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Abstract
Mixed-effects models for repeated measures and longitudinal data include random coefficients that are unique to the indi-
vidual, and thus permit subject-specific growth trajectories, as well as direct study of how the coefficients of a growth func-
tion vary as a function of covariates. Although applications of these models often assume homogeneity of the within-subject 
residual variance that characterizes within-person variation after accounting for systematic change and the variances of 
the random coefficients of a growth model that quantify individual differences in aspects of change, alternative covariance 
structures can be considered. These include allowing for serial correlations between the within-subject residuals to account 
for dependencies in data that remain after fitting a particular growth model or specifying the within-subject residual vari-
ance to be a function of covariates or a random subject effect to address between-subject heterogeneity due to unmeasured 
influences. Further, the variances of the random coefficients can be functions of covariates to relax the assumption that these 
variances are constant across subjects and to allow for the study of determinants of these sources of variation. In this paper, 
we consider combinations of these structures that permit flexibility in how mixed-effects models are specified to understand 
within- and between-subject variation in repeated measures and longitudinal data. Data from three learning studies are 
analyzed using these different specifications of mixed-effects models.

Keywords  Autocorrelation · Procedural learning · Response latency · Working memory · Mixed-effects location scale 
models · Nonlinear mixed-effects models

Repeated measures and longitudinal data are essential in 
studies of growth or change in human behavior. Data col-
lected across repeated occasions, whether the occasions are 
closely spaced (e.g., studies of human learning or ecological 
momentary assessments to understand variation in mood) or 
span across a relatively long period of time (e.g., longitudi-
nal studies of human growth and development), are neces-
sary to understand if, when, or how behaviors change and 
how other variables might influence the process.

Mixed-effects models are widely applied for the analysis 
of repeated measures and longitudinal data. These models 
emphasize the individual by specifying a growth model at the 
subject level and provide a framework to study within- and 
between-subject variation in measured behaviors. In specify-
ing a model, a function, typically assumed to be common to 

all individuals, is selected to describe the response, but one 
or more of the function coefficients are subject-specific to 
allow for individual differences in certain aspects of change 
or development. In this way, the subject-specific model can 
be used to account for variation in scores within individuals, 
and the subject-specific coefficients permit the study of how 
individuals differ in aspects of change. An appealing quality 
of these models is that the coefficients of a function can vary 
according to covariates at the subject level to study how spe-
cific aspects of change or development depend on covariates.

Careful selection of a growth function that effectively 
summarizes a large collection of data by a relatively small 
number of parameters can aid in the analysis and interpreta-
tion of repeated measures and longitudinal data, especially 
when the form of change is complex (Cudeck & Harring, 
2007). Further, if the chosen function is effective in captur-
ing variation within individuals, then the occasion-specific 
residuals will be independent within subjects. In other 
words, it is typically reasonable to assume that scores within 
subjects are correlated, and a mixed-effects model accounts 
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for these correlations with the random coefficients of the 
growth model. If, however, a function is ineffective in fully 
accounting for this variation, some dependencies between 
residuals will remain.

Previous work has documented the impact on model fit 
and statistical inference of poorly specified residual covari-
ance structures at the first level of a mixed-effects model. It 
is well known that applications of mixed-effects models that 
erroneously assume that the residuals are independent with 
constant variance across occasions have consequences for 
the estimates of the variances of the random coefficients of 
the subject-level model (Baek et al., 2020; Baek & Ferron, 
2020; Blozis & Harring, 2021; Chi & Reinsel, 1989; Ferron 
et al., 2002; Harring & Blozis, 2014; Joo et al., 2019; Sivo 
et al., 2005). Thus, in fitting a mixed-effects model, the ana-
lyst faces a need to balance parsimony and interpretability 
in selecting a growth model with the need to adequately 
address dependencies of scores within subjects.

A special class of mixed-effects models, known as mixed-
effects location scale models, have expanded the ways in 
which to model intra- and inter-individual differences by 
including submodels for the variance of the residuals at the 
first level of the model, as well as for the variances of the 
random coefficients at the second level (for three-level mod-
els, see Lin et al., 2018; Nestler et al., 2018). Importantly, 
these extensions provide a framework to relax assumptions of 
homogeneity of the covariance structure at each model level, 
in addition to providing a means to study the determinants of 
these sources of variation in data. These models grew from 
the need to model repeated-measures data that generally did 
not involve growth or change, and the residuals at level 1 
were assumed to be independent (see Hedeker et al., 2008), 
but their application to growth and change processes (e.g., 
McNeish, 2021; Williams et al., 2019) have not consistently 
incorporated this earlier literature that has emphasized the 
importance of considering alternative residual covariance 
structures when the assumption of independence between the 
level-1 residuals is not tenable. Shown to be useful in applica-
tions of linear growth models (Nestler, 2021, 2022), this paper 
joins these two methodological areas within the context of 
fitting nonlinear mixed-effects models, thus broadening their 
use in problems involving relatively complex forms of change.

To accomplish this, data from three learning experi-
ments are utilized to motivate researchers to expand their 
thinking about how they might formulate the covariance 
structure of a mixed-effects model to study within- and 
between-individual differences in repeated measures that 
follow complex forms of change. We first develop a general 
framework to increase options in how one specifies the 
covariance structure of a mixed-effects model with special 
attention to how covariates may be incorporated into the 
structure. The examples are then presented. We develop 
syntax for using maximum likelihood (ML) estimation of 

models using SAS PROC NLMIXED by expanding on the 
developments of Harring and Blozis (2014). A discussion 
follows with implications and directions for future research.

Mixed‑effects models for repeated measures 
and longitudinal data

Resources on mixed-effects models are numerous. Among 
the many published materials on mixed-effects models are 
books that serve a range of purposes, with some providing 
a general resource (Wu, 2010) or focus on a particular soft-
ware program (Rabe-Hesketh & Skrondal, 2012) or area of 
application (Brown & Prescott, 2015), and others emphasiz-
ing specific topics, such as nonlinear mixed-effects models 
(Fiedler-Kelly & Owen, 2014) or autoregressive mixed-
effects models (Funatogawa & Funatogawa, 2018). We 
assume readers are familiar with common formulations of a 
mixed-effects model, including linear and nonlinear models. 
We give a brief description of the model that serves as a 
starting point for our developments here.

Let yij be the observed measure for individual i at time 
j, where i = 1,..., N and j = 1,..., ni, letting N denote the 
number of subjects and ni the number of measures for 
individual i. Let tij be the time when yij was observed. A 
mixed-effects model for yij is

where f (⋅) is a function (e.g., linear, quadratic, logistic) 
assumed to characterize the growth or developmental trend of 
the response. In (1), yij is a function of tij, a set of covariates �ij 
(that usually includes 1 for the intercept of the model) that vary 
with yij , a set of subject-specific coefficients �i that link �ij and 
yij , a set of between-subject covariates �i , a set of fixed coef-
ficients � that link �i and yij , and a time- and subject-specific 
residual �ij . Coefficients in �i can be fixed, random, or the sum 
of a fixed and a random effect. That is, for the qth coefficient in 
�i , �qi = �q + uqi , where �q is the fixed effect and uqi is the cor-
responding random effect. The random effects are assumed to 
be independently and identically distributed (i.i.d.) as normal 
across subjects with mean 0 and covariance matrix � , where 
the dimensions of � depend on the number of random effects 
in �i . The residual �ij is the response not accounted for by the 
subject-specific model given by f

(
tij,�ij, �i,�i, �

)
 . The set of 

residuals εi = ( �i1,...,�ini )′ is assumed to be i.i.d. normal across 
subjects with mean 0 and covariance matrix Θε, where the 
dimensions of Θε depends on ni.

Within‑subject covariance structure

The residual covariance matrix characterizes the varia-
tion and between-occasion covariation of the deviations of 

(1)yij = f
(
tij,�ij, �i,�i, �

)
+ �ij
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observations from their expected values. For a growth model 
that fully accounts for the within-subject dependencies of 
scores between occasions and given that the residual variances 
are equal across time, a simple structure for the covariance 
matrix is appropriate: �� = �2

�
�ni . Other options ought to be 

considered, however, if within-subject dependencies between 
scores remain, even after accounting for covariates, or if the 
variances of the residuals are not equal across occasions. The 
assumption of homogeneity of the residual covariance struc-
ture between subjects can be relaxed by specifying a model in 
which the covariance structure differs between groups, such 
as by allowing the variance of a simple covariance structure 
to differ between groups: ��k = �2

�k
�nik , where k denotes group 

membership. The variance itself could also be a function of 
measured covariates (Stroup et al., 2018), similar to linear 
regression models that use an exponential function to model 
the residual variance to address heterogeneity (Aitkin, 1987; 
Cook & Weisberg, 1983; Harvey, 1976; Carroll & Ruppert, 
1988). In such cases, between-subject heterogeneity of the 
residual variance is assumed to be due to measured covariates.

