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Abstract
Although transfer models are limited in their ability to evolve over time and account for a wide range of processes, they have
repeatedly shown to be useful for testing categorization theories and predicting participants’ generalization performance. In
this study,wepropose a statistical framework that allows transfermodels to be applied to category learning data.Our framework
uses a segmentation/clustering technique specifically tailored to suit category learning data. We applied this technique to a
well-known transfer model, the Generalized Context Model, in three novel experiments that manipulated ordinal effects in
category learning. The difference in performance across the three contexts, as well as the benefit of the rule-based order
observed in two out of three experiments, were mostly detected by the segmentation/clustering method. Furthermore, the
analysis of the segmentation/clustering outputs using the backward learning curve revealed that participants’ performance
suddenly improved, suggesting the detection of an “eureka” moment. Our adjusted segmentation/clustering framework allows
transfer models to fit learning data while capturing relevant patterns.

Keywords Categorization · Segmentation/Clustering · Category transfer models · Generalized Context Model (GCM) ·
Rule-based versus similarity-based presentation order

Introduction

Cognitive sciences have seen significant progress due to
the conception and use of computational models (Polk
and Seifert, 2002; Sun, 2008; Busemeyer and Diederich,
2010; Lieto, 2021). This is particularly true in categorization
(Pothos and Wills, 2011; Wills, 2013), where models have
been developed to better understand underlying mechanisms
(Reed, 1972; Hintzman, 1984; Nosofsky et al., 1994; Love
et al., 2004;Kruschke, 2008) and,more recently, order effects
(Carvalho and Goldstone, 2022; Mezzadri et al., 2022c).
Following the learning vs. generalization distinction, com-
putational models can be grouped into learning and transfer
models. Learning refers to the formation of the categories
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through a trial-and-error process, whereas transfer refers to
the ability to classify new stimuli. Learning models have
the ability to adapt their predictions over time, which allows
them to perform equally well on learning and transfer data.
Examples of learningmodels are theConfigural-Cuenetwork
model of classification learning (Gluck and Bower, 1988),
the Attention Learning COVEring map (ALCOVE) model
of categorization (Kruschke, 1992), the Rule-plus-exception
(RULEX) model of classification learning (Nosofsky et al.,
1994), and SUSTAIN (Love et al., 2004). By contrast, trans-
fer models tend to produce predictions that do not evolve
significantly over time. This limitation often restricts their
usage to transfer only. Examples of transfer models are the
Generalized Context Model (Nosofsky, 1986) and the Ordi-
nal General ContextModel (Mezzadri et al., 2022c).We refer
to Supplementary material A for a visual comparison of the
performance between learning and transfer models as a func-
tion of time.

Although transfer models account for fewer cognitive
processes than learning models (focusing on generaliza-
tion rather than both learning and generalization processes),
they have been shown to be useful in accurately predict-
ing participants’ performance across a variety of contexts
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(Nosofsky et al., 2018, 2017; Rehder and Hoffman, 2005;
Rouder and Ratcliff, 2004; Sanders and Nosofsky, 2020;
Smith andMinda, 2000). They also have been used to imple-
ment theories of cognitive processes, such as models based
on exemplars vs. prototypes (Minda and Smith, 2002). For
instance, Nosofsky et al. (2018) have recently tested the abil-
ity of a well-known exemplar model of categorization, the
Generalized Context Model (GCM), to predict classification
of rocks. In this study, the authors showed that GCM was
capable of providing precise quantitative predictions for var-
ious training conditions applied to diverse rock categories.

We here propose a statistical framework that allows learn-
ing data to be fit by transfer models with the aim of extending
the application of transfer models to category learning. The
advantages of applying transfer models to learning data are
numerous. First, this framework can allow transfer models
to be applied to experiments that lack a transfer phase. This
is the case for certain classification studies in which transfer
items are not conceived (Ashby andMaddox, 1992; Feldman,
2000, 2003), but also the case in cognitive tasks designed for
non-human animals in which reward for a correct behavior is
always provided (James et al., 2022). It is particularly useful
when the aim is to identify learning stages, rather than using
a predetermined model of the learning phase.

Second, this framework can allow a fruitful use of the
learning phase of a classification task. As mentioned above,
transfer models are best suitable for fitting transfer data. Yet,
the transfer phase of a categorization experiment is generally
short (amounting to a few blocks). Therefore, considering
that a portion of the transfer phase is used for estimating the
parameters, there are generally a fewblocks left for testing the
predictions of the model. Using the framework of the present
study, parameter estimation can be performed on learning
data, letting one to assess models on the whole data set.

Finally, this method can give researchers the choice of
fitting participants’ generalization patterns individually or
collectively. Themain obstacle to individually fit participants
in the transfer phase lies in the greater amount of individual
data needed to accurately estimate the parameters (Mezzadri
et al., 2022a). Since the use of our method would allow the
estimation of the parameters on the learning phase (which
generally includes enough observations to accurately esti-
mate the parameters), a participant-by-participant fit would
then be possible.

The statistical framework that we propose is based on
a segmentation/clustering approach (Picard et al., 2007),
originally applied toDNAdata (Davies et al., 2005). The seg-
mentation/clustering model combines a segmentation model
with amixturemodel. The former divides the data into a finite
number of segments and the latter assigns a label to each
segment. In the case of classification data, each label is asso-
ciated with a specific learning behavior/phase (e.g., random
classification, perfect classification, etc.). From now on, the

term “behavior” is preferred to “label” to facilitate interpre-
tation in categorization. Partitioning the data into segments
allows transfer models to adapt their predictions to the learn-
ing path of each participant,making it an individual fit.On the
other hand, assigning a behavior to each segment allows the
comparison between participants. Indeed, the method bene-
fits from all of the observations in estimating the parameters
of each behavior making the estimation robust and inter-
pretable through all individuals. To our knowledge, such a
method has never been applied to cognitive models.

The use of a segmentation/clustering framework was pre-
ferred to simpler segmentation methods for two reasons.
First, segmentation methods do not allow the attribution of
a behavior to segments, which makes comparisons among
participants’ learning paths more difficult. While segmen-
tation methods only rely on an individual fit, the seg-
mentation/clustering framework is characterized by a dual
individual/collective fit. As mentioned above, the method
recovers the sequence of behaviors through an individual fit,
but identifies these behaviors based on the set of collective
data points (allowing comparisons among subjects). Second,
the segmentation/clustering method allows a more accu-
rate estimation of the parameters compared to segmentation
methods. Indeed, the number of observations per segment
in individuals who rapidly completed the experiment might
be too small to accurately estimate the parameters with seg-
mentation methods (Mezzadri et al., 2022c). By contrast,
the segmentation/clustering method allows parameters to be
estimated on the set of segments associated with a common
behavior, which generally includes a higher number of obser-
vations.

We here apply the segmentation/clustering method to
the Generalized Context Model (Medin and Schaffer, 1978;
Nosofsky, 1986). This model can account for a variety of
category-learning phenomena, and has served as a general
framework for a large number of significantmodels in catego-
rization (e.g., Anderson, 1991; Kruschke, 1992; Love et al.,
2004). Three novel experiments were conducted to evaluate
the application of the segmentation/clustering method to the
Generalized ContextModel. These experiments only involve
a learning phase. We manipulated the order of stimuli within
a category to obtain variations of performance in the data.We
focused on two specific within-category orders: rule-based,
inwhichmembers of a same category are presented following
a “principal rule plus exceptions” structure, and similarity-
based, in which members of a same category are arranged in
order to maximize the similarity between contiguous stim-
uli. Research has shown that the rule-based order facilitates
learning as compared to the similarity-based order when the
category structure itself favors the abstraction of a rule (Elio
andAnderson, 1981, 1984;Mathy andFeldman, 2009, 2016;
Mezzadri et al., 2022b). Here, these two types of presentation
order are studied in various contexts.
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In ”Segmentation/clustering framework applied to the
Generalized Context Model (GCM)”, we provide a brief
overview of the Generalized Context Model and describe
the segmentation/clustering framework. Within this section,
we also present the results of the numerical simulations used
to validate the performance of the segmentation/clustering
method, as well as to optimize the selection of param-
eters for the number of behaviors and change-points. In
”Experiments”, we provide descriptions of three novel exper-
iments, while in ”Data Analysis” analyze the data collected
from these experiments. Finally, in ”Results”, we present the
results obtained from applying the segmentation/clustering
technique to the Generalized Context Model across all three
data sets.

