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Abstract
Increasing use of intelligent tutoring systems in education calls for analytic methods that can unravel students’ learning
behaviors. In this study, we explore a latent variable modeling approach for tracking learning flow during computer-
interactive artificial tutoring. The study considers three models that give discrete profiles of a latent process: the (i) latent
class model, (ii) latent transition model, and (iii) hidden Markov model. We illustrate application of each model using
example log data from Cognitive Tutor Algebra I and suggest analytic procedures of drawing learning flow. Through
experimental application, we show that the models can reveal substantive information about students’ learning behaviors
and have potential utility for describing the learning flow. The models differed in the assumptions and data constraints but
yielded consistent findings on the flow states and interaction modalities. Based on our experiential analyses, we discuss
strengths and limitations of the models and illuminate areas of future development.

Keywords Intelligent tutoring · Flow · Latent transition analysis · Cognitive Tutor Algebra

Introduction

An intelligent tutoring system (ITS; e.g., ALEKS, ASSIST-
ments, AutoTutor, Easy with Eve, MATHia, MetaTutor,
SQL-Tutor) is educational software that provides comput-
erized tutoring. The system employs an artificial intelligent
tutor to guide a student through problem sets and pro-
vide customized feedback. In ITS, the tutor directly inter-
acts with a student to perform tutoring activities. Since
the instruction is mostly achieved by direction interaction
between a tutee and a tutor, minimal help is needed from
human teachers and it enables cost-effective large-scale
individualized learning.

One of the important considerations in implementing
ITS is whether a student adequately follows through
learning activities with continued attention and engagement.
As ITS is typically administered in a self-regulated
environment, students can divert from active learning when
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they encounter challenges. For example, if a student is
presented with tasks that exceedingly challenge his skill
levels, the student can become frustrated and demotivated
to learn new skills. If assigned tasks are too easy and
require little effort, a student can also diverge from genuine
learning and show effortless behaviors. Examining student’s
interaction behaviors in these settings can help understand
student’s learning process and the functioning of ITS. Since
many ITS programs are designed to keep students engaged
and flow in learning, any distinctive behaviors that deviate
from the normal operation would indicate emergence of
nonoptimal learning and ill-functioning of ITS.

The purpose of this study is to explore statistical
models that can describe students’ learning behaviors during
artificial tutoring and draw information that can help future
ITS refinement and intervention planning. We in particular
examine behaviors that illuminate students’ learning flow.
Flow (Csı́kszentmihályi, 1990) is a mental state learners
experience when immersed in deep learning. A student
in a flow state shows high engagement with the learning
activities and tends to gain positive learning outcomes. In
ITS, the inbuilt design makes the flow a highly achievable
state. Many ITS programs customize tutoring activities to
students’ skill levels and learning progression, and they
generally expect students to flow while learning with the
tutor. Modeling students’ flow states in this setting can help
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understand the students’ learning process and when students
become subject to suboptimal learning.

For modeling learning flow, we apply latent variable
models that give discrete profiles of a latent process. Three
models are considered for application: the (i) latent class
model (LCM), (ii) latent transition model (LTM), and
(iii) hidden Markov model (HMM). These models allow
analysis of large-scale multivariate time-series data and can
describe systematic effects of contextual variables (e.g.,
problem effects, student covariate effects). The models
differ in the specific ways of characterizing the variables
(e.g., permissible indicators, latent state transition, covariate
effects) and constraints of estimation software. In this study,
we suggest practical strategies of applying the models,
addressing the related assumptions and constraints. We
show how each model can be applied to accommodate
distinct characteristics of the ITS data and draw information
relevant to learning flow.

To demonstrate the application, we employ example data
from Cognitive Tutor Algebra (CTA).1 Using log data from
a particular time period, we show an analytic process of
drawing learning flow. We give a didactic demonstration
of data preparation, model formulation, and estimation, and
show that the outcomes of the models reveal substantive
information about students’ learning process. Based on our
experimental analysis, we discuss strengths and limitations
of the models in describing the ITS data and illuminate areas
of future consideration.

The rest of this article is organized as follows. In
“Cognitive Tutor Algebra”, we introduce CTA and present
basic information about the evaluation data. We discuss
characteristics of the raw CTA data, arrangements needed
for analysis, and analysis steps that apply the latent
variable models in phases. Sections “Profiling flow”–“Flow
across problems” present specific analyses performed
under each model. We discuss model formulation, data
preparation, model fitting, and corresponding results.
Section “Conclusion” concludes with a summary of the
findings and future considerations.

Cognitive Tutor Algebra

Data

The study used Cognitive Tutor Algebra (CTA) I to illustrate
the application of latent variable models in the ITS data.
The example evaluation data were collected in 2007-08 as

1CTA is a predecessor of MATHia. We retain the name of CTA since
the data were obtained from the 2007–2008 CTA administration (Pane
et al., 2014).

a part of an effectiveness study (Pane et al., 2014). The
raw data contained observations from N = 2860 students
that received tutoring between July 2007 and May 2008.
The tutoring was offered during regular curricula under the
supervision of teachers. The system contained a total of 637
problems across 106 sections that are nested within 27 units
(e.g., algebra level 1, level 2; equation solver level 1, level
2). Across the study period, students received on average
276.826 problems (SD = 193.642), 43.900 sections (SD =
32.523), and 8.927 units (SD = 6.746). The specific problem
sets and the order of problems differed by students, teachers,
and school districts. Most of the problems were prompted
by an artificial tutor following the student’s skill mastery,
but teachers could reassign students to different sections and
the system could also promote students to a new section if a
student reaches a maximum number of problems.

Preparation

The raw interaction data bear a number of complications
for applying the latent variable models. Since the system
administered problems differently according to the students’
skill levels, the assigned problems will induce between-
subject variance in the evaluation data. In addition, since the
tutoring was offered in multiple sessions over a year, the
interaction data will exhibit large temporal variance in the
students’ flow progression. For examining learning flow, it
is necessary to reform the raw data and regulate undesired
variance.

Our strategy for regulating the variance in this study
was to choose one problem unit and examine students’
workings on single days. Fixating on one problem unit helps
regulate excessive measurement noninvariance. Limiting
tutoring times to single days helps reduce temporal variance
and dimensionality of latent states. Specifically, we chose
an elementary problem unit, equation solver level 1(es1
hereinafter), and examined the interaction data that were
collected on the single days. The es1 problems showed the
most homogeneous measurement properties (see Appendix
A) and it was reckoned that they would induce minimal
variance in the indicator variables.

The data extraction was achieved as follows. If a student
worked on es1 on multiple days, we picked the day
the student attempted most problems and examined the
student’s flow development during the day. Similarly, if
a student worked on multiple units on the same day,
only the observations from es1 were examined to regulate
the variance from the other units and problems. We note
that, although we carefully prepared the data to exhibit
homogeneous measurement properties, we also additionally
addressed the measurement noninvariance when models
allow modification (e.g., random effect).
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Variables

Applying the above strategy led to subset data of N =
2219 students. The students in the final data attempted
50.236 problems on average (SD = 16.102) with a minimum
of four and maximum of 151. For evaluating flow, we
examined three indicator variables: the interaction time, the
number of erroneous attempts, and the number of hints
requested. Each indicator variable was transformed to meet
the constraints of calibration programs. For example, the
timing variable was placed on the log metric to approximate
normality. The count variables were used as observed or
categorized into three ordinal categories (i.e., none, one, and
more than one) and modeled by Poisson or proportional
odds models. Along with the interaction indicators, we also
made use of student-level covariates when inferring the state
membership and transition behaviors. The covariates used
include: Pre- and Gain test scores on the standardized test,
Race (0 = White and Asian, 1 = Black and multiethnic, 2 =
Hispanic and native America), Sex (0 = Female, 1 = Male),
and whether a student was enrolled in a free lunch program
(0 = No, 1 = Yes).