An alternative is a mixed-effects location scale model in 
which the residual variance is assumed to be due to unmeas-
ured covariates, in addition to possibly being due to measured 
covariates, by including a random subject effect in a model 
for the residual variance (Hedeker et al., 2008; Hedeker & 
Nordgren, 2013). For example, in a model that assumes inde-
pendent residuals between occasions, an exponential function 
(that ensures the result is positive) can be used to model the 
residual variance (cf. Hedeker et al., 2008):

where the exponentiated value of �0 is the within-person 
variance for a person whose random effect vi is equal to 0. 
The random effect vi is assumed to be i.i.d. lognormal across 
subjects. Similar to earlier work (e.g., Harvey, 1976), the 
model for the residual variance can be expanded to include 
measured covariates. For example, let Xij and Wi denote a 
time-varying covariate and a between-subjects covariate, 
respectively, a model for �2

ij
 that is assumed to vary by indi-

vidual and according to the two covariates is

where �0 , when exponentiated, is the within-person variance 
for a person whose random effect vi , within-subject covariate 
Xij , and between-subject covariate Wi are equal to 0. The coef-
ficients �1 and �2 are the effects of the within- and between-
subject covariates, respectively, on the residual variance, with 
a positive effect indicating that a higher level of a covariate 
corresponds to greater within-subject variation and a nega-
tive effect indicating that a higher level of a covariate cor-
responds to a lower degree of within-subject variation. For 

�2

i
= exp

(
�0 + vi

)

exp
(
�0 + �1Xij + �2Wi + v

i

)
,

example, using a mixed-effects location scale model, Blozis 
et al. (2020) reported greater between-subject heterogeneity 
of the within-subject variance of daily time spent engaged 
in leisure activities on weekends versus weekdays and for 
women versus men. The random effect vi is the residual from 
the regression and is assumed to be independent and lognor-
mally distributed between subjects. Importantly, the variance 
of the random scale effect vi , if different from zero, reflects an 
additional source of between-subject variation due to unob-
served sources, conditional on the observed covariates.

As mentioned previously, earlier reports have documented the 
impact of mis-specifying the level-1 residual covariance struc-
ture of a mixed-effects model, including reports of relatively poor 
model fit, and perhaps more importantly, consequences for the 
estimated variances of the random subject effects at the second 
level. Ignoring correlations between residuals at the occasion 
level has, for example, been shown to result in overestimation 
of the variances of the random effects at the second level of a 
linear mixed-effects model (Chi & Reinsel, 1989; Ferron et al., 
2002; Sivo et al., 2005). Thus, the connection between how the 
occasion-level covariance structure is specified and its impact on 
the subject-level covariance structure deserves attention when 
fitting a mixed-effects model to understand between-subject dif-
ferences in a behavior studied over time. This point may be of 
particular importance when considering more advanced versions 
of a mixed-effects model, namely a mixed-effects location scale 
model. The implication is that ignoring serial correlations between 
the residuals at the occasion level may have consequences for the 
estimated variances of the random effects at the subject level, 
including the between-subject random scale variance that is a key 
component of a mixed-effects location scale model.

Between‑subject covariance structure

Mixed-effects models are subject-specific models because one 
or more of the coefficients of a growth function are assumed to 
vary between subjects. The between-subject covariance matrix 
of the random coefficients characterizes the degree to which 
individuals differ in the coefficients, as well as the extent to 
which the coefficients covary with one another. A useful aspect 
of a mixed-effects model is that it is possible to test if the ran-
dom coefficients are related to subject-level covariates. This 
could be done to test if features of a growth or developmental 
process are associated with individual difference measures. If 
subject-level covariates are included in the regression equation 
of a random effect, the residual of that equation is a conditional 
random effect, and the variance of the conditional random effect 
represents variation in the random effect left unaccounted for.

As stated earlier, the variance of a random coefficient may 
be studied as a function of occasion- and subject-level covari-
ates (Hedeker & Nordgren, 2013). In this way, it is possi-
ble to study the determinants of the variances of the random 
coefficients. To illustrate this, let �2

0
 denote the variance of a 
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random intercept that is modeled as a function of an occasion- 
and a subject-level covariate. Using an exponential function to 
model the variance (cf. Hedeker & Nordgren, 2013),

where the exponentiated value of �00 is the variance of the 
random intercept when the covariates Xij and Wi are equal 
to 0, and �01 and �02 are the effects of Xij and Wi , respec-
tively, on the variance. A positive covariate effect would 
indicate greater between-subject variation in the random 
intercept with an increase in the covariate, and a negative 
effect would indicate a decrease in between-subject varia-
tion with an increase in the covariate. In a study of positive 
affect in adolescent cigarette smokers, for example, Hedeker 
et al. (2008) reported greater between-subject variation in a 
random intercept for individuals identified as loners relative 
to others and less variation among novelty seekers and 10th 
grade students relative to others.

Estimation

Estimation of linear mixed-effects models can be conducted 
using statistical software programs that use methods appli-
cable to the estimation of other linear multivariate models, 
such as linear structural equation models with latent variables 
(Blozis, 2007). In a mixed-effects location scale model, the 
variances at the occasion level and the variances of the ran-
dom coefficients at the subject level are typically expressed 
using exponential functions, and thus involve the estimation 
of nonlinear parameters, and more generally, estimation of 
a nonlinear mixed-effects model. Among the software pack-
ages developed for maximum likelihood (ML) estimation 
of nonlinear mixed-effects models, SAS PROC NLMIXED 
(Wolfinger, 1999) has been widely used to estimate mixed-
effects location scale models. PROC NLMIXED is well 
suited for the estimation of these models because the proce-
dure makes it convenient to include the nonlinear models for 
the variance of a random effect at the subject level and the 
variance of the residual at the occasion level to model het-
erogeneity of variance at both levels (Hedeker et al., 2008).

PROC NLMIXED is also adaptable for ML estimation 
of the mixed-effects location scale models developed here 
in which the residual covariance structures do not conform 
to the procedure's default model specifications. Specifically, 
we consider models in which the residual covariance struc-
ture assumes an first-order autoregressive (AR(1)) structure 
to help address the possibility of correlation between adjacent 
residuals at the first level of a model, a possible indication 
that the explanatory portion of a growth model does not fully 
account for the within-subject variation. The default residual 
covariance structure in PROC NLMIXED is one in which the 
residuals are assumed to be independent between occasions 

�2

0
= exp

(
�00 + �01Xij + �02Wi

)

with constant variance across occasions and subjects. The 
GENERAL model statement option permits a user-defined 
likelihood function of a given model. Using this option, it is 
possible to specify alternative residual covariance structures, 
such as an AR(1) structure with a fixed variance and autocorre-
lation coefficient (Harring & Blozis, 2014) or a structure with 
a random scale and autocorrelation as discussed in this paper.

PROC NLMIXED offers ML estimation using Gaussian 
quadrature and a dual quasi-Newton optimization routine 
(SAS Institute Inc., 2015). To fit the models presented in 
this paper, we relied on guidance provided by Kiernan et al. 
(2012) by providing reasonable starting values. For each of 
the data sets, we started by fitting a fixed-effects model to 
obtain estimates of the fixed effects of the growth curve and 
the effects of the covariates on growth parameters. We then 
built up models by adding random effects, one at a time, and 
updating the starting values for each model based on estimates 
obtained for previous models. Syntax for fitting models to the 
flight simulation data (the second example) is in the Appen-
dix. Tests were carried out using a type 1 error rate of .05.

In the examples that follow, SAS PROC NLMIXED was 
used for estimation. The default method of estimation in this 
procedure involves approximating the marginal loglikelihood 
using an adaptive Gaussian quadrature method (Pinheiro 
& Bates, 1995). In a given problem, a good approximation 
requires an adequate number of quadrature points and appro-
priate centering and scaling of the abscissas for the random 
effects. The adaptive method has the advantage of requiring 
fewer quadrature points and has been shown to perform well 
when good starting values are provided and the number of ran-
dom effects is not large (Pinheiro & Bates, 1995). For some of 
the models considered here, estimation using adaptive Gauss-
ian quadrature (including the Laplace approximation) stopped 
with a report that no valid parameter points were found. We 
instead used Gaussian–Hermite quadrature that approximates 
each integral by a weighted average of the integrand that is 
evaluated at specific points over a grid centered at 0. Following 
guidance by Carlin et al. (2001) to use a high number of quad-
rature points when using nonadaptive Gaussian quadrature, 
models were estimated using 30 quadrature points. Although 
an increase in the number of grid points can increase the pre-
cision of the approximation of the integral, an increase can 
result in a computationally intensive analysis. We observed 
increasing stability in the parameter estimates as the number of 
quadrature points was increased, but recommend caution when 
fitting such complex methods using this method of estimation.