Segmentation/clustering framework applied
to the Generalized Context Model (GCM)

The segmentation/clustering technique (Picard et al., 2007)
combines a segmentation model whose purpose is to detect
abrupt changes within the data (Hupé et al., 2004; Olshen
et al., 2004), with a mixture model which assigns a behav-
ior to each early detected segment. The segmentation model
provides a partition of the data into segments while account-
ing for the ordered structure of the data, whereas the
mixture model allows the association of a common behav-
ior to segments with similar features. We first provide a
brief description of the Generalized Context Model (GCM),
to which the segmentation/clustering technique is applied.
Then, we describe the segmentation/clustering model for a
fixed number of change-points and behaviors. Finally, we
address the selection of the number of change-points and
behaviors, and we present numerical simulations assessing
the reliability of the segmentation/clusteringmodel.Note that
the number of change-points and behaviors remains fixed
within a single experiment, but may vary across different
experiments.

Overview of the Generalized Context Model (GCM)

To improve readability, all main symbols used in this
sub-section and the following sub-sections are listed and
explained in Table 1. As our experiments only consider two
categories, GCM is formalized specifically for this case.
According to GCM (Medin and Schaffer, 1978; Nosofsky,
1986), the probability of classifying a stimulus x as belong-
ing to the set of positive stimuli (i.e., Category+) is given by
the summed similarities of that stimulus to all positive learn-
ing stimuli, divided by the summed similarities of stimulus
x to all learning stimuli of both categories (i.e., Category +

Table 1 Main symbols used in the study as well as their definition

Symbol Definition

+/− Set of positive/negative stimuli

S(·, ·) Similarity between two stimuli

c Sensitivity parameter in GCM

Pc
(+ ∣

∣ ·) Probability of classifying an item into
Category + as a function of the
sensitivity parameter c

d(·, ·) Distance between two stimuli

D Number of dimensions of the
psychological space in which stimuli are
embedded

ωi Attention-weight for dimension i

L(· ; c) Likelihood function given a sequence of
stimuli as a function of the sensitivity
parameter c

m A given participant

zm1 , . . . , zmnm Sequence of responses given by
participant m involving nm data points

P Number of behaviors

K Number of change-points

θ = {θ1, . . . , θP } Values of the sensitivity parameter
associated with each behavior

τm = {τm1 , . . . , τmK } Coordinates of the change-points for
participant m

Smk The k-th segment for participant m
obtained from the segmentation of the
data

α Parameter for selecting the number of
behaviors

β Parameter for selecting the number of
change-points

and Category −):

P(+ | x) =
∑

a∈+ S(a, x)
∑

a∈+ S(a, x) + ∑
a∈− S(a, x)

, (1)

where + represents the set of positive stimuli, and − the set
of negative stimuli. Note that the word “set” is being used in
the mathematical sense, as an unordered collection of unique
elements, and thus no repetitions of items are included. The
term S(a, x) denotes the similarity between stimuli a and x ,
and it is computed as an exponentially decaying function of
the distance between the two stimuli:

S(a, x) = e−c·d(a,x)q , (2)

where d(a, x) is the distance between stimuli a and x , q a
positive constant, and c a sensitivity parameter (c ≥ 0). The
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distance between stimuli a and x is computed by:

d(a, x) =
⎡

⎣
D∑

i=1

ωi · |a(i) − x (i)|r
⎤

⎦

1
r

,

where ωi is the attention allocated to dimension i (ωi ≥ 0
and

∑D
i=1 ωi = 1), r a positive constant, a(i) and x (i) the

feature values of stimuli a and x on dimension i , and D
the number of dimensions (stimuli are embedded in a D-
dimensional psychological space, in our case D = 4). The
values of the constants q and r depend on the nature of the
stimuli. Since our experiments involve highly distinguishable
and separable-dimension stimuli (Garner, 1974; Shepard,
1964, 1987), both constants are set equal to 1. From now on,
we add the subscript “c” to the notation of the classification
probability Pc to emphasize its dependence on the sensitivity
parameter (which will vary from segment to segment in the
sequel).

In this study, we examine a simplified version of the GCM
where the attention given to each dimension is fixed and
evenly distributed (ωi = 1

D for each i = 1, . . . ,D). As an
initial investigation, we proposed to examine a simplified
version of the GCM in order to assess the potential of the
segmentation/clustering technique while reducing the com-
plexity and computational cost of its implementation.

Although the general version of the GCM also includes
additional terms, such as response-scaling and response-
bias parameters, and memory-strength values, we chose not
to implement these parameters in our study for two rea-
sons. Firstly, we aimed to use the simplest possible version
of the GCM. Secondly, the category concept used in the
experiments had an equal number of positive and negative
examples, and each block comprised a balanced represen-
tation of positive and negative stimuli. As a result, both the
response-bias andmemory-strength termswere unnecessary.

The likelihood of GCM on observations z1, . . . , zn is
given by:

L (z1, . . . , zn ; c) =
n∏

i=1

[
Pc

(+ ∣
∣ xi

)]zi · [
Pc

(− ∣
∣ xi

)]1−zi ,

where n is the length of stimuli presented to a participant, xi
the i-th stimulus, zi the classification response of stimulus
xi (1 if classified into positive stimuli, and 0 if classified into
negative stimuli), and c the sensitivity parameter of GCM.

Model

Let m ∈ M be a participant, and zm1 , . . . , zmnm the partici-
pant’s sequence of responses involving nm data points. Also,
let Zm

1 , . . . , Zm
nm be nm random variables such that zmi is

a realization of Zm
i (i = 1, . . . , nm). We suppose that the

process Zm
1 , . . . , Zm

nm is affected by K abrupt changes at
unknown coordinates τm = {τm1 , . . . , τmK }, with the con-
vention τm0 = 1 and τmK+1 = n + 1. The K change-points
define a partition of the observations into K + 1 segments
Sm1 , . . . , SmK+1 such that:

Smk = {
zmt , t ∈ [

τmk−1, τ
m
k

)}
.

According to the segmentation/clustering model, the random
variables Zm

t follow a Bernoulli distribution of parameter the
probability of classifying a stimulus xmt into positive stimuli
(Category +) according to GCM (i.e., Equation 1):

Zm
t ∼ B

(
Pcmk

(+ | xmt
))

, ∀t ∈ Smk ,

where cmk is the sensitivity parameter of GCM associated
with the segment Smk . The peculiarity of this method lies
on the fact that the parameter cmk can only take P values,
cmk ∈ {θ1, . . . , θP }. Therefore, P denotes the number of
behaviors that can be assigned to segments, and θ1, . . . , θP
are the values associated with each behavior. Note that the
same set of behaviors apply to all participants (within a sin-
gle experiment), but not every participant needs to exhibit
the entire set of behaviors. For instance, suppose participant
m1 initially classifies the stimuli randomly and then achieves
a 75% correct response rate, while participant m2 initially
classifies the stimuli randomly and then achieves a perfect
response rate. In this case, the method is expected to iden-
tify three distinct behaviors, even though not all participants
exhibited all three.

In addition to the spatial organization of the data into
segments via the partition τm , a secondary organization of
the segments into behaviors is considered. In our context,
behaviors code different learning performance (e.g., random
classification, perfect classification, etc.), while the partition
into segments allows the model to evolve. One can note that
the parameter cmk is stationary on the segment Smk , meaning
that observations on each segment are supposed independent.

The segmentation/clustering method allows GCM to
adjust its performance over time through the evolution of
the sensitivity parameter, without imposing constraints on
how this process takes place. This unconstrained approach
enables a transfer model to evolve over time while grouping
subjects with similar learning progressions.