Analysis

As the cleaned data were obtained as above, we performed
analysis in three stages as follows. We first conducted latent
class analysis to examine heterogeneity in the interaction
data and investigated if the identified heterogeneity can be
characterized as distinct latent classes of in- and out-of-flow.
Based on the findings from the latent class analysis, we then
performed latent transition analysis to track progression
of latent states across different tutoring stages. In both

analyses, we applied sample-level data (i.e., data for 2219
students) to account for effects of contextual variables
(e.g., populational characteristics, problem effects). The last
stage analysis was performed on the individual student-
level data (i.e., each student’s interaction data) using hidden
Markov models. Unlike LCM and LTM, which require
modification of data to reduce the event times, HMM
can model intensive time series and requires minimal
data transformation. The third-stage analysis drew on this
flexibility and applied HMMs to examine students’ learning
progression over individual problem-solvings. Since CTA
customized problem assignments to each student’s skill
levels, we surmised that the problems would exhibit weak
measurement invariance if conditioned at the student level.
We exploited this assumption to track student’s learning
progression across individual problems.

Table 1 summarizes the analyses performed in each
stage. Each analysis was carefully designed to address
the assumptions of a model, constraints of a calibration
program, and the characteristics of the CTA data. It
is important to mention that, across the analyses, we
applied the models assuming a small number of latent
states. Since our study was mainly interested in modeling
discrete flow states, we focused more on the stability
of the extracted states, indicator modalities under each
state, and the evolution of latent states over time. Our
supplementary analysis suggests that allowing more states
tends to result in the disintegration of the normal flow
state, characterizing different problem-solving strategies.
Although unraveling the flow state can help learn different
working processes, the identified features generally require
subjective interpretation and are difficult to validate beyond
face validity. We therefore limit our attention to clear

Table 1 Analysis settings

Analysis Model Data Variable Measurement invariance

Flow profiles Random- Sample-level data, log time, nhint and modeled through random-

effect aggregated by nerr on the ordinal effect terms in the

LCM knowledge scale (0, 1, 2) structural and

components measurement models

Flow Random- Sample-level data, log time, nhint and modeled through

transition intercept aggregated for nerr on the ordinal random-intercept latent

over tutoring LTM tutoring stages scale (0, 1, 2) factors in the measurement

stages model

Flow HMM Student-level data log time, nhint, nerr assumed weak measurement

transition with problem-level invariance and addressed

across observations possible impact of

problems measurement noninvariance

Note. time = Task interaction time. nhint = Number of hints requested. nerr = Number of erroneous attempts. Throughout the analyses, the same
set of covariates were used: Pre/Gain scores on a standardized test, Race, Sex, Enrollment on the free lunch program

617Behavior Research Methods (2024) 56:615–638



bimodality of flow—in- and out-of-flow. In the following
sections, we discuss specific analysis conducted under each
model, including the model formulation, analytic strategies
for CTA, and corresponding results.

Profiling flow

Throughout the article, we apply following notations to
describe models. Let Si = (Sit : t = 0, . . . , T ) denote a
sequence of flow states that student i went through over T

measurement events.2 The flow state, Sit , takes a nominal
value from a finite latent space, Sit ∈ S ≡ {1, . . . , M},
and is manifested by a set of indicator variables, Y it =
(Yij t : j = 1, . . . , J ), where j indexes different kinds
of indicators (e.g., interaction time, behavioral frequency).
A collection of indicator outcomes over time, Y i = (Y it :
t = 1, . . . , T ), then forms multivariate cross-sectional
time series and mirrors trajectory of flow states over time. In
the event that student’s background variables are available
(e.g., gender, ethnicity), the covariates, Zi = (Zik : k =
1, . . . , K), can be used when drawing the state profiles.
For simplicity, the study assumes time-invariant covariates
that remain constant over time; the analyses suggested
below however can be easily extended to accommodate the
time-variant covariates.

Random-effect latent class model

The first stage analysis applied latent class models to
examine heterogeneity in the interaction data. We obtained
evaluation data as cross-sectional observations at each time
point, Y t = (Yij t : i = 1, . . . , N; j = 1, . . . , J ), and
examined students’ workings at each measurement time. Let
Y t = (Yij t : i = 1, . . . , N; j = 1, . . . , J ) denote
the sample cross-sectional data observed at measurement
time t . The LCM then profiles students’ latent states based
on the homogeneity of the observed interaction patterns. A
sequence of states identified over time, Si = (Sit : t =
0, . . . , T ), gives a latent profile of a student i and defines
a unique latent class.

The formulation of LCM involves two sub-models:
(i) a structural model that describes the probability of a
latent state, P(Sit = m) (m = 1, . . . , M), and (ii)
a measurement model that describes the probability of
indicators given a latent state, P(Y it | Sit = m). Unlike the

2In ITS the event time corresponds to the problems or problem sets.
Also note that students can receive different problems and T can vary
by students. The study defines T as max(Ti : i = 1, . . . , N) and uses
as a generic notation for the event length.

other two models discussed below, LCM does not model
transition of latent states. It instead assumes that latent states
evolve independently over time and it models the sequence
of interaction patterns through a distinct latent class profile.

The LCM for CTA was formulated as follows. The
structural model that describes the probability of a latent
state was formulated on the multinomial logistic regression.
In regular settings, the model is parameterized assuming
within-class homogeneity. That is, students within the same
class are expected to give homogeneous performance when
solving problems. In CTA (and in many cases of ITS),
this assumption is generally not tenable because students
receive different problems according to their skill levels
and progression. The difference in the problem assignments
induces extra variance in the outcome data and the observed
data become no longer independent when conditioned on
the latent states. A common approach to addressing this
extra variance is to allow random variation when modeling
the outcome probabilities (e.g., Qu et al. 1996). That is,
a random-effect term is added to the structural model so
that the heterogeneity in the outcome probabilities can be
explained by both the latent state and the random effect.

In the present setting, the random-effect LCM can be
formulated as follows. Let ηi model the idiosyncratic effect
of student i on the state probability. The probability of a
latent state m can be then modeled as

P(Sit = m | ηi, Zi = zi ) = exp
(
βm0 + β�

mzi + ηi

)

∑M
l=1 exp

(
βl0 + β�

l zi + ηi

)

(1)

for all t (= 1, . . . , T ). The βm0 is an intercept parameter
that determines the conditional probability of the latent state
m when Zi = 0 and ηi = 0. The slope parameter βm models
the effects of the covariates, Zi , on the logit. To ensure
identifiability of the model parameters, we assume that ηi ∼
N (0, σ 2

η ) with σ 2
η = Var(ηi; i = 1, . . . , N) modeling

the magnitude of extra variance from the individuals (i.e.,
beyond covariate effects).