Examples

The first of three data sets is analyzed using models that test 
possible autocorrelation and between-subject heterogeneity of 
the residual covariance structure at the first level of a model. 
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This first example is one in which covariates are not available 
for study; thus the example illustrates the utility of considering 
alternative residual covariance structures at the first level of the 
model. The second and third data sets include individual differ-
ence measures that are studied in relation to learning. These two 
examples include individual difference measures that are used 
to study how such measures may serve as determinants of the 
different aspects of variation in responses at the subject level.

Each of the three examples involves response data that tend 
to follow nonlinear trends. One of the appealing aspects of 
fitting a growth model to repeated measures is that a large 
number of data values per subject may be summarized using a 
function that is parameterized by a relatively small number of 
coefficients. With the addition of random coefficients, the cor-
responding covariance structure imposed by a mixed-effects 
model is a parsimonious representation of the variances and 
covariances of the data. It may not be reasonable, however, 
to assume that conditional on the subject-specific growth 
model that the residuals are independent. That is, although 
a given growth model may do well in summarizing trends in 
the individual-level responses, it may not be reasonable to 
assume that it completely addresses within-subject dependen-
cies, especially given that a function based on a small number 
of parameters is used to summarize a relatively large number 
of data points. With a need to balance parsimony and inter-
pretability in selecting a growth model, it may be reasonable 
to consider alternative covariance structures at the first level 
of the model with the sensible acknowledgement that the 
imposed structure, including AR(1), is not assumed to be the 
specific structure that generated the dependencies in the data, 
but rather, that the AR(1) process may help to better represent 
the correlation structure of the data.

Example 1: Performance on a complex procedural 
learning task

Data from a procedural learning task described in Woltz 
(1988) represent response latencies for 393 participants on 
11 learning trial blocks (64 trials per block) (henceforth 
referred to as “trials”) that occurred in one session. Data 
from the first trial are excluded from analysis because it is 
assumed that these scores reflect participants’ adjustments 
to the task. Supplemental Table S1 gives descriptive statis-
tics for trials 2–11. A plot of scores for 16 selected partici-
pants in Fig. 1 suggests that response latencies decrease at 
a nonconstant rate as trials progress, with scores leveling 
off towards the latter part of the session. We fit a series of 
models to these scores while making different assumptions 
about the residual covariance structure at the trial level, 
including the addition of an AR(1) structure and hetero-
geneity of the residual variance.

Analysis of the first data set began by fitting an expo-
nential and a logistic growth function to the scores to test 

which best accounted for the data while assuming that the 
trial-level residuals were independent, with constant vari-
ance across trials and subjects. Each function included three 
subject-specific parameters representing the initial level, a 
lower asymptote, and a learning rate parameter. Responses 
were positively skewed within trials due to a subset of par-
ticipants having relatively long response times. Given this, 
each function was applied to the data assuming that scores 
followed one of three response distributions— normal, 
gamma, or lognormal—with the latter two being continuous 
and positively skewed distributions. Based on the Akaike 
information criterion (AIC) and Bayesian information crite-
rion (BIC)1 fit indices, the exponential growth function that 
assumed that the residuals were lognormal provided the best 
fit. Using log-transformed (base 10) scores (assumed to be 
normally distributed), this model was provisionally taken as 
the best fitting and used to test different assumptions about 
the residual covariance structure.

The exponential growth model for response yij was 
specified as

where tij denotes the jth trial for subject i. For subject i, �0i 
is the performance score at the first trial, �1i is the poten-
tial performance level (lower asymptote), and �2i is the rate 
parameter that combines with tij to represent the learning 
rate. At the subject level, each coefficient was a function of 
a fixed and random effect:

where �00 , �10 , and �20 are the response level at the first trial, 
the potential performance level, and the rate parameter, 
respectively, for a subject whose random effects are equal to 0.

Next, we fit two sets of models using the exponential 
growth function in (2). These are summarized here, fol-
lowed by more detailed descriptions. Models in the first set 
were mixed-effects models and those in the second were 
mixed-effects location scale models. The first model in each 
set assumed that the residuals were independent between 
trials, and the second in each set assumed that the residuals 
were correlated between trials. All three growth coefficients 
in the first and second models of each set were random, as 
in (3a)–(3c). The third model in each set assumed that the 

(2)yij = �1i −
(
�1i − �0i

)
exp

{
−�2itij

}
+ �ij,

(3a)�0i = �00 + u0i,

(3b)�1i = �10 + u1i,

(3c)�2i = �20 + u2i,

1  Singer and Willett (2003) recommend using the level 1 sample size 
in calculating the BIC = −2loglikelihood + ln(N)k, where N is the 
number of units at level 1.
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residuals were correlated between trials but that the rate 
parameter of the growth model was fixed. By fitting these 
particular models, we could test whether the growth func-
tion could be simplified in terms of the number of random 
coefficients in exchange for using an AR(1) structure (cf. 
Chi & Reinsel, 1989) and whether there was evidence of 
heterogeneity of the residual variance across subjects. We 
next provide greater detail about these models.

In the first set of models, Model 1a assumed that 
the residuals in (2) were i.i.d. normal and independent 
between trials with constant variance across the 10 tri-
als: �� = �2

�
�10 , where �2

�
 is the common variance. The 

covariance matrix of the random effects at the subject 
level was assumed to be homogeneous across subjects 
and specified as

(4)� =

⎡⎢⎢⎢⎣

�2

u0

�u1u0
�2

u1

�u2u0
�u2u1

�2

u2

⎤⎥⎥⎥⎦
,

where �2

u0
 , �2

u1
 , and �2

u2
 are the variances of the random inter-

cept, asymptote, and rate parameter, respectively, and �u1u0
 , 

�u2u0
 , and �u2u1

 are their covariances.
In Model 1b, the residual covariance matrix was assumed 

to follow an AR(1) structure:

where 
�2

�

 is a common variance assumed to be constant 

across trials and subjects and � is a fixed autocorrelation 
coefficient. The covariance matrix of the random effects of 
the growth model was assumed to have the same structure 
as in (4). Model 1c assumed the AR(1) residual structure in 
(5). The growth model assumed a random intercept and 
asymptote and a fixed rate parameter, thus reducing the 
dimensions of �:

(5)�� = �2

�

⎡
⎢⎢⎢⎢⎢⎣

1

� 1

�2 � 1

⋮ ⋮ ⋮ ⋱

�9 �8 �7 ⋯ 1

⎤
⎥⎥⎥⎥⎥⎦

,

Fig. 1   Response latencies on a procedural learning task for a selection of 16 participants
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The next set of models were mixed-effects location scale 
models. In Model 2a, the residuals were assumed to be inde-
pendent between trials with constant variance across trials and 
between-subject heterogeneity of the residual variance: 
��i

= �2

�i
�10 , where

The exponentiated value of �0 is the residual variance for a 
subject whose random effect vi is equal to 0. The random scale 
effect vi accounts for heterogeneity of variance due to unmeas-
ured sources and is assumed to be lognormally and indepen-
dently distributed between subjects. Given the random scale 
effect in (6), the covariance matrix of the random effects at the 
subject level includes the variance of the random scale effect 
and its covariances with the random growth coefficients:

where �2

v is the variance of the random scale effect. Its 
covariances with the random growth coefficients are the first 
three elements in the last row of the matrix.

In Model 2b, the covariance matrix of the residuals fol-
lowed an AR(1) structure for which the residual variance could 
vary by subject:

where �2

�ij
= exp

(
�0+vi

)
 . The autocorrelation coefficient was 

assumed to be constant across subjects. In Model 2c, an AR(1) 
structure as specified for Model 2b was assumed, and the rate 
parameter of the growth model was assumed to be fixed across 
subjects. The mean and covariance structures of Models 1a–1c 
and 2a–2c are summarized in Supplemental Table S4.

Results

Point estimates and 95% confidence intervals (CI) for Models 
1a–1c and 2a–2c are in Table 1. When estimating these mod-
els, the variances at both levels were expressed by exponen-
tial functions, and so the calculated variances are provided in 

� =

[
�2

u0

�u1u0
�2

u1

]
.

(6)�2

�i
= exp

(
�0+vi

)
.