Objective

The objective of the segmentation/clustering method is to
infer from observed data (i.e., participants’ responses) the
coordinates of the change-points as well as the values associ-
ated with each behavior. More specifically, this method aims
at finding τm = {τm1 , . . . , τmK } for every participant m ∈ M
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and θ = {θ1, . . . , θP } such that the cost of the segmentation
is minimal, given some observed data zm1 , . . . , zmnm . Recall
that θ1, . . . , θP are common values shared by all participants
within the same experiment. The smallest segmentation cost
given K change-points and P behaviors parameterized by θ

is as follows:

CK P (θ) =
∑

m∈M
min

τm1 ,...,τmK

K+1∑

k=1

Cτmk−1:τmk ,

where the quantity Cτmk−1:τmk represents the segmentation cost
of the k-th segment of participant m (i.e., Smk ). We sup-
pose that the segmentation cost of segment Smk is expressed
by minus the log likelihood of GCM evaluated on Smk . To
minimize this quantity at a fixed θ , each segment Smk is
assigned the behavior pSmk that minimizes − logL(Smk ; c)
for c ∈ {θ1, . . . , θP }. The segmentation itself is performed
for each participant separately to minimize the cost. There-
fore, the minimal cost of partitioning the observed data into
K + 1 segments with P behaviors parameterized by θ is the
following:

CK P (θ) =
∑

m∈M
min

τm1 ,...,τmK

K+1∑

k=1

min
c∈{θ1,...,θP } − logL(Smk ; c)

=
∑

m∈M
min

τm1 ,...,τmK

K+1∑

k=1

min
c∈{θ1,...,θP }

∑

j∈[τmk−1,τ
m
k )

(z j − 1) logPc
(− | x j

) +
− z j logPc

(+ | x j
)
.

The next step is to globally minimize CK P (θ)with respect to
θ , in order to find the best parameters that fit the behaviors.
However, this minimization alters the value of θ . Therefore,
one has to alternate between the two minimizations succes-
sively to find the global minimizer for both the segmentation
and the value of the parameters. This leads to the following
algorithm.

Algorithm

Weused the Dynamic Programming-ExpectationMaximiza-
tion (DP-EM) algorithm proposed by Picard et al. (2007)
to apply the segmentation/clustering model. This algorithm
combines the dynamic programming (DP) algorithm used
in segmentation models, with the expectation maximization
(EM) algorithm used in mixture models. The principle of the
DP-EM algorithm is the following: when the values asso-
ciated with the P behaviors θ = {θ1, . . . , θP } are known,
the coordinates of the K change-points τm = {τm1 , . . . , τmK }
are computed using the DP algorithm (for each participant
m ∈ M), and once the coordinates of the K change-points

τm = {τm1 , . . . , τmK } are estimated (for each m ∈ M), the
EM algorithm is used to optimize the values associated with
the P behaviors θ = {θ1, . . . , θP }.

The algorithm is run for a fixed number of change-points
K and behaviors P . The first step consists in associating a
value θp to each behavior p ∈ P , where P denotes the set of
P behaviors. Given θ = {θ1, . . . , θP }, the second step (DP
algorithm) consists in finding the coordinates of the change-
points τm = {τm1 , . . . , τmK } such that the segmentation cost
associated with each participant is minimal:

Cm
K P = min

τm1 ,...,τmK

K+1∑

k=1

min
c∈{θ1,...,θP } − logL(Smk ; c),

∀m ∈ M

The third step (EM algorithm) consists in selecting among all
participants the segments associated with a specific behavior
p, and optimizing its value θp to minimize the segmentation
cost of the segments associated with p:

θp ∈ argminc
∑

j in a segment Smk s.t. pSmk
=p

− logL (
z j ; c

)
,

∀p ∈ P.

Finally, the second and third steps are iterated multiple times
to ensure convergence. Since the values θ and τm were stable
after a few iterations, the number of iterations were set equal
to 3. The algorithm is illustrated in Figure 1.

Choice of the number of behaviors

The selection of the number of behaviors was carried out by
means of the adaptive method proposed by Lavielle (2005).
This method aims at finding the number of behaviors P̂ with
which the log likelihood ceases to increase significantly. Let
us denote

JP = − log L̃P (τ̂ , θ̂ ) = − max
K=0,...,Kmax

{
logLK P (τ̂ , θ̂ )

}
,

where τ̂ are the estimated coordinates of the change-points,
θ̂ the estimated values associated with each behavior, and
LK P (τ̂ , θ̂ ) the likelihood of the model with K change-points
at τ̂ and P behaviors. The first step consists in computing J̃P
as follows:

J̃P = JPmax − JP
JPmax − J1

× (Pmax − 1) + 1.

This step allows one to normalize JP , ensuring that J̃1 =
Pmax and J̃Pmax = 1. The second step consists in computing
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Fig. 1 Illustration of the Dynamic Programming-Expectation Maxi-
mization (DP-EM) algorithm, given three behaviors and one change-
point. Data points represent the performance of participants throughout
the task. The graph in the top-left corner shows the first step, where
each behavior is associated with a value of the sensitivity parameter.
The graph in the top-right corner shows the second step, where data

points from each participant are segmented. The graph in the bottom-
left corner shows the third step, where data points associated with each
behavior are used to update the sensitivity parameter values of GCM.
Finally, the graph in the bottom-right corner shows the second itera-
tion of the second step, where data points from each participant are
segmented using the updated sensitivity parameter values

DP such that:

DP = J̃P−1 − 2 J̃P + J̃P+1,

for all P ∈ {2, . . . , Pmax−1}. The selected number of behav-
iors is then given by:

P̂ =
⎧
⎨

⎩

max{P ∈ {2, . . . , Pmax − 1} such that DP ≥ α}
1 if DP < α for all P

with α a threshold. We performed numerical simulations on
classification data to tune the thresholdα. In order to generate
simulations that closely resemble the actual data, we simu-
lated several instances of the GCM using the same sequence
of stimuli as in Experiment 2,which is described in the subse-
quent section. We held the segmentation fixed and consistent
for all |M| = 22 participants. We specifically chose Experi-
ment 2 as it involves the smallest number of participants and
is therefore the most susceptible to poorly estimated param-
eters due to the limited amount of data. Figure 2 shows the
percentage of time that the method finds the correct number

of behaviors as a function of α, with different numbers of
behaviors (from 1 to 4). Details about the way simulations
were run are included in the caption. We found that α = 0.1
maximizes the percentage of time that the method finds the
correct number of behaviors, averaged across the selected
number of behaviors P (integers ranging from 1 to 4). One
can note that α = 0.1 does not allow the method to find
the correct number of behaviors when there is one behavior
(P = 1). However, in our experiments it is reasonable to
think that there are at least two behaviors (i.e., random and
perfect classification) since most of the participants learned
how to correctly classify the stimuli. Thus, the value α = 0.1
suits our context.