The measurement model can be formulated in a similar
way. Since students in ITS typically receive different
problem sets that differ in the measurement properties,
we again introduce problem-level random effects when
modeling the indicator variables. A measurement model for
an indicator j is parameterized as

Pj (Yij t | Sit = m, δjt ) = fj (ψjm, δjt ), (2)

with fj specifying the functional form of the probability
measure of the indicator j and ψjm giving the parameters
of fj (e.g., location, scale). The δjt models the idiosyncratic
effect of problem t on the indicator j . The functional form
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of fj is defined according to the type of a variable. For
binary variables, common practice is to use a Bernoulli
distribution with a probit or logit link. The ordinal variables
are typically modeled by cumulative probability functions
such as proportional-odds models, adjacent-categories, or
continuation-ratio logit models (Agresti, 2012). The count
and continuous variables can be modeled by Poisson
regression and a Gaussian model, respectively. The random-
effect term, δjt , in Eq. 2 is parameterized for each j such
that δjt ∼ N (0, σ 2

δj
) and σ 2

δj
= Var(δjt ; t = 1, . . . , T )

models the variance across the problems in indicator j . For
graphical illustration of the suggested model, see Fig. 1a.

Integrating the two constituting models, the random-
effect LCM is formulated as a finite mixture model:

P(Y |Z, η, δ)=
N∏

i=1

T∏

t=1

∑

St∈S
P(St |ηi,Zi )P (Y it |St , δt ), (3)

where Y , Z, and η each denote an array of variables for all
students, and δ = (δt : t = 1, . . . , T ) where δt = (δjt :
j = 1, . . . , J ).

The marginal model (3) can be estimated using a
maximum likelihood (ML) or Bayesian estimators. The
ML estimation is computationally efficient but can lead
to zero variance estimates (Gelman et al., 2013, p. 313).3

The Bayesian estimation requires more computation time,
but it gives more stable estimates once converged. In
this study, we apply the ML estimator when exploring
the candidate models and apply Bayesian estimation for
deriving the parameters of a final model. The ML estimation
was performed using an L-BFGS algorithm (Nocedal &
Wright, 2006) in Stan, called from R (R Core Team,
2020). The Bayesian estimation was implemented using
a “No U-Turn” Markov Chain Monte Carlo (MCMC)
sampler (Hoffman & Gelman, 2014) in Stan. Details of the
estimation routine, including the discussion on the label
switching, are presented in Appendix B.

3The random-effect LCM can be seen as a hierarchical model with the
random-effect terms being modeled at the higher-order level.

Profiling flow in CTA

The analysis model for CTA was formulated following Eqs.
1 and 2 but some adjustment was made in the measurement
model to accommodate the CTA design. In CTA, problems
were administered adaptively to students’ skill levels, and
the interaction data consisted of sparse time series with large
measurement points (max T = 151). Introducing problem-
level random effects in this case will induce computational
overhead and challenge convergence of model estimation.
To unify the measurement size and reduce the dimension-
ality to an estimable degree, we defined the measurement
unit as a batch of problems that measure similar skills and
applied the random-effect LCMs to the agglomerated data.
In CTA, problems were arranged according to knowledge
components (e.g. Ritter et al. 2007) that measure homoge-
neous skill sets and were administered successively until a
student masters each knowledge component. We exploited
this arrangement and examined the latent process underly-
ing each knowledge mastery.

Defining a measurement unit as a knowledge component
resulted in a total of 18 problem batches with 2219 ×
18 (N × T ) interaction data. We applied the random-
effect LCMs to the reshaped data, allowing measurement
noninvariance in the indicator variables (i.e., δjt (j =
1, . . . , 3, t = 1, . . . , 18)). The random-effect terms from
the three indicators were jointly modeled by a trivariate
normal distribution: δ = (δ1t , δ2t , δ3t : t = 1, . . . , T )� ∼
N3(0, �δ). The measurement models for the indicator
variables were formulated as follows. The interaction time,
Yi1t , was modeled by a Gaussian model on the log metric:

log Yi1t |Sit = m, δ1t ∼ N
(
δ1t + μ1m, σ 2

1m

)
(4)

with the unique location and scale parameters for each state.
The count variables—the number of errors, Yi2t , and the
number of hints requested, Yi3t—were modeled by ordinal
logistic regression after being categorized into zero, one,
and more than one groups. For example, the probability of
the number of errors was modeled as

P(Yi2t = h|Sit = m, δ2t )

=
⎧
⎨

⎩

1 − logit−1 (μ2m + δ2t − c21) h = 0
logit−1 (μ2m + δ2t − c21) − logit−1 (μ2m + δ2t − c22) h = 1
logit−1 (μ2m + δ2t − c22) h > 1

(5)

with the location parameter μ2m varying across the latent
states, and the step parameters satisfying c22 > c21 > 0.
As above, δ2t is the problem-level random effect for errors

(j =2). The number of hints was modeled analogously with
μ3m, δ3t , c31, and c32 each replacing μ2m, δ2t , c21 and c22.

Results

Model comparison Table 2 reports fit statistics of four
LCMs that were considered for flow evaluation. The models
were fit assuming different structural effects while keeping
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Fig. 1 Latent variable models surveyed. Note. Sit : Latent state of a student i at measurement time t (= 1, . . . , T ). Yijt : Student i’s observation
data on an indicator j (= 1 (log interaction time); 2 (number of hints asked); 3 (number of errors)) at time t . ηi : Student i’s random effect or
random intercept. λj : Loading of an indicator j on the random effect. Zi : Student i’s background covariates
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Table 2 Fit statistics of LCMs

M Condition df −2LL AIC CAIC BIC ABIC

1 62 −241475 483074 483672 483672 483475

2 HomStud 67 −219935 440005 440650 440650 440437

2 StudEff 2285 −216607 437783 459802 459802 452540

2 StudCov 2291 −216576 437735 459811 459811 452530

Note. M = Number of states at each time point. df = Number of free parameters. LL = -2 log likelihood. AIC = Akaike information
criterion (Akaike, 1973). CAIC = Corrected AIC (Burnham & Anderson, 2002; Sugiura, 1978). BIC = Bayesian information criterion (Schwartz,
1978). ABIC = Adjusted BIC (Sclove, 1987). The results were obtained from the ML estimator

the measurement model the same.4 The one-state model
in the first line assumes that all students exhibited the
same state with no individual difference in the performance
outcome. Since it assumes a single homogeneous latent
state, it has no structural component. The following lines
give results for the two-state models that assume different
student effects. The HomStud model assumes that students
in the same state had the same state probability, P(Sit =
1) = β0. The StudEff model allows individual differences
in the state probability, P(Sit = 1|ηi) = β0 + ηi . The
StudCov models the state probability as a function of both
the student random effects and student-level covariates,
P(Sit = 1|ηi, zi ) = β0 + β�zi + ηi .