(7)� =

⎡
⎢⎢⎢⎢⎣

�2

u0

�u1u0
�2

u1

�u2u0
�u2u1

�2

u2

�vu0
�vu1

�vu2
�2

v

⎤
⎥⎥⎥⎥⎦
,

(8)��ij
= �2

�ij

⎡
⎢⎢⎢⎢⎢⎣

1

� 1

�2 � 1

⋮ ⋮ ⋮ ⋱

�9 �8 �7 ⋯ 1

⎤
⎥⎥⎥⎥⎥⎦

,

the lower part of the table. Models are first compared in terms 
of fit, and then conclusions are drawn. We first compared 
Model 1a that assumed independence between the residuals 
and Model 1b that assumed an AR(1) structure. A deviance 
test comparing the models was significant (χ2(1 df) =148, 
p < .001), suggesting that dependencies in scores were not 
entirely accounted for by the growth function, and indeed, 
the estimated autocorrelation was .38. This result is consist-
ent with a preference for Model 1b according to the AIC 
and BIC indices, where both indices are lower under Model 
1b. We next compared the fit of Models 1a and 1c to test 
whether the number of random growth coefficients could be 
reduced in exchange for using an AR(1) structure (cf. Chi & 
Reinsel, 1989). That is, Model 1a is relatively complex due 
to the inclusion of three random growth coefficients, whereas 
Model 1c involves only two random growth coefficients and 
uses the AR(1) to help account for the dependencies of scores 
within subjects. Although the fit was better under Model 1c, 
suggesting that an AR(1) structure might be used to reduce 
the dimensionality of the model in terms of the number of 
random effects, the fit of Model 1b was best among the three, 
suggesting that the most complex model was preferred over-
all. Thus, assuming homogeneity of the residual variance 
across subjects, individuals differed in the three aspects of 
performance, but the subject-specific growth model did not 
capture all of the within-subject dependencies in scores.

Whereas Models 1a–1c are mixed-effects models that 
assumed homogeneity of the residual variance, Models 
2a–2c are mixed-effects location scale models that permit 
between-subject heterogeneity of the residual variance. We 
compared the first model of the two sets, Models 1a and 2a, 
which differ in that the former assumed homogeneity of the 
residual variance and the latter assumed between-subject 
heterogeneity. The deviance test2 was significant (χ2(4 df) 
= 803, p < .001), suggesting between-subject heterogeneity 
of the residual variance. Deviance tests between Models 1b 
and 2b and between 1c and 2c (not reported here) result in 
comparable conclusions about the need to permit heteroge-
neity of the residual variance.

We next compared the fit of Models 2a and 2c to test 
whether the number of random growth coefficients could 
be reduced in exchange for using an AR(1) structure. Simi-
lar to comparisons between models in the first set, model 
fit according to the AIC and BIC values was better under 
Model 2c relative to 2a, suggesting again that an AR(1) 
structure might be used to reduce the dimensionality of 
the model in terms of the number of random effects. The 
fit of Model 2b, however, was the best (according to the 
AIC and BIC values) among the three, suggesting that  

2  Here and where other deviance tests for a nonzero variance were 
carried out, a 50:50 mixture of �2

q
 and �2

q+1
 , where q is the number of 

random effects at the subject level, was used to calculate the p-value 
(Snijders & Bosker, 2012).
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the more complex model was preferred. Our overall conclu-
sion about this performance measure is that there is evidence 
of individual differences in the three aspects of performance, 
but the subject-specific growth model did not fully capture 
the within-subject dependencies in scores, and there was sig-
nificant within-subject variation about the subject-specific 
performance trajectories.

For these data there were slight differences in the esti-
mated variances of the random growth coefficients between 
the models that allowed for autocorrelation between the 
level-1 residuals versus assuming independence and whether 
the model assumed heterogeneity of the residual variance or 
not (see Table 1). More remarkable, however, was the dif-
ference in the estimated variance of the random scale effect, 
a value that indicates the extent to which individuals differ 
from each other with regard to the variance of the residuals 
about the subject-specific trajectories. The estimated vari-
ance of the random scale effect was reduced from 2.63 under 
Model 2a that assumed independence of residuals between 
trials to 0.60 under Model 2b that assumed an AR(1) struc-
ture, suggesting the importance of considering an AR(1) 
structure when drawing inferences about the degree of 
between-subject heterogeneity of the residual variance. This 
result suggests that between-subject heterogeneity of the 
residual variance was due in part to dependencies between 
the residuals after accounting for systematic growth by the 
subject-specific model, again illustrating the importance of 
accounting for autocorrelation in a growth process.

Example 2: Performance on a flight controller 
simulation task

The second data set is from a study of motivation, cognitive 
abilities, and skill acquisition (Kanfer & Ackerman, 1989). 
For 140 participants, the set includes repeated measures on 
a flight controller simulation task and a battery of motiva-
tion and cognitive ability measures. The task was designed 
to measure skill acquisition during a 100-minute period. The 
repeated measures are the number of planes brought in safely 
every ten minutes. Scores for the first trial are excluded from 
analysis, as it is assumed that participants used the first trial 
to adjust to the task. Scores for trials 2–10 are analyzed here. 
Two individual difference measures, mathematics knowledge 
(MK) and coding speed (CS), are used to study how each is 
related to performance. The MK score reflects general math-
ematical knowledge, including algebra and geometry. CS 
measures processing speed and accuracy by having subjects 
relate numbers in a list to information provided in a graph.

Descriptive statistics for the performance scores and indi-
vidual difference measures are in Supplemental Table S2. 
The performance scores for 16 selected participants are 
displayed in Fig. 2. In Harring and Blozis (2014), this set 
of scores was analyzed, and among the models tested, the 

best fitting was one that assumed scores changed according 
to a negatively accelerated logistic function and the level 1 
residuals followed an AR(1) structure, with the covariance 
structured assumed to be homogeneous across participants. 
Thus, from their analysis, the logistic function did not fully 
account for dependencies in the data, and as they showed, 
it was important to address this in the residual covariance 
structure by allowing scores between trials to correlate. This 
was especially important when drawing inferences about the 
variances of the random effects at the subject level because 
those estimates were impacted by the assumptions made 
about the residuals at the first level.

For these data, we combine a mixed-effects model that 
includes an AR(1) structure with features of a mixed-effects 
location scale model. Specifically, we use the same logistic 
function in Harring and Blozis (2014) and add the between-
subject measures, MK and CS, to test their effects on specific 
aspects of learning. We relax the assumption of homogene-
ity of the residual covariance structure across subjects by 
including a random effect for the scale and autocorrelation 
coefficient, thus permitting the within-subject variance of 
the residuals and the autocorrelation coefficient to differ 
between subjects. Additionally, the variances of the random 
coefficients are studied as functions of the individual differ-
ence measures to test if the variances of the random growth 
coefficients are related to either of these measures.

A logistic growth function that included a random inter-
cept �0i , upper asymptote �1i and rate parameter �2i was 
applied to the performance measures:

For subject i, �0i is the performance score at the first 
trial, �1i is the potential performance level (upper asymp-
tote), and �2i is the rate parameter that, when combined 
with tij, governs the learning rate across trials. These 
coefficients were modeled as functions of MK and CS3:

where �00 , �10 , and �20 are the performance levels at the first 
trial, the potential level, and the rate parameter for a subject 
with MK and CS scores equal to their respective sample 
means. The coefficients �01 , �11 , and �21 are the effects of MK, 
holding constant the effects of CS, on the three learning 
coefficients, respectively. The coefficients �02 , �12 , and �22 are 

(9)yij =
�0i�1i

�0i +
(
�1i − �0i

)
exp

{
−�2i

(
tij − 1

)} + �ij.

(10a)�0i = �00 + �01MKi + �02CSi + u0i,

(10b)�1i = �10 + �11MKi + �12CSi + u1i,

(10c)�2i = �20 + �21MKi + �22CSi + u2i,

3  MK and CS were centered about their respective sample means.
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the effects of CS, holding constant the effects of MK, on the 
three learning coefficients, respectively. The residuals of 
(10a)–(10c), u0i , u1i , and u2i , are the respective subject-spe-
cific effects that remain after accounting for the effects of 
MK and CS.

Four models were applied to the data using the growth 
function in (9) with the level-2 equations in  (10a)–(10c), 
with models differing according to the assumed covari-
ance structure. The first two, Models 3a and 3b, were 
mixed-effects models that assumed homogeneity of the 
level 1 and level 2 covariance structures across subjects 
but differed in that Model 3a assumed that the residuals 
at the trial level were independent and Model 3b assumed 
that the residuals were correlated between trials (also 
see Harring & Blozis, 2014). The second two, Models 
4a and 4b, were mixed-effects location scale models that 
assumed between-subject heterogeneity of the level 1 and 
level 2 covariance structures and differed in that Model 
4a assumed that the residuals at the trial level were inde-
pendent and Model 4b assumed that the residuals were 
correlated between trials. More details are given next.