Choice of the number of change-points

Once the number of behaviors P̂ has been chosen, the num-
ber of change-points K̂ P̂ can be estimated. Let VK be the
variation of minus the log likelihood between change-points
K − 1 and K (with K = 1, . . . , Kmax):

VK = LK−1P̂ (τ̂ , θ̂ ) − LK P̂ (τ̂ , θ̂ ).
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Fig. 2 Numerical simulations to tune the parameter α for selecting
the number of behaviors. The graph shows the percentage of times the
method identified the correct number of behaviors as a function of α,
using simulated data with different numbers of behaviors P (integers
ranging from 1 to 4). Each number of behavior was simulated 50 times.
The values of the sensitivity parameter c associated with each behavior
were as follows: 15 for P = 1; 0.005 and 30 for P = 2; 0.005, 13, and
30 for P = 3; and 0.005, 7, 14, and 30 for P = 4. These specific values
were selected to enhance the distinguishability of the behaviors (see
Figure 11 for an illustration of the subtle relationship between the sen-
sitivity parameter and the accuracy rate). The same sequence of stimuli
used in Experiment 2 was used to run the simulations. Data was gen-
erated such that each participant was affected by a single change-point
(K = 1), equidistant from the participant’s first and last stimuli. We set
Pmax = Kmax = 5. The graph on the bottom shows the percentage of
correct response, averaged across the previous graphs (P ranging from
1 to 4). Dashed lines indicate the selected value for α

The selection of the number of segments is given by:

K̂ P̂ =
⎧
⎨

⎩

max{K ∈ {1, . . . , Kmax} such that VK ≥ V̄ }
0 if σV < β

(3)

where V̄ is themean of {VK , K = 1, . . . , Kmax },σV its stan-
dard deviation, and β ≥ 0 a tuning parameter. This method
allows one to find the highest number of change-points asso-
ciated with a significant decrease in minus the log likelihood.
We chose to implement a method based on slope heuristics
because it has been shown to outperform other methods, such
as AIC and BIC, in terms of accuracy and reliability, and

Correct K = 5

Correct K = 4

Correct K = 3

Correct K = 2

Correct K = 1

0 10 20 30 40 50

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

β

%
 C

or
re

ct

Fig. 3 Numerical simulations to tune the parameter β for selecting the
number of change-points. The graph shows the percentage of times the
method identified the correct number of change-points as a function
of β, using simulated data with different numbers of change-points
K (integers ranging from 1 to 5). Each number of change-points was
simulated 50 times. Data was simulated using two behaviors (P = 2),
and the sensitivity parameter values associatedwith these two behaviors
were 0.005 and 15. These specific values were selected to enhance the
distinguishability of the behaviors (see Figure 11 for an illustration
of the subtle relationship between the sensitivity parameter and the
accuracy rate). The same sequence of stimuli used in Experiment 2
was used to run the simulations. Data was generated such that each
participant was affected by K change-points (integers ranging from 1
to 5), equidistant from the participant’s first and last stimuli. We set
Kmax = 10. Dashed lines indicate the selected value for β

is more robust to deviations from the model assumptions
(Picard et al., 2007). We conducted numerical simulations
to both tune the parameter β and assess the efficacy of the
method. Again, to generate artificial data that closely resem-
ble the actual data, we used the same sequence of stimuli as
in Experiment 2. Figure 3 shows the percentage of time that
the method finds the correct number of change-points as a
function ofβ, with simulated data having different number of
change-points K (from 1 to 5). Details about the way simu-
lations were run are included in the caption. One can observe
that the method provides a correct answer in every case and
simulation, for any β ≤ 15. We decided to take β = 10.
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Fig. 4 Numerical simulations when β = 10. The graph shows minus
the log likelihood as a function of the number of change-points, on
simulated data with different numbers of change-points K (integers
ranging from 1 to 5). For each number of change-points, we run 50
simulations. In each one of the 50 simulations, the method found the
same result indicated with dash lines. This means that the method (with
β = 10) found the correct number of change-points 100% of the time,
in each case

Figure 4 shows minus the log likelihood as a function of the
number of change-points, with simulated data having differ-
ent number of change-points K (integers ranging from 1 to
5) and β = 10. The percentage of time the method found
the correct number of change-points is included in the graph.
The method allowed us to find the correct number of change-
points in every simulation (amounting to 50 simulations per
selected number of change-points).

Numerical simulations

Classification data are particularly complex. Indeed, predic-
tions of GCM (and of categorization models in general) are
expressed in terms of probability, while classification data
are expressed in terms of binary responses (1 when partici-
pants classified stimuli into positive stimuli, and0otherwise).
Therefore, intrinsic noise within the data can be very high.
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Fig. 5 Error of the segmentation/clustering technique in detecting the
coordinate of the change-points (Figure A) and the value of the sensi-
tivity parameter c (Figure B). In A, the error is expressed in terms of
number of blocks. In B, the relative error is defined as c−ĉ

c . The number
of behaviors P was set equal to 3, the number of change-points K was
set equal to 2, and the values of the sensitivity parameter c were set
equal to 0.2, 7, and 19 for the first, second, and third segment, respec-
tively. These specific values for the sensitivity parameter were selected
to enhance the distinguishability of the behaviors (see Figure 11 for an
illustration of the subtle relationship between the sensitivity parameter
and the accuracy rate). The same sequence of stimuli used in Experi-
ment 2 was used to run the simulations. Data was generated such that
the change-points affecting participants’ progression were equidistant
from each participant’s first and last stimuli

Numerical simulations were conducted to assess the reliabil-
ity of the segmentation/clustering technique on classification
data, specifically.

Simulations were run with a fixed number of change-
points K and behaviors P . Figure 5 shows the error of the
segmentation/clustering technique in detecting the coordi-
nates of the change-points (Figure A) and the value of the
sensitivity parameter c (Figure B), when P = 3, K = 2,
and c = 0.2, 7, and 19 for the first, second, and third seg-
ment, respectively. In Figure 5A, the coordinates of the two
change-pointswere estimatedwith a high accuracy (±1block
for the first change-point, and ± half a block for the second
change-point). Here, the term “block” refers to a full cycle
of stimuli to be classified. For instance, if participants are
required to classify 16 stimuli (as in our experiments), then
each block would consist of 16 stimuli. Further details on
the experiments and the nature of the stimuli are given in the
next section.

In Figure 5B, the lowest value of the sensitivity parameter
c were estimated with a medium accuracy, while the high-
est values were estimated with a high accuracy. This is not
surprising since the predictions of the model are in the sur-
rounding of 0.5 when the sensitivity parameter is close to
0, increasing the noise within the data. Note that values of
c equal to or greater than 20 result in perfect classification
(when the number of blocks is small). Since participants met
the learning criterion after the successfully completion of 4
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blocks, the difference between c = 20 and c > 20 would not
be noticeable in a such a short time window. Therefore, we
limited the sensitivity parameter to be smaller than 20. Simu-
lations with different number of behaviors and change-points
gave similar results.

Experiments

In the current section,we describe three novel experiments, in
which presentation order was manipulated. The experiments
were performed in accordance with relevant guidelines and
informed consent was obtained from all participants prior to
participation.

Experiment 1

This experiment is closely based on that of Mathy and Feld-
man (2009), modified in several ways to keep consistency
across all three experiments. In particular, while Mathy and
Feldman (2009) only manipulated the order of positive stim-
uli (i.e., members of Category +), here we control the order
of both positive and negative stimuli (i.e., members of both
categories). In addition, in the present study only one concept
was administered to participants instead of two concepts as
in Mathy and Feldman (2009).

Participants

The participants were 68 freshmen and sophomores at the
Université de Franche-Comté (France), who received course
credit in exchange for their participation.

Choice of concept studied

Each participant was administered a concept defined over
four Boolean dimensions. According to the classification of
Feldman (2003), this concept is called 124[8] (Figure 6, on
the top) to indicate that it is the 12th in a set of 4-dimensional
concepts consisting of 8 positive stimuli. The choice of a four-
dimensional concept is justified by the fact that the number of
items to be classified (24 = 16) is large enough to allow the
detection of effects of presentation order, but small enough
to allow its memorization.

This concept has interesting properties: i) it is moder-
ately complex, and ii) it is characterized by a substructure
made of several well-defined subcategories. This substruc-
ture made of subcategories is more detectable by considering
the compressed formula of the studied concept 124[8] ∼=
a′(bc)′ + ad ′(bc′ + b′c). We use here a standard notation
(Feldman, 2000, 2003), in which a′ refers to negation (¬) of
feature a (a and a′ are the two dimension values that can be
taken by dimension A ), ab refers to the conjunction (∧) of

Fig. 6 Illustration of the concept and stimulus items of Experiment 1.
On the top, the concept 124[8] according to Feldman’s classification
(Feldman, 2003). Positive stimuli are indicatedwith black circles, while
negative stimuli are indicated with white circles. The notation 124[8]
refers to the fact that this concept is the 12th in the Feldman’s list of
4-dimensional concepts consisting of 8 positive stimuli. In the middle,
the substructure made of subcategories in concept 124[8]. To avoid over-
burden the figure, only subcategories of the positive stimuli are shown.
On the bottom, an example of the 24 = 16 stimulus items presented to
participants. The items varied along four Boolean dimensions (Shape,
Color, Size, and Filling pattern). To make the figure more readable, we
illustrated plain and striped items instead of cross-hatched and striped
items

a and b, and a + b to their disjunction (∨). The ∼= symbol
indicates that any other concept isomorphic to this formula
can be labelled 124[8]. A verbal example of the compressed
formula using the illustration in the bottom panel of Figure 6
is “all striped objects except blue circles, as well as the small
blue plain square and the small red plain circle”.