The results from Table 2 suggest that students indeed
showed heterogeneity when working with the CTA. All
information criteria preferred the two-state models over
the one-state model. Among the two-state models, the
criteria that heavily penalize the complexity (i.e., CAIC,
BIC, ABIC) recommended the simplest model, HomeStud,
whereas AIC and the likelihood statistic preferred StudCov.
Our additional analysis with a likelihood ratio test suggested
that StudCov achieves significantly better fit than StudEff
(χ2 = 62, df = 6, p < .001). The posterior state
probability estimates also indicated that there exists clear
heterogeneity across the student demographic profiles. The
observations from these analyses point StudCov as the most
sensible model. We therefore choose StudCov as a final
model and examine outcomes of StudCov more carefully to
understand the students’ learning modalities.

Measurement model As we identified the final model,
we re-estimated the model parameters using MCMC to
obtain stable parameter values. The ML estimation, though
computationally affordable, yielded zero variance estimates
for the student random effects (i.e., σ̂ 2

η = 0) despite
the strong indication of heterogeneity in the observed
data. The Bayesian estimation, although required a longer
computation time, converged properly, yielding nonzero

4Precursory analysis suggested strong nonzero random variance in the
measurement effects and the measurement model was uniformly fit by
including the random-effect terms

variance estimates and other point estimates essentially
identical to the ML estimates.5 Below we examine the
outcomes of the Bayesian estimation to infer students’
learning flow.

Table 3 reports measurement model parameter estimates.
Each row gives distributional parameters of the indicator
variables defined in Eqs. 4 and 5. The last line reports
marginal probabilities of the latent states, E[P(S = m)]
(m = 1, 2). The state probability estimates suggest that
State 1 was the major latent state underlying the interaction
behaviors. Across the evaluated tutoring sessions, students
worked under State 1 about 81.02% of times and the
remaining 18.97% under State 2. The difference statistics in
the last column suggest that students working in the second
state requested more hints, made more errors, and spent
more time than the students working in the first state. Note
that in CTA students received problems adapted to their skill
levels and they are generally expected to flow in learning.
Considering this inbuilt design, we conclude that State 1
represents the state of flow and State 2 represents deviation
from the flow. In State 1, students tended to progress
in a timely manner, exerting adequate effort. Students in
State 2 tended to exhibit prolonged learning behaviors. We
mention that the present results do not inform the cause
of deviation; we only surmise that multiple factors could
have attributed to the deviating state, for example, fatigue,
excessive difficulty, disengagement, gaming, or frustration
with the problems.

To understand the degree of heterogeneity between
the states, we compared the difference statistics with the
between-knowledge differences, as parameterized by the
standard deviations (SDs) of the knowledge-level random
effects, δ. The random-effects SDs were estimated as σ̂δ1 =
.497 (95% credible interval [.366, .676]) for the time spent,
σ̂δ2 = 1.387 (95% CI [1.019, 1.858]) for errors, and σ̂δ3 =
1.529 (95% CI [1.069, 2.128]) for hints. Observe that the
estimated SDs were much smaller than the corresponding
differences between the states (i.e., -1.493, -4.193, -12.275).

5The ML estimation took about 15 minutes to converge and Bayesian
estimation base on MCMC took over five days when run in parallel on
an AMD Ryzen Threadripper 3.5 GHz 16-Core Processor.
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Table 3 Parameters of the measurement model of the final LCM

Indicator Parameter State 1 State 2 Difference

Time μ1m −.500 (.117) .992 (.117) −1.493 (.008)

σm .757 (.003) .838 (.005) −.080 (.005)

Error μ2m −2.092 (3.551) 2.101 (3.551) −4.193 (.038)

c21 2.126 (3.557)

c22 3.807 (3.557)

Hint μ3m −6.131 (3.807) 6.145 (3.804) −12.275 (3.046)

c31 8.312 (3.881)

c32 9.888 (3.882)

P(S0) .810 (.003) .190 (.003)

Note. The measurement model parameters were defined in Eqs. 4 and 5. μ1m: Mean of log interaction time at State m. σ1m: SD of log interaction
time at State m. μ·m: Mean of logit error/hint at State m. c·h: Step decrease in logit error/hint in category h. Within the parentheses are standard
errors. All estimated differences in the final column were significant at p = .001

This suggests that the difference between the states was
much more important than the differences between the
knowledge components.

Covariate effects Table 4 reports effects of the student-level
covariates. The estimation algorithm treated State 1 (i.e.,
the flow state) as a baseline and the reported coefficients
represent loadings on State 2. A large value means that
a student with the corresponding characteristic was more
likely to work in the out-of-flow state. Some distinct
patterns in Table 4 are worth noting. Students with higher
pretest scores and gain scores (i.e., whose standardized test
scores increased the most from the beginning to the end of
the study) were more likely to work in State 1; students with
lower pretest and gain scores were more inclined to work
in State 2. Students with different racial backgrounds also
showed disparate patterns. Black, multiethnic (RaceBN),
Hispanic and Native (RaceHN) students, and to a lesser
extent males, were more likely to work in State 2 than White
or Asian students and females. Lastly, students who were

Table 4 Loading of covariates on the out-of-flow state

Covariate Est SE p

Pretest score −.258 .020 .000

Gain score −.132 .020 .000

RaceBM .274 .051 .000

RaceHN −.195 .040 .000

Sex .081 .032 .016

Free lunch −.020 .036 .579

Note. RaceBM = Black & Multiethnic. RaceHN = Hispanic & Native
America. Sex: Male = 1, Female = 0. Free lunch: Yes = 1, No = 0

eligible for free or reduced-price lunches were more apt to
work in State 1 though the trend was somewhat weak.

As we examine the SD of the student random effects,
σ̂η = .590 (95% CI [.560, .622]), we found that the
estimate was larger in magnitude than any of the covariate
coefficients in Table 4, and also larger than the standard
deviation of the student-level log-odds of working a

problem in State 1 predicted by covariates, SD(β̂
�
Z) ≈

.268. This suggests that there may be important unmeasured
student characteristics that predict the latent states, which
we speculate to be the transitioning of latent states.

Flow across tutoring stages

As the latent class analysis revealed heterogeneity in the
students’ workings, subsequent analysis was performed to
examine the evolution of learning behaviors over tutoring
sessions. For the analysis, we partitioned the observed data
into different tutoring stages and applied LTMs to track
development of latent states over time.

Random-intercept latent transitionmodel

The LTM was formulated similarly to the LCM but
additionally included a transition model. The structural
model took a similar form with Eq. 1 but now models
the initial state probability only, P(S0 = m) (m =
1, . . . , M), or P(Si0 = m | Zi = zi ) (m = 1, . . . , M)
if covariates are applicable. The transition model then
describes the probability of ensuing states as a function
of the preceding state(s). Assuming a first-order Markov
process, the probability of a latent state at time t is
modeled as P(St | S0, S1, . . . , St−1) = P(St | St−1).
The functional form of P(St | St−1) commonly takes
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multinomial logistic regression. If covariates are available,
the transition probability can be modeled as

P(Sit = m′ | Si(t−1) = m, Zi = zi )

= exp
(
γ0m′ + γmm′ + β�

mzi

)

M∑

l=1

exp

(

γ0l +
M−1∑

l′=1

γll′dl′ + β�
mzi

) , (6)

where m and m′ denote distinct latent states in S; γ0m′
(m′ = 1, . . . , M − 1) gives an intercept of the logit of
the transition probability; γmm′ (m, m′ = 1, . . . , M −
1) models logit change between the two states; and βm

models the effect of covariate on the logit. The dl′ in the
denominator is a dummy variable that indicates the first
(M − 1) states (i.e., l′ = 1, . . . , M − 1; the last state is a
reference category).