Model 3a assumed that the residuals in  (9) were i.i.d. nor-
mal and independent with constant variance across trials and 
subjects: �� = �2

�
�9 , where �2

� is the common variance. The 
covariance matrix of the three conditional random effects in   
(10a)–(10c) was assumed to be homogeneous across subjects, 
similar to (4) in the first example. In Model 3b, the residual 
covariance matrix at level 1 was assumed to follow an AR(1) 
structure similar to (5), assuming homogeneity of the residual 
variance and autocorrelation coefficient. Similar to Model 3a, 
the covariance matrix of the conditional random effects in   
(10a)–(10c) was assumed to be homogeneous across subjects.

Model 4a was mixed-effects location scale model in 
which the level 1 residuals were assumed to be independent 
between trials with constant variance, but the variance could 
vary between subjects according to the measured covariates 
MK and CS and unmeasured sources: ��ij

= �2

�i
�9 , where

where �0 , when exponentiated, is the residual variance for a 
subject whose MK and CS scores are each at their respective 

�2

�i
= exp

(
�0 + �1MKi + �2CSi + v

i

)
,

Fig. 2   Performance scores on a flight simulation task for a selection of 16 participants
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sample mean, and vi is equal to 0; �1 and �2 are the effects 
of MK and CS, respectively, on the exponent with each 
adjusted for the effect of the other. The random scale effect 
vi is the residual that remains after accounting for the two 
measured variables and was assumed to be lognormally and 
independently distributed between subjects. Given the added 
random scale effect, the level 2 covariance matrix included 
the variance of the random scale and its covariances with 
the conditional random effects of the growth model, like 
that shown in (7).

Model 4b was a mixed-effects location scale model that 
assumed correlated residuals at the trial level (similar to 
Model 3b) but allowed for between-subject heterogene-
ity of the covariance structures at levels 1 and 2. Specifi-
cally, the covariance matrix of the residuals at level 1 was 
assumed to follow a random AR(1) structure:

where

where the interpretation of the model for the within-subject 
variance �2

�i was identical to that for Model 4a. The coeffi-
cient � is the autocorrelation coefficient for a subject whose 
random effect wi is equal to 0; wi is a random effect for the 
autocorrelation coefficient assumed to be approximated by 
a normal distribution. Given the random scale and random 
autocorrelation coefficient ( vi and wi ) of the level 1 covari-
ance structure and the three conditional random effects 
of the growth model ( u0i , u1i and u2i from 10a to 10c), the 
covariance matrix at level 2 is as shown in (11) where, with 
the exception that the variance of each conditional random 
effect of the growth model is a function of the covariates, 
MK and CS:

��i
= �2

�i

⎡
⎢⎢⎢⎢⎢⎣

1

�i 1

�2
i
�i 1

⋮ ⋮ ⋮ ⋱

�8
i
�7
i
�6
i
⋯ 1

⎤
⎥⎥⎥⎥⎥⎦

,

�2

�i
= exp

(
�0 + �1MKi + �2CSi + v

i

)
,

�i = � + wi,

(11)Φ =

⎡⎢⎢⎢⎢⎢⎣

�2

u0

�u1u0
�2

u1

�u2u0
�u2u1

�2

u2

�vu0
�vu1

�vu2
�2

v

�wu0
�wu1

�wu2
�wv �2

w

⎤⎥⎥⎥⎥⎥⎦

�2

u0
= exp

{
�00 + �01MKi + �02CSi

}
,

�2

u1
= exp

{
�10 + �11MKi + �12CSi

}
,

�2

u2
= exp

{
�20 + �21MKi + �22CSi

}
.

The mean and covariance structures of Models 3a, 3b, 4a, 
and 4b are summarized in Table S1.

Results

The most complex of the four models was Model 4b. This 
model included a random scale effect and a random autocorre-
lation coefficient, thus allowing subjects to differ in the degree 
of variation of their residuals about their fitted trajectories 
and in the degree of autocorrelation between their residuals, 
respectively. For these data, the estimated variance of the ran-
dom effect for the autocorrelation was very close to 0. From 
this, we concluded that subjects did not vary significantly in 
the autocorrelation parameter, and so Model 4b was simpli-
fied by assuming a fixed autocorrelation coefficient. Reports 
on Model 4b henceforth relate to this simplified model. The 
estimates and 95% confidence intervals from the models are 
given in Table 2. As variances at both levels of each model 
were expressed using exponential functions, Table 2 includes 
the calculated variances in the lower part of the table.

We first examined the overall impact of including the 
autocorrelation residual structure in the mixed-effects mod-
els (Models 3a and 3b) and the mixed-effects location scale 
models (Models 4a and 4b). Models 3a and 4a assumed 
independence between the residuals and Models 3b and 4b 
assume an AR(1) structure. A deviance test comparing Mod-
els 3a and 3b was significant4, suggesting that dependencies 
in the scores were not entirely accounted for by the logistic 
growth function. The estimated autocorrelation under Model 
3b was .39. Model 3b is also preferred to Model 3a accord-
ing to the lower AIC and BIC indices under Model 3b. A 
significant deviance test comparing Models 4a and 4b (χ2(1 
df) = 27.8, p < .001) and lower AIC and BIC values under 
Model 4b suggest that dependencies in the scores were not 
fully accounted for by the growth function. The estimated 
autocorrelation under Model 4b was .44. Thus, whether one 
is fitting a mixed-effects model or a mixed-effects location 
scale model, it can be important to test the assumption of 
independence between residuals at the first level of a model.

Allowing for autocorrelation between the trial-level 
residuals impacted the estimated variances of the random 
effects at the subject level when comparing the mixed-
effects models, as also documented elsewhere (e.g., Chi & 
Reinsel, 1989; Blozis & Harring, 2021). Under Models 3a 
and 3b, the estimated variance of the random intercept was 
91.7 under Model 3a and increased to 137 under Model 
3b. The variance of the random asymptote was 68.0 under 
Model 3a and decreased to 61.5 under Model 3b. The vari-
ance of the random rate parameter was 0.10 under both 
Models 3a and 3b. Despite differences in the estimated 

4  (�2 = 16.4, p = .5*.004
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Table 2   ML estimates of a logistic growth model for flight simulation performance scores (n = 140)

MK = Math Knowledge, CS = Coding Speed (each centered to their respective sample mean). The within-subject covariance structures are as 
follows: �2

e
�9 denotes independence between trials and homogeneity of variance across trial blocks and subjects; AR(1) with �2

e
 denotes a first-

order autocorrelation with constant variance across trial blocks and subjects; �2

e
i

�9 denotes independence between trials, homogeneity of variance 
across trial blocks and heterogeneity of variance between subjects; AR(1) with �2

e
i
 denotes a first-order autocorrelation with constant variance 

Mixed-effects model Mixed-effects location scale model

Model 3a Model 3b Model 4a Model 4b

Within-subject covariance 
structure

�2

e
�9 AR(1) with �2

e
�2

e
i

�9 AR(1) with �
2

e
i

Fixed effects MLE [95% CI] MLE[95% CI] MLE[95% CI] MLE[95% CI]