The substructure made of subcategories in concept 124[8]
is represented in Figure 6 in the middle (the figure only
shows the subcategories of the positive stimuli). Subcate-
gory 1 represents six of the eight members of the concept
(P1, P3, P4 P6, P7 and P8), corresponding to the first
disjunctive clause a′(bc)′ in the compressed formula. These
six items can collectively be represented by a verbal expres-
sion such as “all a′ except bc”. By contrast, Subcategories
2 and 3 consist of one object each (P2 for Subcategory 2
and P5 for Subcategory 3) and correspond to the expansion
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of the second clause in the compressed formula (abc′d ′ and
ab′cd ′, respectively). Therefore, Subcategory 1 plays the role
of a salient “rule”, while Subcategories 2 and 3 play the role
of “exceptions”. Following Mathy and Feldman (2009), we
hypothesize that grouping 124[8] into these particular subcat-
egories is beneficial to learning.

Stimuli

Stimulus itemsvaried along fourBooleandimensions (Shape,
Color, Size, and Filling pattern). Rotation and permutation
were randomized for each participant, meaning that dimen-
sion A could correspond to Shape, or Color, or Size, or
Filling pattern depending on the participant, and that features
within dimensions were randomly drawn and permuted (for
instance, a′ = blue and a = red, or a′ = red and a = blue,
or a′ = green and a = red, etc.). The choice of two values
for each feature was randomly chosen among these features:
triangle, square, or circle for Shape; blue, pink, red, or green
for Color; small or big for Size; and hatched or cross-hatched
for Filling pattern.Overall, the combination of these four sep-
arable dimensions (Garner, 1974) formed 16 single unified
items (e.g., a small hatched red square, a big cross-hatched
blue circle, etc.).

Ordering of stimuli

We used two types of presentation orders: a rule-based order
and a similarity-based order. These were the orders that best
facilitated learning in Mathy and Feldman’s study (2009).
Presentation order was a between-subject manipulation. One
type of presentation order was randomly chosen for a given
participant beforehand and then applied across the blocks.
Here, a block is defined as a full cycle of 16 items (8 positive
and 8 negative). Negative stimuli were randomly intermin-
gled with positive stimuli and a variable presentation across
blocks was used, meaning that each new block (although
constrained to a given order type) was newly randomized.
Because categories were randomly alternated and a variable
presentation across blocks was used, we refer to the context
of this experiment as Random-Variable.

Unlike the study by Mathy and Feldman (2009), the
negative stimuli were also grouped into subcategories. Sub-
category 2 within the negative stimuli was defined by the
negation of (bc)′ on the a′ feature (i.e., a′bc) and included
items N2 and N6. Subcategory 1 within the negative stimuli
was defined by the negation of d ′(bc′ + b′c) on the a feature
(i.e., a(d ′(bc′ + b′c))′) and included the rest of the negative
items (N1, N3, N4, N5, N7, and N8). Therefore, the negative
subcategories were simply regarded as an inversion of the
positive subcategories.

In the rule-based order, the positive items were randomly
drawn from Subcategory 1 until all 6 stimuli were presented.

Likewise for the negative items belonging to Subcategory 1.
These were followed by the positive items in Subcategory 2
and Subcategory 3 (the item in Subcategory 2 was presented
strictly before the item in Subcategory 3), and by the negative
items belonging to Subcategory 2 (in random order). Thus in
the rule-based order, all members of the largest subcategory
were presented first (in random order) and separated from
exceptional members, in order to promote the abstraction of
the simplest rules by participants. The presentation within
subcategories was randomized to facilitate the extraction of
the relevant features.

In the similarity-based order, the first item was randomly
selected and subsequent items were randomly chosen from
those maximally similar to the previous item until the set
of stimuli was exhausted. The negative stimuli were also
similarity-based ordered and ties were resolved randomly.
Similarity was computed on a trial-by-trial basis so as to
maximize inter-item similarity locally, a method which did
not guarantee amaximized inter-itemsimilarity over an entire
block, but which offered a greater number of possible orders.
Similarity between two stimuli x and y was computed using:

sxy =
D∑

i=1

�{xi=yi },

which allows the count of the common features shared by the
two stimuli. In the above formula, xi and yi are the feature
values of stimuli x and y on dimension i and D represents
the dimension of the space in which items are embedded
(which is four in our experiment). Be careful not to confuse
the definition of similarity used to order the stimuli in the
similarity-based order with the definition used in the GCM
(Equation 2). The most important aspect of this procedure
is that the ordering does not necessarily respect the subcate-
gory boundaries targeted in the rule-based order, as similarity
steps can cross in and out of subcategories. For instance, the
stimulus P1 can be followed by stimulus P2.

Procedure

There was no warm-up session (such as learning a sim-
ple one-dimensional concept) so that participants would not
think that the task consisted in searching for simplistic rules.
However, participants were briefly instructed before the task
began. Each participant was asked to learn a single 124[8]
concept following either a rule-based order or a similarity-
based order (half of the participants were assigned to the
rule-based order).

The taskwas computer-driven and participantswere tested
individually during a one-hour single session (including
briefing and debriefing). Participants sat approximately 60
cm from a computer on which stimulus items were presented
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one at a time in the upper part of the screen. They learned to
sort the stimulus items using two keys, and successful learn-
ing was encouraged by means of a progress bar. The positive
and negative categorieswere associatedwith the up and down
keys respectively, and by two category pictures on the right
hand side of the screen. A virtual frame for the categories
faced the frame that encompassed the stimulus on its left. The
frame for the categories displayed a schoolbag at the top, and
a trash can at the bottom (to match the response keys). Each
time a response key was pressed, the corresponding picture
was displayed for two seconds along with feedback, while
the opposite picture was hidden for two seconds. After each
response, feedback indicating a correct or incorrect classifi-
cation was given at the bottom of the screen for two seconds.
The two category pictures reappeared whenever a new stim-
ulus was presented.

Theparticipants scored onepoint for each correct response
which was shown on the progress bar. To regulate the learn-
ing process, each response had to be given in less than eight
seconds (resulting in a maximum of 10 seconds between two
stimuli when the participants got a ‘Too late’ message that
lasted two seconds). If the response was given too late, the
participants would lose three points on the progress bar. This
was thought to prevent the participants from skipping the
most difficult stimuli without any penalty. The number of
empty boxes in the progress bar was 4 × 16 = 64. One
empty box was filled whenever a correct response was given,
but the progress barwas reset in case of an incorrect response.
This criterion was identical to the one used by Shepard et al.
(1961) in their first experiment and by Mathy and Feld-
man (2009). As a consequence, successful completion of
the experiment required participants to accurately classify
stimuli on four consecutive blocks consisting of 16 stimuli
each (64 stimuli in total). This stringent criterion required
participants to correctly classify all stimuli, including the
exceptions, thereby preventing them from resorting to par-
tial solutions. There was no limit on the number of learning
blocks, and participants were free to withdraw from the study
at any time.

Experiment 2

Experiment 2 was designed to investigate the effect of a con-
stant presentation across blocks. By “constant presentation”
we refer to the use of the same predetermined sequence of
16 stimuli across all blocks. We hypothesized that such an
order could facilitate both the perception of commonalities
within categories (when two stimuli of the same category are
presented repeatedly and contiguously) and the perception
of contrasts between categories (when two stimuli of differ-
ent categories are presented repeatedly and contiguously),
which would lead to form an abstraction. From an exemplar
point of view, constant orders were thought to limit the num-

ber of temporal associations between stimuli, which should
therefore reinforce the limited set of associations between
the memory traces. In this experiment, we used the same
concept, stimuli, and types of orders as in Experiment 1.

