifically, our procedure utilized five-fold cross-
validation over 1000 repetitions. In each repetition, four
of the folds were used as the training set, while the left-
over fold was designated as the test set. These folds were
pseudo-randomly sampled. The full pseudocode outlining
the procedure, which we have used in its R implementa-

tion (found at github.com/stephenbates19/nestedcv), can be
found on p. 15, Algorithm 1, in Bates et al. (2021).

Results

Dimensionality of ANSmeasures

We found no evidence for more than one factor underlying
between-person variability in the CS+/CS− difference (see
Table 2). Factor loadings largely reflected the effect sizes of
each ANS measure to distinguish CS+/CS−. Loadings for
factor analysis on all measures for FER02, and for combined
datasets, were largely in agreement, with the highest loading
from PSR (FER02: 0.67; all data: 0.73), SCR (FER02: 0.61 ;
all data: 0.59), HPR (FER02: 0.34; all data: 0.41), and lastly
RAR (FER02: 0.07; all data: 0.10).

Combining ANSmeasures optimally

In-sample

Table 3 shows results for all individual datasets separately,
with all available measures and their optimal combination
using weights derived in-sample. Table 4 includes the results
of our analyses in the merged dataset. Combining measures
yielded clear-cut improvements. The optimal weights favor
ANS measures with high CS+/CS− difference, adjusting by
their precision so that less reliable measures are penalized
(the normalized weights are reported in Table 4). On aver-
age, the combined measure allowed for a gain in Cohen’s d
of +0.09 ± 0.04 (mean ± standard deviation), without ever
causing a decrease compared to the best single measure. It is
important to note that this is only a best-case scenario because
the weights are obtained using the same data on which they

Table 2 Parallel analysis results
for the FER02 dataset and for
the combined dataset

For the combined dataset, we also show results for all subsets of three measures. The gray cells indicate the
presence of the respective measure in the analysis. The empirical p values are calculated through a Monte
Carlo simulation: the process involves counting the number of instances inwhich the original eigenvalueswere
found to be lower than those obtained from factor analysis on a randomized data matrix in 5000 simulations.
The sample size for each analysis is reported in the last column. The first row shows the results from the
FER02 dataset, and the other rows different combinations of measures from all datasets
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Table 3 Cohen’s d for individual datasets and measures, and their combination using weights derived in-sample

Dataset Individual measures Best Optimal Gain Sample size
(Cohen’s d) measure combination (Cohen’s d)
SCR PSR RAR HPR (Cohen’s d) (Cohen’s d)

DoxMemP 0.81 · 0.55 1.26 1.26 1.66 +0.40 20

FER01 0.40 0.37 · 0.74 0.74 0.89 +0.16 26

FER02 0.40 0.52 0.28 0.26 0.52 0.65 +0.13 68

FR 0.74 · 0.52 1 1 1.03 +0.03 22

FSS6B 0.44 0.49 · · 0.49 0.57 +0.08 17

PubFe 0.44 0.93 0.35 0.74 0.93 0.99 +0.06 12

SC4B 0.75 1.08 0.22 0.77 1.08 1.85 +0.77 8

TC 0.70 · 0.55 1.20 1.20 1.21 +0.01 19

VC7B 0.77 0.66 · · 0.77 0.83 +0.06 17

Individual measures: the d values for all available measures of the corresponding dataset. A dot represents a measure’s unavailability. Best measure:
measure with highest d. Optimal combination: summarizes the d from the optimal (linearly combined) measure; optimal weights were computed
as per Eq. (2). Gain: summarizes the difference between the combined measure’s Cohen’s d and the measure achieving the highest effect within
the dataset. Finally, the last column individuates the sample size for each dataset

are ultimately tested. As such, the increases in effect size reg-
istered in Table 4 should be regarded as an upper limit, and
should only be used to obtain a lower bound for the number
of participants required. Thus, while the weights shown can
be used to combine measures outside our data, one should
refer to the expected out-of-sample performances in the next
section when performing power calculations.

Out-of-sample

Table 5 displays the results from our out-of-sample analyses.
The actual sample size for each combination of measures is
reported in the table. This analysis shows an increase in aver-
age performance (mean± s.d., across all subsets ofmeasures:
0.09 ± 0.06), of similar size as in the in-sample setting. The

Table 4 In-sample results for
the combined dataset

Columns 1–4 are color-coded to indicate the presence and effect size of different measures used in the
corresponding analysis (white: measure absent, gray: measure present, dark gray: measure with highest
Cohen’s d). Within each cell, we report the weight taken for the combined measure, divided by the 2-norm
of the weight vector. Best measure: Cohen’s d for the best individual measure, indicated by dark gray on
the left-hand side). Optimal combination: Cohen’s d for the combined measure. Gain: increase in effect size
achieved by using the combined measure instead of the best measure. N : sample size for each analysis
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Table 5 Out-of-sample results
for the combined dataset

Columns 1–4 are color-coded to indicate the presence and effect size of different measures used in the
corresponding analysis (white: measure absent, gray: measure present). No single best measure is indicated
since this depends on the training data set on each iteration. Single best measure: average OOS Cohen’s d for
the best single measure in each training iteration; Optimal combination: the average (across training-test set
combinations), OOS, Cohen’s d effect achieved by the optimal combination of measures. GainMean: average
difference in effect size between combined measures and best measure, and bias-corrected 90% confidence
intervals, from 5% (column 8), to 95% (column 9)

corrected confidence intervals differ between combinations
due to the different sample size.