Initial level, �10 18.4 [16.9, 19.8] 15.3 [14.1, 16.6] 16.2 [15.8, 16.7] 17.1 [16.1, 18.0]
MK, �11 1.26 [1.16, 1.36] 1.48 [1.35, 1.60] 1.59 [1.53, 1.65] 1.86 [1.69, 2.03]
CS, �12 −0.26 [−0.28, −0.23] −0.30 [−0.34, −0.26] −0.22 [−0.26, −0.20] −0.19 [−0.30, −0.09]
Asymptote, �20 39.5 [38.5, 40.5] 37.9 [36.4, 39.5] 39.1 [38.2, 39.9] 39.1 [37.6, 40.5]
MK, �21 0.59 [0.39, 0.79] 0.62 [0.29, 0.94] 0.69 [0.51, 0.87] 0.65 [0.30, 0.99]
CS, �22 0.08 [0.02, 0.15] 0.05 [−0.07, 0.17] 0.06 [0.01, 0.11] 0.09 [−0.01, 0.19]
Rate, �30 0.69 [0.62, 0.77] 0.74 [0.65, 0.82] 0.72 [0.67, 0.78] 0.69 [0.59, 0.78]
MK, �31 −0.04 [−0.04, −0.03] −0.04 [−0.05, −0.03] −0.05 [−0.06, −0.04] −0.04 [−0.06, −0.03]
CS, �32 0.003 [0.002, 0.005] 0.004 [−0.002, 0.01] 0.003 [0.0002, 0.01] 0.001 [−0.005, 0.007]
Within-subject covariance parameters
�0 2.22 [2.13,2.31] 2.55 [2.35, 2.74] 2.11 [1.94, 2.27] 2.54 [2.28, 2.79]
MK, �1 −0.04 [−0.07, −0.002] −0.03 [−0.06, 0.005]
CS, �2 0.01 [−0.004, 0.02] 0.01 [−0.01, 0.02]
� .39 .44
Between-subject covariance parameters
Intercept, �10 4.52 [4.37,4.67] 4.92 [4.75, 5.09] 4.50 [4.44, 4.55] 4.19 [4.05, 4.32]
MK, �11 −0.08 [−0.09, −0.07] −0.12 [−0.16, −0.08]
CS, �11 0.02[0.02, 0.03] 0.03[0.01, 0.04]
Asymptote, �20 4.22 [3.94,4.50] 4.12 [3.73, 4.50] 4.13 [3.94, 4.32] 3.85 [3.51, 4.20]
MK, �21 −0.003 [−0.04, 0.04] 0.02 [−0.05, 0.08]
CS, �11 0.01 [−0.01, 0.02] 0.02 [−0.01, 0.05]
Rate, �30 −2.33 [−2.56,−2.10] −2.27 [−2.69, −1.86] −2.10 [−2.29, −1.91] −2.79 [−3.36, −2.14]
MK, �31 −0.15 [−0.18, −0.13] −0.25 [−0.35, −0.15]
CS, �11 −0.004 [−0.01, 0.01] 0.01 [−0.01, 0.04]
Scale, �v −0.67 [−1.07, −0.26] −1.13 [−1.64, −0.62]

Corr(u2, u1), �u2u1
.58 .67 .68 .59

Corr(u3, u1), �u3u1
−.56 −.63 −.60 −.46

Corr(u3, u2), �u3u2
−.51 −.55 −.43 −.39

Corr(v , u1), �vu1
−.32 −.31

Corr(v , u2), �vu2
−.14 −.07

Corr(v , u3), �vu3
.19 .28

Additional variance estimates

Residual, �
2

e0

9.21 12.7 7.9 12.7

Initial, �
2

u1

91.7 137. 89.7 65.7

Asymptote, �
2

u2

68.0 61.5 62.3 47.1

Rate, �
2

u3

0.10 0.10 0.12 0.06

Scale, �2

v
0.51 0.32

−2lnL 7346.3 7329.9 7291.8 7264.0
AIC 7382.7 7369.0 7362.5 7337.9
BIC 7425.4 7414.0 7430.2 7407.4
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effects of MK and CS on the coefficients of the growth 
model, the general interpretations are similar.

Relative to Models 3a and 3b, Models 4a and 4b were 
far more complex because they permitted heterogeneity of 
the covariance structure at both levels of the model. We first 
examined the estimates of the level 1 covariance structure 
for Models 4a and 4b. The estimated residual variance when 
both MK and CS were equal to their respective sample means 
was 7.9 under Model 4a and increased to 12.7 under Model 
4b. The estimated effect of CS on the residual variance was 
close to 0 and not statistically significant under both Models 
4a and 4b, and the effect of MK, also small in both models, 
was only significant under Model 4a. The most notable con-
sequence of ignoring autocorrelation at the trial level was 
apparent when examining the point estimate of the variance 
of the random scale effect under Model 4a that assumed 
independence and Model 4b that assumed an AR(1) struc-
ture. The estimated variance of the random scale effect was 
reduced from 0.51 under Model 4a to 0.32 under Model 4b. 
Similar to the first example presented in this paper, this result 
suggests that between-subject heterogeneity of the residual 
variance was due in part to dependencies between the residu-
als after accounting for growth by the subject-specific model.

Unlike Models 3a and 3b that assumed homogeneity of 
the covariance structure at the subject level, Models 4a and 
4b specified that the variances of the conditional random 
growth coefficients to be functions of the measured covari-
ates MK and CS, and consequently, the variances of the con-
ditional random growth coefficients are the variances when 
both MK and CS are at their respective sample means. Given 
that the effects of MK and CS are significant, it is natural to 
expect that the estimated variances of the conditional coef-
ficients under Models 4a or 4b to differ from the estimates 
obtained under Models 3a or 3b, and indeed, the estimates 
do (see Table 2). Thus, we turn to study the impact of ignor-
ing the autocorrelation in the trial-level residuals when inter-
preting the subject-level covariance structure.

We examined both the estimated variances of the condi-
tional random growth coefficients and the effects of MK and 
CS on these variances. The estimated variance of the condi-
tional random intercept was lower when the trial-level residu-
als are allowed to correlate: The estimated variance was 89.7 
under Model 4a and was reduced to 65.7 under Model 4b. The 
estimated effects of MK and CS on this variance were also 
impacted by the trial-level covariance structure: The estimated 
effect of MK increased (in absolute value) from –0.08 under 
Model 4a to –0.12 under Model 4b; although slight, the esti-
mated effect of MK increased from 0.02 under Model 4a to 
0.03 under Model 4b. The degree of precision of the estimates 
decreased, however, when the trial-level residuals were allowed 
to correlate, as the estimated confidence intervals for the effects 
increased under Model 4b. Next, the estimated variance of the 
conditional asymptote was lower when the trial-level residuals 

were allowed to correlate: The estimated variance was 62.3 
under Model 4a and 47.1 under Model 4b. Although the esti-
mated effects of MK and CS differed between Models 4a and 
4b, neither were statistically significant under either model. 
Finally, the estimated variance of the conditional rate param-
eter was lower when the trial-level residuals were allowed to 
correlate: The estimated variance was 0.12 under Model 4a 
and 0.06 under Model 4b. The estimated effects of MK and CS 
also differed between Models 4a and 4b: the magnitude of the 
effect of MK increased from –0.15 under Model 4a to –0.25 
under Model 4b, and although the estimated effect of CS dif-
fered between models, the effect was not statistically significant 
under either model. We again note the trade-off in fitting the 
more complex model by the decrease in the precision of the 
estimates evidenced by wider estimated confidence intervals.

Example 3: Performance on a quantitative skill 
acquisition task

The third data set involves response latencies on a proce-
dural learning task designed to measure quantitative skill 
acquisition5. Participants were instructed to learn a set of 
declarative rules for evaluating characteristics of visual stim-
uli that were presented in a series of trials. Each of the 12 
scores represents the median time to respond across a block 
of 32 trials. Scores for the first trial block are not analyzed, 
assuming that participants were adapting to the task, leav-
ing data for trials 2–12 for analysis. Included in a battery of 
individual difference measures was one of working-memory 
capacity obtained using a quantitative verification span para-
digm. The quantitative working-memory capacity measure 
(QWM) is used to test how working memory capacity is 
related to learning acquisition.

Descriptive statistics for the response latencies and 
working-memory capacity are in Supplemental Table S3. 
Scores for 16 selected participants are displayed in Fig. 3. 
These scores were analyzed by applying a negatively 
accelerated exponential function, and like the preceding 
examples, alternative covariance structures are applied 
to understand the different sources of variation in perfor-
mance scores, with working-memory capacity included in 
the models to test its relation to different aspects of learn-
ing and sources of score variation. We used the third data 
set to specifically focus on the use of an AR(1) structure 
as a means for reducing the dimensionality of nonlinear 
mixed-effects and nonlinear mixed-effects location scale 
models. As the dimensionality of a mixed-effects model 
increases, so does the computational demands. Given the 
relative complexity of a mixed-effects location scale model 
to a mixed-effects model, researchers might consider this 

5  The data were provided by Scott Chaiken of the Armstrong Labora-
tory, Brooks Air Force Base.
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strategy to help improve the computational demands of 
fitting these models.

To begin, we applied three nonlinear mixed-effects mod-
els based on different growth functions to the performance 
scores. Among them, the exponential function6 in (2), with 
each random coefficient specified as a function of QWM, 
provided the best fit:

(11a)�0i = �00 + �01QWMi + u0i,

(11b)�1i = �10 + �11QWMi + u1i,

where �00 , �10 , and �20 are the performance levels at the first trial, 
potential level, and rate parameter, respectively, for a subject 
with QWM equal to the sample mean and whose random effects 
u0i , u1i , and u2i are equal to 0. The coefficients �01 , �11 , and �21 
are the effects of QWM on the three learning coefficients. The 
residuals of (11a)–(11c), u0i , u1i , and u2i , are the subject-specific 
effects after accounting for the effects of QWM. This model, 
Model 5a, assumed that the trial-level residuals were i.i.d. nor-
mal and independent with constant variance across trials and 
subjects: �� = �2

�
�11 , where �2

�
 is the common variance.