Participants

The participants were 22 freshmen and sophomores at the
Université de Franche-Comté (France), who received course
credit in exchange for their participation.

Procedure

The procedure was similar to Experiment 1, except that a
constant presentation across blockswas used. This procedure
can presumably help participants perceive sub-patterns of
responses (e.g.,−+++) that can be used to classify instances
blindly. For instance, after noticing that a + + + patterns
occurs after a “large red hatched square”, this pattern can be
used as a cue to correctly classify three instances in a row
without paying attention to the stimuli. This is the reasonwhy
this condition was tested with a small sample of participants.
The number of participants per type of presentation order
was balanced. Because categories were randomly alternated
and a constant presentation across blocks was used, we refer
to the context of this experiment as Random-Constant.

Experiment 3

This experiment explores the effect of blocking negative and
positive stimuli. In Mathy and Feldman (2009) and in earlier
studies (Elio and Anderson, 1981, 1984), negative stimuli
were interleaved with positive stimuli in order to emulate an
ordinary random presentation.More recently, Mezzadri et al.
(2022b) have investigated interactions between various order
manipulations including interleaving vs. blocking (in which
positives and negatives are segregated) with a relatively
simple concept. Here, we explore the effect of interleaved
vs. blocked presentation using a more complex concept. One
hypothesis is that when stimuli are blocked the perception
of the commonalities within categories is favored in the
rule-based order, hence resulting in faster learning. How-
ever, the perception of contrasts between categories might be
enhanced because of the immediate juxtaposition of positives
and negatives. It is thus difficult to decide between the oppo-
site effects of blocked vs. interleaved presentations without
knowing exactly the type of category being studied (Car-
valho and Goldstone, 2015). Here, because we use a difficult
concept with highly discriminable categories (in which the
stimuli are dissimilar both within and between categories),
a blocked presentation should result in better performance
using a rule-based presentation. Again, the same concept,
stimuli, and types of orders as in Experiment 1 were used.
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Participants

The participants were 46 freshmen and sophomores at the
Université de Franche-Comté (France), who received course
credit in exchange for their participation.

Procedure

The procedure followed that of Experiment 2 with the excep-
tion of two modifications: i) the use of a fully-blocked
presentation, where positive stimuli were always presented
before negative stimuli (Clapper and Bower, 1994, 2002);
and ii) the introduction of random blocks. Random blocks
were included to prevent participants from guessing the
correct responses without attending to the stimuli (i.e., the
participants could categorize the stimuli blindly just by press-
ing eight times on the same category). Each fully-blocked
block was followed by a random block, with a 5-second
pause in between them. In the random blocks, stimuli were
presented randomly within each block, with the sequence of
16 stimuli varying from block to block. Participants received
feedback after each trial.We refer to the context of this exper-
iment as Blocked-Constant. Again, half of the participants
were assigned to the rule-based order.

Data Analysis

The mean inter-item similarity for each presentation order
and experiment is given in Table 2A. As expected, the aver-
age inter-item similarity was higher for the similarity-based
order than for the rule-based order in all experiments. One
can note that in Experiment 3 blocking greatly increased
the mean inter-item similarity. Figure 7 (on the top) shows
the average number of blocks that participants took to meet
the learning criterion, as a function of presentation order
and experiment (graphs showing all participants were plot-
ted separately from the ones with successful participants
alone). One can note that on average in Experiment 2 and
Experiment 3 participants in the rule-based condition com-
pleted the task faster than participants in the similarity-
based condition.

Two survival analysis techniques were performed to study
the influence of presentation order (rule-based vs. similarity-
based) on the time required by participants to complete
the task: the Kaplan-Meier survival curves and the Cox
proportional-hazards model. Survival analysis techniques
were preferred to other analyses because of their ability to
take into account participants who did not meet the learning
criterion. The number and presentation order of participants
who did not complete the task are shown in Table 2B.None of
the participants were removed from the analyses. Although

Table 2 Mean inter-item similarity (Table A) and number of par-
ticipants who did not complete the task (Table B), as a function of
presentation order and experiment. The maximal inter-item similarity
is 3 in all experiment, since two contiguous four-dimensional items
cannot have more than 3 features in common. The term “unsuccessful”
participants refers to those individuals who did not meet the learning
criterion

A
Rule-based Sim.-based

Experiment 1 1.89 2.23

Experiment 2 1.86 2.25

Experiment 3 2.25 2.36

B

Rule-based Sim.-based

Experiment 1

Successful 21 17

Unsuccessful 13 17

Experiment 2

Successful 11 9

Unsuccessful 0 2

Experiment 3

Successful 20 16

Unsuccessful 3 7

the participants’ learning progression was not statistically
analyzed, we include a graph (Figure 7, on the bottom) that
shows the average percentage of correct responses among
participants within a same condition as a function of block
number over the course of the experiments. Again, a faster
progression in the rule-based condition as compared to the
similarity-based condition can be observed in Experiment 2
and Experiment 3.

Kaplan–Meier survival curves

The Kaplan-Meier estimator (Kaplan and Meier, 1958)
allows one to estimate the expected duration of time until
an event of interest occurs. Our event of interest is the time at
which participants met the learning criterion. Figure 8 shows
the survival probability for each type of presentation order,
as a function of block number and experiment. The survival
probability shows how participants assigned to a given con-
dition are likely to continue the task (and consequently, to not
meet the learning criterion). A log-rank test was performed
to evaluate the difference between survival curves. The log-
rank test was significant in Experiment 2 and Experiment 3
(p-value = 0.0051 in Experiment 2, and p-value = 0.04
in Experiment 3). This shows that learning was faster in the
rule-based order as compared to the similarity-based order in
both Experiment 2 and Experiment 3. Despite Experiment 1
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Fig. 7 Participants’ learning time and progression as a function of pre-
sentation order in Experiments 1-3. On the top, average number of
blocks taken by participants to meet the learning criterion, as a func-
tion of presentation order. Graphs showing all participants were plotted
separately from the ones with successful participants alone. The term
“successful” participants refers to those individuals who met the learn-
ing criterion. On the bottom, average percentage of correct responses
among participants within the same presentation order, as a function
of block number. In Experiment 3, only performance across random
blocks are plotted

closely resembling the original study byMathy and Feldman
(2009), we did not observe any advantage of the rule-based
order over the similarity-based order. This lack of advantage
may be attributed to the manipulation of both positive and
negative examples in the present study. In other words, the
manipulation of both positive and negative examples may
have interfered with both types of order, resulting in similar
performance levels.

Cox proportional-hazards model

The Cox model (Cox, 1972) is a survival analysis tech-
nique that allows one to simultaneously account for mul-
tiple variables. Therefore, this analysis allows us to addi-

tionally examine the impact of context (Random-Variable
in Experiment 1 vs. Random-Constant in Experiment 2
vs. Blocked-Constant in Experiment 3) on learning speed,
while investigating our main manipulation of interest (rule-
based vs. similarity-based). Figure 9 illustrates the result
of the Cox model as a function of presentation order and
context. The graph shows that contexts Random-Constant
and Blocked-Constant increased participants’ hazard ratio as
compared to the reference condition (i.e., context Random-
Variable). This means that these contexts were found to help
participants to meet the learning criterion faster. The impact
of both contexts was found significant (p-value < 0.001 for
both the Random-Constant and Blocked-Constant contexts).
By contrast, the similarity-based order reduced participants’
hazard ratio as compared to the rule-based order. This impact
was found significant (p-value< 0.001), showing that learn-
ing was slower in the similarity-based condition.

Results

Here, we present the results of the application of the segmen-
tation/clustering technique to Experiments 1-3 using GCM
as underlyingmodel. Themethod for selecting the number of
behaviors with α = 0.1 found 4 behaviors in Experiment 1
and 2, and 3 behaviors in Experiment 3 (see Figure 10, top).
The method for selecting the number of change-points with
β = 10 found 1 change-point for all three experiments (see
Figure 10, bottom). An evaluation of the fit of GCM when
the segmentation/clustering technique is applied to the data
can be found in Supplementary material B.