The measurement model describes the conditional prob-
ability of manifest indicators as a function of a latent
state. One of the important assumptions in formulating the
measurement model for transition analysis is longitudinal
measurement invariance. Since the state variable is evalu-
ated across the multiple time points, the problems must have
constant effects on the measurement outcomes so that the
variance in the observed performance can be attributed to
the underlying latent state. As alluded to above, this assump-
tion is generally not tenable in CTA because problems were
administered adaptively according to the students’ skill lev-
els. To address the variance in the problem assignments and
the measurement properties thereof, an additional means
needs to be arranged.

Our strategy in this study for addressing the measurement
noninvariance was to adopt student-level random intercept
factors. The random-intercept LTM (RI-LTM; Muthén
and Asparouhov 2020) introduces person-level random
intercepts to measurement variables so that they can
explain away extra variance present in the measurement
outcomes. For example, in the context of CTA modeling, a
measurement model for indicator j can be formulated as

Pj (Yij t | Sit = m, ηi) = fj

(
ψjm + λjηi

)
, (7)

where fj gives the functional form of the probability
measure for the indicator, ψjm gives the kernel function
indicating the effect of state m on j , ηi denotes the student-
level random intercept, and λj models the extent to which
students induce extra variance to indicator j . The random-
intercept factor ηi is set to follow N (0, 1) so that λj

models the size of extra variance in each measurement.
The parameterization in Eq. 7 can be seen as decomposing
the variance into within- and between-subject variance.
The slope coefficient λj models the average magnitude
of between-subject variance across the problems. Note
that, in introducing the random-effect terms, the LCM

and LTM assume different parameterizations (see Fig. 1
for a graphical comparison). In LCM, ηi is assumed to
follow N (0, σ 2

η ) and have unit slope whereas in RI-
LTM, ηi follows N (0, 1) and has distinct slopes. The
latter parameterization is to allow flexibility in modeling
the measurement noninvariance. For example, the slope
coefficient, λj in Eq. 7 can be reparameterized to allow
time-specific loading (i.e., λjt ) when a variable induces
time-varying between-subject variance.

Integrating the sub-models, the random-intercept LTM is
formulated as

P(Y | Z) =
N∏

i=1

∑

St∈S
P(S0 | Zi )

(
T∏

t=1

P(Sit | Si(t−1), Zi )

)

×
⎛

⎝
T∏

t=1

J∏

j=1

P(Yijt | Sit , ηi)

⎞

⎠ . (8)

The marginal model Eq. 8 can be estimated using a
regular marginal ML estimator. In this study, we apply
Mplus (Muthén & Muthén, 2017) to perform the estimation.
We note that Mplus does not support intensive time-series
data, and data cleaning is necessary to accommodate the
constraints of the software. Next section presents strategies
applied in the CTA analysis.

Flow transition in CTA

As with the preceding analysis, we used the data from one
unit, es1, that are observed on the same days. The observed
data consisted of intensive time series with a maximum of
151 problems. Currently available estimation programs for
LTMs (e.g., Mplus, PROC LTA) assume longitudinal data
with a small number of time points (e.g., 10 at most) and
have limited capacity in modeling intensive time-series data.
For evaluating flow in CTA, it was necessary to reshape the
raw data and reduce the number of measurement points.

Our strategy in this study was to segment tutoring
into several sessions and aggregate problems within each
segment to create small sets of problem series. Since
the problems in the evaluation data uniformly measured
the same equation-solving skills, we assumed that the
problems would exhibit weak measurement invariance. For
the event that the problems induce significant measurement
noninvariance, we also experimented with more general RI-
LTMs that allow time-variant slopes when modeling the
random intercepts.

The data partition was achieved as follows. We first
determined the number of evaluation points as three,
four, and five, balancing the granularity of description
and convergence of model estimation. We then split the
data from each student into three-, four-, and five-point
time series by allocating approximately equal numbers of
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observations to each series. For example, when a student
received 56 problems, we sequentially aggregated (18, 18,
20) problems to create three-point time series. Within each
partition, observations were averaged and placed on the
calibration scale. The timing variable was placed on the log
scale after being averaged. The count variables were placed
on the ordinal scale after the average (i.e., indicating no,
one, and more than one error/hint). As we conduct transition
analysis in all three data sets, we found that the results
generally suggest similar patterns on the flow development.
The results differed only in the model convergence and
the specific parameter estimates. Given these findings, we
present results from the four-point time-series data as a
representative example.

Results

Model comparison Tables 5, 6, 7 and 8 report fit statistics
of the models that are evaluated in the four-time-point
interaction data. Table 5 compares one- and two-state
models. The subsequent tables refine the formulation of
the resultant model. In Table 5, the comparison reveals
that the two-state model achieved substantially better fit.
All criterion measures consistently preferred the two-
state model over the one-state counterpart, suggesting
heterogeneity in the students’ behaviors. The adjusted
likelihood ratio test (Lo et al., 2001) similarly indicated
significantly better fit of the two-state model (χ2 =
23320.293, df = 6, p < .001).

As we explore more complex LTMs that assume more latent
states, we found that the models with the more states generally
lead to better fit. The fitted outcomes however had generally
similar bearing on the out-of-flow state. For example, when
the LTM was fit with three states, the state identified as
out-of-flow in the two-state model remained the same in
the three-state model, and the flow state identified in the
two-state model was separated into two distinct states in the
three-state model. It appeared that increasing the number of
latent states in LTMs tends to disintegrate the flow state and
differentiate behavioral strategies of the regular problem-
solving mode. The inference on the deviant state remained
the same across the models that assumed different numbers
of latent states.

As we decide on the two-state model, subsequent
analysis was performed to examine the variants of the two-
state model and determine the final model for CTA. We in
particular investigated the models that differ in the three
key assumptions: (i) measurement invariance, (ii) covariate
effects, and (iii) transition probability modeling. Below
details the analyses performed.

Measurement invariance Table 6 compares three mod-
els that assume different degrees of measurement
(non)invariance: (i) the model that assumes longitudinal
measurement invariance (labeled as MI), (ii) the model
that assumes time-invariant between-subject residual vari-
ance (i.e., the model that includes the random intercept;
labeled as RI), and (ii) the model that assumes time-
variant between-subject residual variance (i.e., the model
that allows time-varying effects of the random intercept;
labeled as VRI). Recall that the random intercept in LTM
was devised to describe between-subject residual variance
present at each time point. The loading of an indicator on
the random intercept models the magnitude of variance
caused by the measurement stimuli at the time of evalua-
tion. The nonzero loading coefficient will indicate that the
problem sets induced unignorable variance in the students’
behaviors. If the estimated loading coefficients are approxi-
mately equal across time, it will indicate that the problems
entailed similar amounts of variance across time and the
constant variance can be modeled by time-invariant loading
coefficients. If the estimated loading coefficients differ
substantially over time, it will signify that the problem sets
entailed different amounts of variance across time and they
must be modeled by time-contingent loading coefficients.