Toprovide a sense of the gains fromutilizing the combined
measure, we can compute a power analysis for a hypothetical
threat-learning study. Based on the out-of-sample results, we
would expect that the best singlemeasure has an effect size of
0.58, and the combined measure an effect size of 0.66. If we
were to aim for a power of 80% (at a two-tailed significance
level of 0.05) to detect such effects in a one-sample t test,
we would on average need N = 25 participants utilizing the
single best measure, whereas utilizing the combinedmeasure
would only require N = 19. Of course these are only general
considerations, since the actual benefit will depend on the
measures. Noteworthy, PSR and HPR measures appear to
benefit particularly from their combination, showing confi-
dence intervalswell above zero, bothwhen they are combined
with SCR, and among one another.

Discussion

Toquantify threat learning, several conditioned responses are
conventionally deployed to infer on the latent CS-US associ-
ation. This plurality poses a challenge for researchers, who
often have to settle on one individual measure in order to
avoid correction for multiple comparisons, or to pre-register
a single primary analysis and outcome. Selecting a suitable
measure is far from trivial, as these measures not only vary in
their sensitivity, but may also reflect distinct underlying neu-
ral or psychological processes (Ojala & Bach, 2020). Here,
we investigated the dimensionality of threat learning mea-

sures, and their optimal combination, in a large sample of
participants.

We found no evidence formore than one underlying factor
across the full range of four measures or in subsets of three
measures. This suggests that, despite potential heterogeneity
in the underlying learning quantities (and/or neural sys-
tems), the inter-individual variability in experiment-averaged
threat learning measures largely stems from a single source.
Further work, possibly availing of hypothesis-driven confir-
matory factor analysis approaches, and a suitable (Bayesian)
framework, could provide conclusive evidence for this one-
dimensional structure. It is, however, possible that including
trial-wisemeasurements, in conjunctionwith structural equa-
tion modeling, might uncover more sophisticated factor
structures. For instance, there might be factors for predom-
inantly sympathetic (e.g., SCR) or parasympathetic (e.g.,
HPR) measures, or discriminate slow (e.g., RAR) and fast
(e.g., PSR) sub-systems that control anticipatory responses
to aversive outcomes. Further, our focus was solely on auto-
nomicmeasures. Includingother conditioned responses, such
as fear-potentiated startle, or explicit CS-US contingency
ratings, may diverge from the one-dimensional structure
identified in this study.

Next, we were able to quantify the extent to which an
optimal combination of measures yields a higher effect size
than the best-discriminating individual measure. We quanti-
fied the precise gain achieved by all possible combinations of
measures, in settings that differed in the way that the optimal
weights were derived and tested (either in- or out-of-sample).
We observed similar improvements in either scenario, which
were meaningful, albeit modest, in size (+0.09 in Cohen’s
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d). We emphasize, however, that in the in-sample setting,
the combined measure only provides an upper-bound of the
effect size, as it is inherently biased: the combination is
indeed constructed to achieve a higher Cohen’s d than any
individual measure, albeit of course the actual increase in
effect size will still depend on the measures at play. Our
in-sample results are therefore only relevant when perform-
ing best-case power analyses (i.e., when the quantity of
interest is the maximal Cohen’s d). Importantly, our out-
of-sample analyses complement these weights by providing
a measure for their capacity to generalize. The results of
these latter analyses can thus be referred to when perform-
ing power analyses, which involve expected effect sizes.
In the out-of-sample setting, the gains in Cohen’s d were
conspicuous, indicating good generalizability of weights.
Caution should be exercised with regard to the confidence
intervals (which depend on various factors, such as sam-
ple sizes) and the actual measures involved. Indeed, on
close inspection, it becomes salient that certain combina-
tions of measures exhibit a more substantial improvement.
For instance, combining PSR and HPR appears to cause
noticeable improvements, both when the two are consid-
ered in isolation, or indeed as we add further measures. This
might arise as PSR and HPR measurements constitute more
independent (or less redundant) sources of information than
other measurement pairs about the latent CS-US association.
Finally, the optimal weights derived here can be used out-
side of our data, where we would suggest using the weights
derived in-sample (as they are based on a large number of
participants).