Table 3A displays the values of the sensitivity parame-
ter c associated with each behavior of Experiments 1-3. To
facilitate the comprehension of the results, Figure 11 shows
the impact of varying sensitivity parameter values on the
expected accuracy range. For instance, for c = 0 the aver-
age accuracy rate is 50%, whereas for c = 10 it is 85%.
Generally, higher values of the sensitivity parameter corre-
spond to a greater proportion of correct responses per block.
Because values of c equal to or greater than 20 resulted
in perfect classification with a small number of blocks (as
previously mentioned), the upper bound of the sensitivity
parameter was set equal to 20. In Experiments 1 and 2
there were 4 learning regimes (low, medium, high, and per-
fect/almost perfect classification), whereas in Experiment 3
there were 3 learning regimes (low, high, and perfect/almost
perfect classification).

Figure 12 (on the top) shows the result of the application of
the segmentation/clustering technique with 4 behaviors and
1 change-point to 3 participants of Experiment 2. The results
on the remaining participants of Experiment 2, as well as
those of Experiments 1 and 3 are shown in Supplementary
material C. Figure 12 (on the bottom) shows the density func-
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Fig. 8 Kaplan-Meier survival curves for each presentation order as
a function of block number in Experiments 1-3. Transparent areas
represent the 95% confidence intervals. p-values of the log-rang test

assessing the difference between survival curves of participants in the
rule-based and similarity-based orders are showed on the bottom-left
side of each graph

tion of the coordinate of the change-point (in terms of block
number) in Experiments 1-3. One can observe that change-
points in Experiment 1 have a higher coordinate than those in
Experiments 2 and 3 (the average coordinate is 359, 259, and

228 stimuli in Experiments 1-3, respectively). The two-sided
Wilcoxon-Mann-Whitney test shows that the difference was
significant (p-value = .006 between Experiments 1 and 2,
and p-value < .001 between Experiments 1 and 3). This is

Order

Context

Sim.−based

Rule−based

Blocked−Constant

Random−Constant

Random−Variable

(N=68)

(N=68)

(N=46)

(N=22)

(N=68)

0.44

reference

2.88

2.62

reference

(0.28 − 0.67)

(1.80 − 4.60)

(1.51 − 4.57)

<0.001 ***

<0.001 ***

<0.001 ***

# Events: 94; Global p−value (Log−Rank): 4.7637e−07 
AIC: 776.51; Concordance Index: 0.690.1 0.2 0.5 1 2 5

Fig. 9 Results of the application of the Cox model as a function of
presentation order and context. In this analysis, Experiments 1-3 have
been aggregated together to determine the effect of the three contexts.

Hazard ratios and their 95% confidence intervals are showed for each
condition in the middle of the graph. Statistical significance of theWald
test is showed for each condition on the right side of the graph
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Fig. 10 Chosen number of behaviors (top) and change-points (bottom),
for Experiments 1-3. On the top, number of behaviors as a function of α.
The value α = 0.1 (i.e., the dashed lines) determines the number of cho-
sen behaviors. On the bottom, minus the log likelihood as a function of
the number of change-points. Dashed lines indicate the number of cho-
sen change-points determined by Equation 3 with β = 10. The values
for α and β were found through numerical simulations (see Sections 2.5
and 2.6)

coherent with the finding that participants in Experiments 2
and 3 met the learning criterion sooner than participants in
Experiment 1 (see Section 4).

Two analyses were performed to determine whether the
influence of presentation order can also be found in seg-
mentation/clustering results. The first analysis investigated
a potential relation between learning path and presentation
order, where by learning path we mean the sequence of
behaviors exhibited by participants. Table 3B shows the num-
ber of participants N as a function of presentation order
and learning path in Experiments 1-3. One can observe that

Table 3 Values of the sensitivity parameter c associated with each
behavior in Experiments 1-3 (Table A); and number of participants
N and average coordinate of the change-point T (expressed in terms of
number of stimuli) as a function of presentation order and learning path
in Experiments 1-3 (Table B). By learning path we mean the sequence
of behaviors exhibited by participants.We remind that 4 behaviors were
found in Experiments 1 and 2, and 3 behaviors in Experiment 3

A
Behavior 1 Behavior 2 Behavior 3 Behavior 4

Experiment 1 3.6 7.4 13 20

Experiment 2 4.2 9.4 15.2 20

Experiment 3 5.1 13.3 20 -

B

Learning path Rule-based Sim.-based

Experiment 1 N T N T

1 1 - 0 -

1-2 7 299 10 396

1-3 15 302 12 346

1-4 2 496 2 716

2-1 1 12 0 -

2-3 2 344 5 435

2-4 6 372 5 426

Experiment 2

1-2 1 248 5 315

1-3 5 184 4 257

1-4 2 249 1 337

2-4 3 295 1 200

Experiment 3

1 1 - 0 -

1-2 4 117 9 173

1-3 18 88 13 125

3-1 0 - 1 2

participants having a high or perfect/almost perfect ending
regime (i.e., 3 or 4) in Experiments 2 and 3 are more in the
rule-based order than in the similarity-based order. Inversely,
participants having amediumending regime (i.e., 2) aremore
in the similarity-based order than in the rule-based order. For
instance, in Experiment 3 the number of participants having
a learning path 1-3 is 18 in the rule-based order vs. 13 in
the similarity-based order. However, the Fisher’s exact tests
at a 5%-level were not significant (p-value = .71 in Exper-
iment 1, p-value = .31 in Experiment 2, and p-value = .14
in Experiment 3). This is probably due to the limited number
of participants.

The second analysis examined the coordinate of the
change-points, as a function of presentation order and learn-
ing path. Participants whose performance worsened over
time showing a negative learning path (amounting to 2 in
Experiment 1, and 2 in Experiment 3) were removed from
the analysis. Table 3B shows the average coordinate of the
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Fig. 11 Impact of varying the value of the sensitivity parameter c on
the accuracy rate

change-points (expressed in terms of number of stimuli, and
denoted by T ), as a function of presentation order and learn-
ing path inExperiments 1-3.One can observe that the average
coordinate of the change-points is higher in participants in the
similarity-based order than in those in the rule-based order
(except for learning path 2-4 in Experiment 2). A one-sided
Wilcoxon-Mann-Whitney test at a 5%-level was conducted
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Fig. 12 Results of the application of the segmentation/clustering tech-
nique. On the top, visualization of the segmentation/clustering method
with P = 4 behaviors and K = 1 change-point to Experiment 2. Data
points represent the performance of participants throughout the task.
To make the graph more readable, only 3 participants (Participants 10,
16, and 21) among the 22 were selected. The remaining participants
of Experiment 2, as well as those of Experiments 1 and 3 are shown
in Supplementary material C. On the bottom, density function of the
coordinate of the change-point (in terms of block number) in Experi-
ments 1-3
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Fig. 13 Backward learning curves for Experiments 1-3 (graphs A-
C, respectively). Each graph shows the average number of correct
responses from subjects within the same learning path as a function
of the distance from the change-point. The numbering of the learning
paths indicates the sequence of behaviors showed by participants. For
instance, by “Learning path 1-2” we refer to the subjects who showed
behavior 1 followed by behavior 2. In Experiment 3 (graph C), only
random blocks were included. Learning paths with fewer than two sub-
jects or with less than two backward/forward performance scores per
behavior were excluded

to assess whether this difference is significant. The test was
only significant in Experiment 3 (p-value = .066 in Experi-
ment 1, p-value = .19 in Experiment 2, and p-value = .049
in Experiment 3). Although the test was not significant in
Experiment 2 as found in our previous analysis, the segmen-
tation/clustering technique still captured main tendencies
within the data.