In Table 6, comparison of LTMs with and without
the random intercept reveals that the random-intercept
model achieved significantly better fit (χ2

(MI,RI) = 589.69,
df = 3, p < .001). This suggests that the problem sets
administered across the tutoring indeed induced nonzero
variance in the outcome variables. When the indicators were
allowed to have different loadings over time (i.e., RI vs.
VRI), the model achieved even greater fit, suggesting that
the measurements induced different amounts of residual
variance over time. Among the three indicators, the
interaction time showed the largest variability across time

Table 5 Fit statistics of LTMs: one- vs. two-state models

M df LL AIC CAIC BIC ABIC

1 15 −20727.74 41485.48 41485.70 41571.05 41523.4

2 21 −8995.53 18033.06 18033.48 18152.86 18086.14

Note. M = Number of states at each time point. df = Number of free parameters. LL = −2 log likelihood. AIC = Akaike information criterion.
CAIC = Corrected AIC. BIC = Bayesian information criterion. ABIC = Adjusted BIC
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Table 6 Fit statistics of LTMs: measurement invariance

Condition df LL AIC CAIC BIC ABIC

MI 21 −8995.53 18033.06 18033.48 18152.86 18086.14

RI 24 −8700.68 17449.37 17449.91 17586.28 17510.03

VRI 33 −8674.55 17415.11 17416.14 17603.37 17498.52

Note. df = Number of free parameters. LL = -2 log likelihood. AIC = Akaike information criterion. CAIC = Corrected AIC. BIC = Bayesian
information criterion. ABIC = Adjusted BIC. MI = LTM with measurement invariance. RI = LTM with the random intercept. VRI = LTM with
the random intercept with time-varying effects

(i.e., measurement noninvariance), followed by the number
of errors, and the number of hints. All in all, the outcomes
of the three models suggested that the indicators induced
different amounts of measurement variance over time and it
is sensible to include the random intercepts and allow time-
and indicator-specific effects.

Covariate effects In Table 7 we compare models with and
without the covariates to evaluate covariate effects. The
results show that including covariates consistently improved
the model fit. All pairwise comparisons preferred the
models that allowed covariate effects (e.g., χ2

(MI,MI-C) =
133.07, df = 6, p < .001). The information
criteria similarly preferred the covariate-integrated models,
producing smaller fit statistics. Based on the observations
made here, we retain the covariates in the final model
and subsequently examine the transition model allowing
covariate effects.

Transition probability The last assumption, the stationarity
of transition probabilities, was evaluated by comparing
models with different temporal effects. Table 8 reports fit
statistics of the evaluated models—the models that assume
stationary and temporal state transitions. The stationary
transition model (labeled as ST) assumes that all predictors
had constant effects on the transition probability over time.
The time-variant transition models assume that the latent
states and covariates had differential effects across tutoring.

Three possible scenarios were examined in the time-variant
transition model: (i) when both the preceding latent state
and covariates have time-varying effects on the transition
probability (labeled as VTP), (ii) when only the latent state
has time-variant effect and the covariates have fixed effects
(labeled as VTS), and (iii) when only the covariates have
time-varying effects and the latent state has a constant effect
(labeled as VTC).

Comparison of the models in Table 8 suggests that the
time-variant transition model is generally preferred over the
stationary model. All criteria achieved the best results when
the models allowed time-varying effects. Among the three
models that allowed the time-variant effects, the model that
assumed time-varying state effects and constant covariate
effects demonstrated the best fitness. All in all, the results
seemed to suggest that the preceding latent states had
substantially different influences on the transition likelihood
as time progressed while the effects of the covariates may be
modeled by constants if the state effects are modeled with
time-varying coefficients.

Comparison of various LTMs suggested that the model
that allows time-variant effects for the random intercept and
latent states (labeled as VRI-C-VTS) demonstrates the best
fit for the CTA data. Based on this finding, we subsequently
examined the outcomes of the final model to infer students’
latent flow states. We note that the model identified here
also yielded the best results in the other data sets—i.e., when
the data were partitioned into three and five segments.

Table 7 Fit statistics of LTMs: covariate effects

Condition df LL AIC CAIC BIC ABIC

(MI, -) 21 −8995.53 18033.06 18033.48 18152.86 18086.14

(MI, C) 27 −8928.99 17911.99 17912.68 18066.02 17980.23

(RI, -,) 24 −8700.68 17449.37 17449.91 17586.28 17510.03

(RI, C) 30 −8634.15 17328.30 17329.15 17499.44 17404.13

(VRI, -) 33 −8674.55 17415.11 17416.14 17603.37 17498.52

(VRI, C) 39 −8608.02 17294.04 17295.47 17516.53 17392.62

Note. df = Number of free parameters. LL = -2 log likelihood. AIC = Akaike information criterion. CAIC = Corrected AIC. BIC = Bayesian
information criterion. ABIC = Adjusted BIC. MI = LTM with measurement invariance. C = Covariates. RI = LTM with the random intercept. VRI
= LTM with the random intercept with time-varying effects
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Table 8 Fit statistics of LTMs: stationarity of transition probabilities

Condition df LL AIC CAIC BIC ABIC

(VRI, C, ST) 39 −8608.02 17294.04 17295.47 17516.53 17392.62

(VRI, C, VT) 61 −8581.60 17285.19 17288.70 17633.19 17439.38

(VRI, C, VTS) 43 −8591.04 17268.08 17269.82 17513.38 17376.77

(VRI, C, VTC) 59 −8588.22 17294.44 17297.72 17631.03 17443.58

Note. df = Number of free parameters. LL = -2 log likelihood. AIC = Akaike information criterion. CAIC = Corrected AIC. BIC = Bayesian
information criterion. ABIC = Adjusted BIC. VRI = LTM with the random intercept with time-varying effects. C = Covariates. ST = LTM with
stationary transition probability. VT = LTM with time-varying transition probability. VTS = Time-varying transition due to latent states (covariate
effects fixed). VTC = Time-varying transition due to covariates (state effects fixed)

Measurement model Table 9 reports loading coefficients
of the latent variables. The estimates reveal some distinct
patterns in the indicator variables between the two states.
The first state entailed shorter task interaction time, no help
requests, and less erroneous attempts. The second state led
to distinctly longer interaction time, nonzero help requests,
and more errors. As we examine the prevalence of the states,
we found that the first state appeared more frequently than
the second (68.58% vs. 31.42%). The frequency of the
second state tended to decrease in the first three quarters
of the tutoring (36.73%, 29.02%, 27.13%) and increased
in the final phase (32.81%). The observations made here
overall seem to suggest that the first state reflects the normal
problem-solving state and the second state the state of out-
of-flow. Since CTA was assigned only infrequently and
students tended to receive a large number of problems once
started (50.236 problems on average and 151 maximum),
we surmised that the distinct patterns of the second state is
possibly due to warm-up or fatigue.