Next, we fitted Model 5b that assumed a fixed rate param-
eter to test whether a random rate parameter was needed. A 
deviance test between these models suggested that the rate 
parameter varied between subjects (χ2(3 df) = 39, p < .001). To 
then explore the idea of using an AR(1) structure to reduce the 

(11c)�2i = �20 + �21QWMi + u2i,

across trial blocks, homogeneity of the autocorrelation between subjects, and heterogeneity of variance between subjects
Table 2   (continued)

Fig. 3   Response latencies on a quantitative skill acquisition task for a selection of 16 participants

6  Based on AIC index values, the exponential func-
tion in Eq. (2) yielded better fit to the data overall rela-
tive to a logistic function (Eq.  7) and a Gompertz function: 
yij = �1iexp

{
ln
(

�2i
/
�1i

)
exp

{
−t�3i

}}
+ �ij.
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number of random effects, a third model, Model 5c, was fit that 
assumed an AR(1) structure at level 1 and a fixed nonlinear rate 
parameter. We then compared the fit of Model 5a that assumed 
all three growth coefficients were random and that the level-1 
residuals were independent between trials to the fit of Model 
5c that assumed two random growth coefficients (intercept and 
asymptote), a fixed rate parameter, and an AR(1) structure at the 
trial level. According to the AIC and BIC, model fit was rela-
tively better under Model 5c, suggesting that an AR(1) structure 
might be used to reduce the number of random coefficients in 
a growth model, and consequently the total number of model 
parameters and computational demands, while achieving better 
overall model fit. The mean and covariance structures of Mod-
els 5a–5c are summarized in Supplemental Table S4. Estimates 
and fit indices for Models 5a–5c are in Table 3.

Next, we followed a similar strategy in fitting models in 
the context of a mixed-effects location scale model. The first 
model, Model 6a, was a mixed-effects location scale model 
in which the three growth coefficients were random, as in 
Model 5a; the level-1 residuals were assumed to be inde-
pendent with constant variance across trials, but the variance 
could vary by subject according to QWM and unmeasured 
sources: ��ij

= �2

�i
�11 , where

where �0 , when exponentiated, is the residual variance for a 
subject whose QWM score is equal to the sample mean and 
random scale effect vi is equal to 0; �1 is the effect of QWM 
on the exponent. The random scale effect vi is the residual 
after accounting for QWM and is assumed to be lognormally 
and independently distributed between subjects. Adding a 
random scale effect, the level 2 covariance matrix included 
the variance of the random scale and its covariances with 
the conditional random effects of the growth model, like (7).

A second model, Model 6b, assumed a fixed rate param-
eter so that we could test whether a random rate parameter 
was needed under this mixed-effects location scale model. A 
deviance test between Models 6a and 6b suggested that the 
rate parameter varied by subject (χ2(3 df) = 30, p < .001). We 
then reduced the complexity of the growth model by fixing the 
rate parameter and adding an AR(1) structure to create a third 
model, Model 6c, where it was assumed that the autocorrelation 
coefficient was fixed and the residual variance was random. We 
then compared the fit of Model 6a that assumed all three growth 
coefficients were random and the level-1 residuals were inde-
pendent between trials to the fit of Model 6c that assumed two 
random growth coefficients (intercept and asymptote), a fixed 
rate parameter and an AR(1) structure. According to the AIC 
and BIC values, model fit was better under Model 6c, suggest-
ing that an AR(1) structure could be used to reduce the number 
of random coefficients in a mixed-effects location scale model 
while improving model fit. Estimates, 95% confidence intervals, 

�2

�i
= exp

(
�0 + �1QWMi + vi

)
,

and indices of model fit for Models 6a–6c are in Table 4. The 
mean and covariance structures of Models 6a–6d are summa-
rized in Supplemental Table S4.

Discussion

The collection of repeated measures and longitudinal data is 
central for investigations that seek to understand change, devel-
opment, or growth in measured behaviors. Mixed-effects mod-
els, a popular choice in statistical methodology, have evolved 
considerably since they were introduced in Laird and Ware 
(1982). The advantages of this major statistical framework that 
unify models for the population-level response and that of the 
individual are now numerous, including, but not limited to, the 
specification of linear and nonlinear models and a wide range 
of response distributions, handling of missing data, and data 
observed at different times for different subjects.

In applying a mixed-effects model to data, it is important 
to consider the structures necessary to address sources of 
heterogeneity of variance, both within and between subjects. 
This may be done to improve statistical inference or model fit 
(Blozis & Harring, 2021; Chi & Reinsel, 1989; Ferron et al., 
2002; Funatogawa & Funatogawa, 2018; Harring & Blozis, 
2014; Sivo et al., 2005). For instance, Chi and Reinsel show 
that neglecting serial correlation between level-1 residuals can 
result in overestimation of the variances of the random effects at 
the second level of a linear mixed-effects model, and Blozis and 
Harring showed how assumptions about the residual covari-
ance structure (including serial correlations and heterogeneity 
of variance) can impact the estimated variances of the random 
effects at the subject level of a nonlinear mixed-effects model. 
Recommendations relating to statistical inference about the 
random-effects covariance structure at the subject level are that 
researchers consider alternative residual covariance structures 
at the first level. This is especially relevant given recent devel-
opments in mixed-effects location scale models that specifically 
aim to model heterogeneity of variance at both levels (Blozis 
et al., 2020; Hedeker & Nordgren, 2013; Williams et al., 2019).

Considering computational burden, we also considered a point 
of discussion in Chi and Reinsel (1989) that concerned the appli-
cation of linear mixed-effects models to repeated measures data. 
Specifically, they discuss the use of an AR(1) structure for the 
level-1 residuals as a potential means to reduce the number of ran-
dom effects needed to characterize a response. We explored this 
when fitting the nonlinear models here, including the nonlinear 
mixed-effects location scale models, as reducing the number of 
random coefficients could be helpful in reducing computational 
demands when fitting such complex models. Although this strat-
egy was useful in the examples presented here, it is important to 
note that because one model provides a better fit than another, this 
is not to suggest that the best fitting model is the one that generated 
the data. It is simply that one might consider an alternative way 
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of accounting for dependencies in the data. In the end, it is the 
individual researcher who makes the decision about how a model 
is to be specified to test particular questions about a behavior. The 
models presented here offer alternative methods for specifying 
models to test or account for heterogeneity of responses.

Estimation of mixed-effects models can be carried out using 
ML and Bayesian approaches. Although the current paper relies 
on ML, there are advantages to considering a Bayesian approach 
(Lin et al., 2018). For example, in one form of the model consid-
ered here, an AR(1) structure was applied to repeated measures 
data that permitted between-subject heterogeneity of the residual 
variance and the autocorrelation coefficient (see Example 2). 
The residual variance was modeled using an exponential func-
tion, and tests of covariate effects were carried out assuming 
that the effects were lognormal. Thus, this did not require spe-
cial attention to the distributional assumptions made about the 

coefficients of the variance model. Estimation of this model 
using PROC NLMIXED, however, assumed that the random 
effect corresponding to the autocorrelation coefficient was 
approximated by a truncated normal distribution (with lower and 
upper bounds to limit the distribution between -1 and 1). Using 
a Bayesian approach, such as by using the SAS PROC MCMC 
statistical software program (Chen, 2009) would increase flex-
ibility in the assumptions made about random effects.

Appendix

/* SAS PROC NLMIXED is a procedure that can be used 
to estimate nonlinear mixed-effects models. For a two-level 
model, the default specification for the residual covariance 

Table 3   ML estimates of a mixed-effects model for quantitative skill acquisition scores (n = 204)

QWM = Quantitative working-memory capacity (centered to the sample mean). The within-subject covariance structures are as follows: �2

e
�11 

denotes independence between trials and homogeneity of variance across trial blocks and subjects; AR(1) with �2

e
 denotes a first-order autocor-

relation with constant variance across trial blocks and subjects; �2

e
i

�11 denotes independence between trials, homogeneity of variance across trial 
blocks and heterogeneity of variance between subjects; AR(1) with �2

e
i

 denotes a first-order autocorrelation with constant variance across trial 
blocks, homogeneity of the autocorrelation between subjects, and heterogeneity of variance between subjects

Model 5a Model 5b Model 5c
Within-subject covariance structure �2

e
�11 �2

e
�11 AR(1) with �2

e

Fixed effects MLE [95% CI] MLE [95% CI] MLE [95% CI]