In sum, we provided evidence that optimally combining
measures can serve as a valuable tool for researchers to refine
their methods. Our findings, based on the specific paradigm
used (threat acquisition with a 3.5-s CS-US latency), may
provide a foundation for extending this approach to various
other phases of conditioning paradigms, such as reactivation
and extinction, although, of course, empirical validation of
this hypothesis is necessary. The weights obtained here for
combined datasets (e.g., those outlined inTable 4)were based
on a large number of participants (ranging from88when con-
sidering all measures, to 188when only considering SCR and
HPR), and thus can be used verbatim for threat conditioning
measures based on psychophysiological modeling (Bach and
Friston, 2013; Bach et al., 2018), and in experimental settings
similar to the ones reported here, since data homogeneitywas
not a crucial issue for the improvements in effect size. The
formula for obtaining the weights holds for any combina-
tion of measurements and can easily be extended to entirely
different measures. In particular, threat- conditioning studies
sometimes test recall after an intervention targeted to impair
synaptic consolidation (e.g., Bach et al., 2018; Kindt et al.,
2009; Wehrli et al., 2023). It would be useful to extend our
current results on threat learning to recall tests.

Complementary to our main findings, our analyses con-
firm the previous notion that PSR has the highest effect size
when compared to SCR, HPR, or RAR (Korn et al., 2017),
while HPR and SCR were comparable (Castegnetti et al.,
2016). RAR appeared to be the least discriminative measure,
albeit with large variability across individual studies. It has
been suggested that to robustly quantify respiration ampli-
tude, a double-belt system is required (Binks et al., 2006).
While we have demonstrated across several experiments that
single-belt systems do allow inference on cognitive processes
(Bach et al., 2016; Castegnetti et al., 2017), it is likely that the
precision of this inference depends on the precise position-
ing of the belt and of the participant, which are substantive
sources of variability across experimenters and setups. Our
conclusions regarding RAR should therefore be treated cau-
tiously, simply as they may not extend to other laboratory
conditions or belt systems. It is worth noting that respiration
is among the less commonly utilized measures, and further
research is warranted to fully explore its potential (Ojala &
Bach, 2020).

In our mega-analytic approach, we combined various data
sets with only slight discrepancies in experimental set-ups
(e.g., number ofCS+’s, length of inter-trial intervals, and sim-
ilar) that are inconsequential for the specific objectives of our
analyses. Inspection of the individual effect sizes revealed a
systematic variation, across all autonomicmeasures, between
experiments. The choice of data sets was driven by their
public availability and similarity of setups, rather than being
optimized to investigate underlying reasons. We emphasize
that our results were robust across different (overlapping)
combinations of data sets, and do not appear to be exclu-
sively driven by one or a small number of experiments in our
sample.

Some caveats and limitations merit attention in our study.
Firstly, we should note that while our aggregated data is in
a sense heterogeneous (in terms of the experimental setups,
experimenters involved, CS modalities, and so on) it does all
come from one single laboratory which used relatively simi-
lar experimental structures and recording equipment. To fully
delineate the benefits of combining measures in truly hetero-
geneous settings, it would be useful to extend our analyses to
setups utilized by wholly different laboratories. However,
currently, there is a dearth of human threat-conditioning
studies reporting several autonomic measures at the same
time (see Leuchs et al., 2019, for a notable exception).
To ensure robustness across laboratories, the current results
would ideally be reproduced in a multi-lab calibration exper-
iment, as has recently been proposed (Bach et al., 2023).

Further, our analyses are based on measurement averages
over acquisition, and so might not generalize to trial-by-trial
response quantification. Firstly, averaging over acquisition
might have dissipated subtle differences that could have been
observed by looking at specific phases of the task – such as
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focusing exclusively on the initial trials. This consideration
is pertinent to both our dimensionality reduction, and opti-
mal combination, results. Driven by appropriate hypotheses
about the exact segments of the task to be considered, selec-
tively examining subsets of trials is an interesting avenue for
further research. Secondly, by linearly combining measures
according to theweightswe derived, it is plausible to enhance
the power for assessing individual variations, in terms of their
relationship (e.g., correlation) with task-basedmetrics. How-
ever, because our method primarily examines task-averaged
quantities, it likely will not be immediately beneficial for
looking at the fine-grained temporal evolution of responses.
Thus, when studying task-based behavior, it is critical to
recognize that examining the temporal progression of the
combined measure may not yield significant improvements
since, again, the optimal weights were determined based on
time-averaged data.

To summarize, we provide evidence that between-person
variability in threat-conditioned responses, averaged over
trials, are underpinned by a single factor, and show that com-
bining them yields a benefit in terms of retrodictive validity,
i.e., the ability to distinguish CS+ and CS−. This benefit is
not only theoretical (i.e., in-sample) but also practically rele-
vant, as the optimalweights derived in a subset of participants
generalize to the remaining participants. As such, the optimal
weights we give here could be used for future studies. The
OOSperformance reported here (and relative, bias-corrected,
confidence intervals) could constitute a valuable resource to
experimenters as they face experimental cost–benefit con-
siderations. Thus, we believe this work could complement
ongoing efforts to optimize the accuracy of individual threat-
learning measures.
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