In Table 9, the coefficients related to the random
intercept reveal that the indicator variables entailed different
amounts of measurement noninvariance. The coefficients
for the task interaction time showed the largest variance
across time, suggesting that the variable induced the

largest amount of longitudinal measurement noninvariance.
The discretized error and hint variables showed relatively
smaller and constant loadings, suggesting that they induced
little and approximately equal amounts of measurement
noninvariance. We note that constraining the loading
coefficients of the error and hint variables to constants
did not improve the model fitness. We therefore retain the
final model allowing time-variant loadings on the random
intercepts.

Transition model In Table 10 we report transition proba-
bilities estimated from the final model. The first entry of
each transition matrix consistently showed high probability
(.733 on average), suggesting that students tended to main-
tain the same flow state once in place. Students exhibiting
the deviant state (i.e., State 2) tended to switch to the flow
state in the early phase of tutoring but gradually showed
a stronger tendency to stay in the same out-of-flow state
as the tutoring progressed. The present pattern supports
our hypothesis on the deviant state. Earlier, we stated that
the deviant state may reflect a warm-up or fatigue effect.
The results from the transition probabilities suggest that the
aberrant state identified in the early phase of tutoring is
likely to reflect a warm-up or a learning period; the state

Table 9 Measurement model parameters of the final LTM (VRI, C, VTS): loading of latent variables on indicators

Latent state Random intercept

Par α(S = 1) α(S = 2) λ(t = 1) λ(t = 2) λ(t = 3) λ(t = 4)

Time 3.788 4.141 −.387 −.261 −.246 −.224

(SE) (.010) (.013) (.037) (.031) (.025) (.026)

Error .686 1.171 −.038 −.005 .006 −.035

(SE) (.007) (.008) (.020) (.020) (.019) (.021)

Hint .000 1.021 −.010 −.003 −.006 −.014

(SE) (.000) (.004) (.005) (.003) (.003) (.005)

Note. α = Loading on the latent state. λ = Loading on the random intercept. The subscripts within the brackets indicate the latent state or the time
point at which the variable was conditioned
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Table 10 Transition probabilities in the final LTM

P(S2 | S1, Z) P (S3 | S2, Z) P (S4 | S3, Z) Overall

From \To S2 = 1 S2 = 2 S3 = 1 S3 = 2 S4 = 1 S4 = 2 St = 1 St = 2

St−1 = 1 .730 .270 .752 .248 .718 .282 .733 .267

St−1 = 2* .676 .324 .674 .326 .550 .450 .633 .367

Note. St = Latent state at time t. Z = Covariates. * Suspected as the state of disengagement. P(S0 = 1) = .633, P(S0 = 2) = .367

appearing in the later stage is likely related to loss of motiva-
tion (e.g., fatigue, exhaustion). The high transition rate from
the deviant to flow state in the beginning in particular sug-
gests that students who showed slow progress at the outset
began to engage in learning as they become familiar with the
contents and problems. The decreased transition probability
in the later phase suggests that weary students were unlikely
to shift back to the flow state in the subsequent phases. The
individual students’ transition patterns further corroborated
our hypothesis. About 63.68% of the students who showed
early aberrance received es1 as the first unit on the day.
About 86.13% of the students who showed aberrancy in the
final stage received es1 as the last unit of the day.

Table 11 reports loading of latent states and covariates
on the transition probabilities. During the estimation, the
second state was treated as a baseline, and the coefficients
were obtained for the first state (i.e., normal state). Observe
that the first state had constantly positive loadings on the
subsequent first state. This means that students who showed
the normal state in the earlier problem set tended to maintain
the same state in the following problem set. The increasing
loading coefficients suggest that the tendency to stay in the
same flow state intensified as time progressed.

The effects of covariates on the transition likelihood
varied in both the direction and size. The negative loadings
of the two ethnicity groups suggest that Black and
Multiethnic, and Hispanic and Native American students
were less likely to transition to the flow state than were the
White and Asian students. The strong negative loading of
the Hispanic-native American students implies that students
in this ethnic group showed a greater tendency to exhibit a

deviant state. The positive loadings in the other covariates
suggest that students with higher scores had a stronger
tendency to move to the first flow state. For example,
male students showed greater likelihood to move to the
flow state than female students. Students with higher pre-
and gain-scores showed a greater tendency to transition to
the flow state as they receive next problem set(s). Among
others, the results pointed to a distinct tendency in the
Hispanic and Native American female students. The effect
coefficients suggested that these students were at greater
risk of showing out-of-flow states, signaling the need for
remedial interventions.

State transition We conclude the latent transition analysis
with a summary of the most pronounced state patterns.
Among the 16 transitional patterns, the largest group of
students (27.27%) showed continued attention to the tasks
with the estimated state pattern S = (1, 1, 1, 1). The second
group of students (12.80%; S = (2, 1, 1, 1)) showed a
transition from the deviant to the flow state in the early
stage. The third group (9.19%; S = (1, 1, 1, 2)) showed a
shift from flow to out-of-flow in the final stage. The next
frequent groups changed midway, showing state patterns (1,
2, 1, 1) (8.70%) and (1, 1, 2, 1) (6.17%). These results
suggest that, despite the self-regulated tutoring, many
students performed conscientiously in most problems and
exhibited deviant behaviors only occasionally. We remark
that the present analysis was performed on the aggregated
problem sets. The results do not inform specific problems
at which a student showed deviant behaviors nor whether
the aberrant behaviors occurred continuously across the

Table 11 Effects of latent states and covariates on transition probabilities

St [1] on St−1[1] St [1] on Covariates (t = 1, 2, 3, 4)

t = 2 t = 3 t = 4 Pre Gain RaceBM RaceHN Sex FRL

Est .262 .385 .745 .375 .198 −.081 −.126 .276 .021

(SE) (.097) (.103) (.100) (.042) (.037) (.059) (.075) (.049) (.055)

Note. The base category of Race was White and Asian. RaceBM = Black and mutiethnicity. RaceHN = Hispanic and native American. The
baseline category of Sex was Female. FRL = Free lunch. Pre = Prescore. Gain = Gain score. All latent states and covariates except for RaceBM
(p = .207) and free lunch (p = .901) were significant predictors of the transition probabilities (p < .01)
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partition or on a subset of problems. In the next section, we
examine individual students’ transitional patterns across the
problems to draw finer-grained information.

Flow across problems

The last analysis applied hidden Markov models (Burke
& Rosenblatt, 1958) to examine flow transition across the
individual problems.

HiddenMarkovmodel

As with the LTM, the HMM uses a sub-model to describe
the transition between the latent states. Consider a latent
stochastic process, S, that evolves over discrete time points.
The person-level subscript i is omitted as the analysis is
performed at each student level (see Fig. 1(c) for graphical
illustration). A series of manifest indicators is then modeled
jointly with the corresponding latent states, P(Y i , S). If
covariates are available, P(Y i , S) can be modeled as

P(Y i , S | Zi ) = P(S0 |Zi )

T∏

t=1

P(St | St−1; Zi )

T∏

t=1

P(Y it | St ). (9)

The formulation of Eq. 9 implies three sub-models:
the (i) structural model, (ii) transition model, and (ii)
measurement model. The structural model defines the
probability of an initial state, π = (πm = P(S0 =
m) : m = 1, . . . , M). The transition model describes
the transition probability between the latent states, P =
(pmm′ = P(St = m | St−1 = m′) : m, m′ =
1, . . . , M). Observe that the transition model assumes
a homogeneous first-order Markov process. The LTM
similarly assumed the first-order Markov process but it
allowed the transition probabilities to vary across times.
The last component, the measurement model describes
the emission probability of an indicator given the latent
state, P(Yjt | St ). Some commonly used models in HMM
applications include: Gaussian, Poisson, binomial, Gamma,
and multinomial models. It is important to note that,
in modeling the emission probabilities, HMM does not
typically allow measurement-level parameters; instead, it
treats all observations from the same latent state as
homogeneous observations from the same emission model
and estimates the state-specific emission probabilities (or
corresponding distributional parameters) that apply to all
within-state observations.