Initial level, �10 2.46 [2.44, 2.48] 2.45 [2.42, 2.48] 2.47 [2.45, 2.50]
QWM, �11 −0.30 [−0.39, −0.21] −0.30 [−0.46, −0.14] −0.34 [−0.46, −0.21]
Asymptote, �20 2.00 [1.98, 2.03] 2.05 [2.02, 2.08] 2.06 [2.03, 2.09]
QWM, �21 −0.24 [−0.31, −0.17] −0.30 [−0.40, −0.20] −0.28 [−0.40, −0.16]
Rate, �30 0.26 [0.23, 0.30] 0.24 [0.22, 0.27] 0.25 [0.22, 0.28]
QWM, �31 −0.07 [−0.13, −0.01] −0.19 [−0.30, −0.08] −0.17 [−0.30, −0.05]
Within-subject covariance parameters
�0 −5.0 [−5.0, −4.9] −4.9 [−5.0, −4.8] −4.8 [−4.9, −4.7]
� .22
Between-subject covariance parameters
Intercept, �10 −2.5 [−2.6, −2.3] −2.5 [−2.6, −2.3] −2.4 [−2.6, −2.2]
Asymptote, �20 −3.1 [−3.3 , −3.0] −2.9 [−3.1, −2.7] −2.9 [−3.1, −2.7]
Rate, �30 −4.1 [−4.4, − 3.8]
Corr(u2, u1), �u2u1

.65 .72 .76
Corr(u3, u1), �u3u1

−.16
Corr(u3, u2), �u3u2

.09
Additional variance estimates

Residual, �2

e0
0.007 0.007 0.008

Initial, �2

u1
0.085 0.097 0.090

Asymptote, �2

u2
0.044 0.058 0.054

Rate, �2

u3
0.017

−2lnL −3421 −3382 −3430
AIC −3395 −3362 −3408
BIC −3352 −3329 −3372
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structure at the first level is that the residuals are independ-
ent within and between level-2 units. The GENERAL model 
statement is used to specify alternative residual covariance 
structures.

Below is syntax for fitting a logistic growth model to a set 
of performance scores from the flight simulation task (the 
second example presented in the paper). The data set includes 

9 repeated measures for each of 140 subjects. Two individual 
difference covariates, Mathematics Knowledge (MK) and 
Coding Speed (CS), are included in the models; each is cen-
tered about their respective sample mean. The within-subject 
residuals are assumed to be normally distributed.

Each script corresponds to the models reported in the 
manuscript for the second example. */

Table 4   ML estimates of a mixed-effects location scale model for quantitative skill acquisition scores (n = 204)

QWM = Quantitative working-memory capacity (centered to the sample mean). The within-subject covariance structures are as follows: �2

e
�11 

denotes independence between trials and homogeneity of variance across trial blocks and subjects; AR(1) with �2

e denotes a first-order autocor-
relation with constant variance across trial blocks and subjects; �2

e
i

�11 denotes independence between trials, homogeneity of variance across trial 
blocks and heterogeneity of variance between subjects; 

AR(1) with �
2

e
i denotes a first-order autocorrelation with constant variance across trial 

blocks, homogeneity of the autocorrelation between subjects, and heterogeneity of variance between subjects

Model 6a Model 6b Model 6c
Within-subject covariance structure �2

e
i

�11 �2

e
i

�11
AR(1) with �

2

e
i

Fixed effects MLE [95% CI] MLE [95% CI] MLE [95% CI]

Initial level, �10 2.46 [2.43, 2.49] 2.48 [2.46, 2.49] 2.48 [2.46, 2.51]
QWM, �11 −0.29 [−0.38, −0.20] −0.30 [−0.39, −0.21] −0.29 [−0.42, −0.16]
Asymptote, �20 2.02 [1.99, 2.05] 2.08 [2.06, 2.10] 2.08 [2.05, 2.10]
QWM, �21 −0.35 [−0.43, −0.28] −0.24 [−0.31, −0.17] −0.24 [−0.34, −0.13]
Rate, �30 0.26 [0.22, 0.29] 0.26 [0.24, 0.29] 0.27 [0.24, 0.30]
QWM, �31 −0.20 [−0.31, −0.10] −0.14 [−0.24, −0.05] −0.16 [−0.27, −0.04]
Within-subject covariance parameters
�0 −5.1 [−5.3, −5.0] −5.1 [−5.2, −5.0] −5.0 [−5.1, −4.9]
QWM, �1 −0.48 [−1.0, 0.06] −0.34 [−0.84, 0.16] −0.38 [−0.89, 0.14]
� .22
Between-subject covariance parameters
Intercept, �10 −2.7 [−2.9, −2.6] −2.7 [−2.7, −2.6] −2.6 [−2.8, −2.5]
QWM, �11 −0.67 [−1.1, −0.24] −0.78 [−1.2, −0.37] −0.64 [−1.2, −0.04]
Asymptote, �20 −3.4 [−3.7, −3.2] −3.0 [−3.1, −2.9] −3.0 [−3.1, −2.9]
QWM, �21 −0.02 [−0.68, 0.63] −0.18 [−0.61, 0.25] −0.17 [−0.83, 0.48]
Rate, �30 −4.4 [−4.7, −4.2]
QWM, �31 0.71 [−0.50, 1.9]
Scale, �

v
−0.47 [−0.63, −0.33] −0.49 [−0.66, −0.35] −0.48 [−0.64, −0.33]

Corr(u2, u1), �u2u1
.64 .67 .69

Corr(u3, u1), �u3u1
−.23

Corr(u3, u2), �u3u2
.02

Corr(v , u1), �vu1
.36 .42 .43

Corr(v , u2), �vu2
.45 .56 .58

Corr(v , u3), �vu3
−.35

Additional variance estimates
Residual, �2

e0
0.006 0.006 0.007

Initial, �2

u1
0.064 0.070 0.071

Asymptote, �2

u2
0.032 0.051 0.049

Rate, �2

u3
0.012

Scale, �2

v
0.39 0.37 0.39

−2lnL −3613 −3583 −3637
AIC −3571 −3551 −3603
BIC −3501 −3498 −3546
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b22 -0.00202
alp00 4.1658
alp01 -0.09845
alp02 0.004995
rho10 0.6007
alp10 3.8947
alp11 0.01609
alp12 0.02062
rho20 -0.3513
rho21 -0.4187
alp20 -2.5532
alp21 -0.1446
alp22 0.007881
rhov0 -0.1769
rhov1 0.02015
rhov2 0.05191
alpv -0.892
tau0 2.3015
tau1 -0.0297
tau2 0.004737
rho 0.3143;

covariates and a random scale effect vi;
s2e=exp(tau0 + tau1*gm_MK + tau2*gm_CS + vi);

sdv=sqrt(exp(alpv));

sd0=sqrt(exp(alp00 + alp01*gm_MK + alp02*gm_CS));
sd1=sqrt(exp(alp10 + alp11*gm_MK + alp12*gm_CS));
sd2=sqrt(exp(alp20 + alp21*gm_MK + alp22*gm_CS));

ni=9; ln2pi = 1.8378770664; 
rho2 = rho * rho;
  ka =  1 / (1 - rho2);    
  kb = -ka * rho;          
  kc =  ka * (1 + rho2);
f0 = b00 + b01*gm_MK + b02*gm_CS + u0;
f1 = b10 + b11*gm_MK + b12*gm_CS + u1; 
f2 = b20 + b21*gm_MK + b22*gm_CS + u2; 
yh = (f0*f1)/(f0+((f1-f0)*exp(-f2*(x[1])))); 
e[1] = y[1] - yh;

w2=0; w3=0;
do j = 2 to ni;
f0 = b00 + b01*gm_MK + b02*gm_CS + u0;
f1 = b10 + b11*gm_MK + b12*gm_CS + u1; 
f2 = b20 + b21*gm_MK + b22*gm_CS + u2; 
yh = (f0*f1)/(f0+((f1-f0)*exp(-f2*(x[j])))); 
e[j] = y[j] - yh;
w2 = w2 + e[j]*e[j-1];
w3 = w3 + e[j]*e[j];
end;
w1 = e[1] * e[1] + e[ni] * e[ni];
w3 = w3 - e[ni]*e[ni];
quad = (ka*w1 + 2*kb*w2 + kc*w3) / s2e;
lndet = ni*log(s2e) + (ni-1) * log(1-rho2);
*loglikelihood;
Li = -0.5 * (ni * ln2pi + lndet + quad);  
dm=1; 
model dm ~ general(Li);
random u0 u1 u2 vi ~ normal([0,0,0,0],
[sd0*sd0,
 rho10*sd0*sd1,sd1*sd1,
 rho20*sd0*sd2,rho21*sd1*sd2,sd2*sd2,
 rhov0*sd0*sdv,rhov1*sd1*sdv,rhov2*sd2*sdv,sdv*sdv])subject=subj;
bounds -1 <= rho10 rho20 rhov0 rhov1 rhov2 rho21 <=1;  
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​023-​02133-1.
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