Transitions between behaviors can be more effectively
identified through a backward learning curve (Smith et al.,
2004; Hayes, 1953; Zeaman and House, 1963; Smith et al.,
1993). This curve is obtained by aligning the change-point
coordinates of subjects within the same learning path and
then plotting performance backward and forward from that
relative time. Figure 13 shows the backward learning curves
for Experiments 1-3. In Experiments 1 and 3, participants
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Fig. 14 Backward learning curves for Experiments 1-3 (graphs A-C,
respectively), with items belonging to different subcategories plotted
separately. Each graph shows the average number of correct responses
from subjects within the same learning path as a function of the distance
from the change-point. The items belonging to the rule (Subcategory
1) and exceptions (Subcategories 2 and 3) are plotted separately. The
numbering of the learning paths indicates the sequence of behaviors
showed by participants. For instance, by “Learning path 1-2” we refer
to the subjectswho showed behavior 1 followed by behavior 2. In Exper-
iment 3 (graph C), only random blocks were included. Learning paths
with fewer than two subjects or with less than two backward/forward
performance scores per behavior were excluded

transitioned suddenly from one behavior to another, resulting
in an improvement of their accuracy rate by 2-4 items. These
findings suggest that participants in these contexts under-
went an abrupt process of rule/sub-rule discovery rather than
a gradual learning process involving the assignment of a cat-
egory label to each stimulus. In contrast, in Experiment 2
transitions appear to be more gradual. While transitions
from one behavior to another are associated with larger
performance improvements, improvements within the same
behavior also occur. Due to the small sample size, we cannot
easily determine whether this difference with other experi-
ments is an artifact or a result of the fixed presentation of the
stimuli that could have led to the pure memorization of the
correct sequence of category labels instead of the pairwise

association between stimuli and category labels. Addition-
ally,we conducted an analysis of the backward learning curve
on participants in both the rule-based and similarity-based
orders separately. Both groups exhibited a similar pattern,
characterized by a sudden improvement in performance at
the change-point.

Figure 14 offers a more detailed representation of the
backward learning curves, with items belonging to distinct
subcategories plotted separately. Participants in Experi-
ments 1 and 3 exhibited a sudden improvement in perfor-
mance following a transition from one behavior to another,
with both the rule items (Subcategory 1) and exceptions (Sub-
categories 2 and 3) showing this trend. However, one excep-
tion to this pattern is observed in the backward learning curve
of exceptions from participants in the 1-2 learning path, who
consistently classified the exceptions with 50% accuracy.
These findings suggest that transitions between behaviors
may indicate sudden identification of rules/sub-rules, poten-
tially separate from those related to the subcategories. In
contrast, participants in Experiment 2 showed more gradual
transitions for both the rule items (Subcategory 1) and excep-
tions (Subcategories 2 and 3). Once again, this observation
may be attributed to the small sample size.

Discussion

Although models of category generalization are the sim-
plest kind of models in the field of categorization, they have
repeatedly shown to successfully predict participants’ per-
formance during transfer, and still serve as an essential tool
for investigating cognitive processes. However, these mod-
els are not able to adapt their predictions over time, which
precludes them from fitting learning data without a suit-
able statistical framework. Here, we address this issue by
proposing a statisticalmethod for applying transfermodels to
learning data.

Our first contribution includes the tailoring of the seg-
mentation/clustering technique to allow transfer models to
evolve over time. This technique arranges contiguous learn-
ing data into segments and associates a behavior to each
segment. Each behavior is related to a specific set of param-
eters of the transfer model. Because different behaviors are
generally related to different sets of parameters, the trans-
fer model is then allowed to adapt its predictions from
one segment to another. The peculiarity of the segmenta-
tion/clustering model as compared to classical segmentation
models is that behaviors are shared among participants. This
allows both a better estimation of the parameters of themodel
(segments have greater sizes) and a more accurate compar-
ison among participants (same behaviors are available for
each participant).
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The advantages that arise from using this method are the
following: i) to extend the application of transfer models to
tasks in which a transfer phase is not conceived or in which
feedback is always provided, ii) to allow a fruitful use of the
learning phase by estimating the parameters of the model
on the last learning segment, iii) to allow transfer data to
be individually fit, since parameters can be estimated on the
last learning segment, and (iv) to detect changes in behavior
during learning without modeling a learning mechanism.

Our second contribution includes three novel experiments
that investigate the impact of rule-based vs. similarity-based
orders on learning speed in specific contexts. While within-
category order (rule-based vs. similarity-based) was the
main manipulation of interest, Experiment 1 combined a
random alternation between categories with a variable pre-
sentation across blocks, Experiment 2 combined a random
alternation between categories with a constant presentation
across blocks, andExperiment 3 combined fully-blocked cat-
egories with a constant presentation across-blocks. Using
survival analysis techniques, the rule-based order was found
to be more beneficial than the similarity-based order in
Experiments 2 and 3. Again, this is not surprising since
a rule-plus-exceptions pattern emerges from the category
structure itself. In addition, the contexts Random-Constant
and Blocked-Constant were found to yield faster learning as
compared to the context Random-Variable.

Our third contribution includes the application of the seg-
mentation/clustering technique to a common transfer model
(the Generalized Context Model, GCM) on our three experi-
ments. The method found 4 learning regimes (low, medium,
high, and perfect/almost perfect classification) in Experi-
ments 1 and 2, and 3 learning regimes (low, high, and
perfect/almost perfect classification) in Experiment 3. This
might reflect the fact that the higher variabilitywithin Experi-
ments 1 and2 (both categories and across-blocks presentation
were randomized in Experiment 1; only categories were ran-
domized in Experiment 2; neither one nor the other were
randomized in Experiment 3) might have strengthened the
difficulty level of the task, yielding to an additional medium
learning regime. The method also found 1 change-point in
each experiment, meaning that participants moved from one
learning regime to another during the task. By analyzing the
coordinate of the change-points as a function of the experi-
ment, we found that change-points in Experiment 1 have a
higher coordinate than those in Experiments 2 and 3. This
mirrors the finding that participants in Experiment 1 met the
learning criterion later than those inExperiments 2 and 3. The
analysis of the coordinate of the change-points as a func-
tion of presentation order (rule-based vs. similarity-based)
showed that in Experiment 3 participants in the similarity-
based order were characterized by change-points with a
higher coordinate as compared to participants in the rule-
based order. This means that the segmentation/clustering

method partially detected the benefit (in terms of learning
speed) of the rule-based order over the similarity-based order
that has been observed in Experiments 2 and 3.We can affirm
that our framework has enabled a simplified interpretation
of the learning curves in terms of learning regimes, while
capturing the main tendencies within the data. A more thor-
ough analysis of the segmentation/clustering outputs using
the backward learning curve revealed that participants’ per-
formance improved suddenly as they transitioned from one
behavior to another. This could be interpreted as the detec-
tion of an "eureka" moment. This pattern was less prominent
and more gradual in Experiment 2. However, it is uncertain
whether this difference was due to the fixed presentation of
stimuli that may have led to rote learning instead of abstrac-
tions, or it may be due to the small sample size. Overall,
these findings suggest that participants underwent an abrupt
process of rule/subrule discovery.

Perspectives and limitations

To demonstrate the effectiveness of our segmentation/clus-
tering technique on a transfermodel,we chose to use a simpli-
fied version of the GCM where attention to each dimension
was fixed. While we recognize the importance of extend-
ing this technique to the full version of GCM, especially in
realistic applications where some dimensions may be more
relevant than others, our initial results are promising.We plan
to further apply our technique to the full version of GCM as
well as to other transfer models, such as Mezzadri et al.’s
Ordinal General Context Model.

The segmentation/clustering method, as presented, assume
s that the learning curve of every participant is affected by
the same number of change-points. A natural extension of
this method would be to allow each participant to have a
different number of transition points. In this scenario, the
selection of the number of change-points would take place
for each participant before the segmentation of their learn-
ing progression. This approach may provide a more refined
clustering of different types of learning.

By applying the segmentation/clustering technique to
learning data we supposed that observations within a same
segment are independent. If segments are sufficiently short,
this hypothesismight be reasonable.However, a proper inves-
tigation of whether and when this hypothesis matches the
reality is needed.
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