Let τ contain the parameters of the emission probabil-
ities for all indicator variables and states. HMM is then
defined by a triple, θ = (π , P, τ ). For estimating τ , we use
an R package, depmixS4 (Visser & Speekenbrink, 2010).
The model is commonly fit to the person-level data under

the weak measurement invariance assumption. Although the
program allows sample-level fitting, our empirical analy-
sis based on the simulated and real data suggests that the
estimation tends to experience recurrent convergence prob-
lems. To make the inference adequately reliable across the
analyses, we apply HMMs to the individual student-level
data. This approach also follows the existing practice in the
HMM application. Based on our empirical analysis, we dis-
cuss some possible consequences of fitting at the person
level when the problems have distinct measurement effects.

Flow progression in CTA

The analysis based on the HMM was performed as follows.
The input data included observations from N = 2219
students identified at the planning stage. The analysis used
the same indicator variables and covariates as before but
applied minimal transformation given the flexibility in
the estimation software. Specifically, we applied the log
transformation to the task interaction time and used the
other count variables as collected.

Several distinctions made in the HMM analysis are worth
mentioning. In the preceding analyses, we categorized
the count variables into three levels to accommodate the
constraints in the estimation programs. The HMM analysis
however used the raw data and is expected to show greater
sensitivity to the manifest variables. In some cases, the large
variation in the indicator values can lead to overextraction
of latent states because of the increased heterogeneity.

Second, unlike the other models, HMMs were fit to
the individual student-level data and do not account for
systematic effects of the problems. In CTA, students
received different problem sets in various orders, and
it made it difficult to unravel the variance in the
measurement outcomes with the current HMM estimation
software. Our preliminary study based on the simulated
data suggests that ignoring measurement variance can
result in overextraction of latent states. The current study
attempted to alleviate this tendency by (i) focusing on
a single unit of homogeneous problems (i.e., es1), (ii)
conducting analysis in an exploratory manner, (iii) using
a conservative information criterion in the final model
selection, and (iv) giving greater priority to the models
with clear binary interpretation. Specifically, when fitting
the HMMs, we assumed one to ten latent states at each
time point and determined a final model applying the most
restrictive criterion, CAIC (Burnham & Anderson, 2002;
Sugiura, 1978). The range of the number of latent states
was determined in the precursory analysis by weighing the
interpretability and generalizability of the models. While
more complex models are conceivable, we did not explore
these possibilities because our primary goal in this study
was to make a binary decision on the latent states that can
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be characterized as in- and out-of-flow. When the initial
model fitting suggested multiple states, we refit the two-
state HMM to see if the estimated states can be simplified
to two states.

Third, recall that all covariates used in this study were
time-invariant. When HMMs are fit to the person-level data
with the time-invariant covariates, the covariates become
constant and play no part in estimating the transition
probabilities. Our supplementary analysis suggests that,
although the constant covariates function as incidental
variables, they can help choose a parsimonious solution. As
another way of mitigating the measurement noninvariance
problem, we therefore retain the covariates when fitting the
HMMs though no particular inference could be attached to
the covariate effects.

The outcomes of the HMM analysis were evaluated
in three aspects: (i) intricacy of the latent process, (ii)
progression of latent states across tutoring (e.g., when does
a student most likely lose attention?), and (iii) consistency
with the preceding analyses. Below, we present results of
the HMM analysis and give three representative example
students that showed typical transition patterns.

Results

As with the other analyses, we applied the information
criteria to determine a final model. Among the criteria
evaluated, ABIC and AIC suggested the most complex
models with a minimum of one and a maximum of ten
states. CAIC and BIC suggested simpler models with a
maximum of four states. In the following, we present
results from CAIC that led to the most parsimonious and
clear model solutions. The outcomes of CAIC suggest that
about 39.97% students (N = 887) displayed a homogeneous
latent state as they advance problems, 51.83% (N = 1150)
displayed two states, 8.07% (N = 179) three states, and
.14% students (N = 3) four latent states. There was weak
correlation between the estimated number of states and the
number of observations (r = .241), suggesting that students
with more problem attempts tended to display more diverse
states.

Figures 2, 3 and 4 present three example students that
were suspected of showing out-of-flow during tutoring.
Each student was identified as displaying two, three, and
four states across the evaluated measurement times. The
first three plots at the top of each figure present observation
series from the indicators. The last plot shows the sequence
of latent states estimated across time. The dotted vertical
lines indicate the points at which the problems were
demarcated in the LTM analysis. Along with the figures, we

also present estimates of the emission and transition model
parameters in Table 12.

The student in Fig. 2 worked on a total of 57 problems
over one hour and 43 minutes. As can be noted, the student
maintained the same state in most cases but displayed
somewhat deviant behavior toward the end of tutoring. In
the early stage, the student solved most problems on his
own and rarely made errors (.087 on average), resulting in
average interaction time 54.49 seconds (per problem). As
tutoring progressed, the student made more errors (6.909
on average) and requested more help (2.727), spending
average time of 2.794 minutes. We restate that the problems
assigned in CTA were adapted to the student’s algebraic
ability, and it is not generally expected to have a radical
change in the outcome values. The continued digression
from the normal state suggests that the student was either
paying little attention or struggling with the problems. The
transition probability estimates in Table 12 suggest that
once the student adopted a particular mode, he tended to
maintain the same mode in the subsequent problems. The
probabilities of staying in the same state were .934 and .798
for each state.

Figure 3 presents a transition pattern of a student who
displayed three states. The student worked on 79 problems
in 63 minutes. As evident from the figure, the student
displayed distinct behaviors in each state. When in State
1, he seldom made mistakes (.143 on average), asked for
no hints, and spent little time on the problems (21.224
seconds on average). As he approaches the midpoint of
tutoring, he tended to make more errors and asked for
nonzero help. Specifically, when the student was in State
2 (28th–51st problems), he made .417 errors and asked
for 1.792 hints on average. When he was in State 3, he
showed a stronger tendency to make errors (4.167) and ask
for help (3.833), and spent substantially longer time on
the problems (3.584 minutes). Across the evaluated time
periods, he showed State 1 most frequently (62.03%, T =
49 items), and States 2 (30.38%, T = 24) and 3 (7.59%,
T = 6) in sequence. Combining the results, we conclude
that States 2 and 3 reflect the state of out-of-flow. In both
states, the student spent more time than usual and made
distinctly more trials. These two states differed only in
the magnitude of the indicators with those from State 3
reflecting greater detachment. As we fit the HMM assuming
two latent states, States 2 and 3 indeed merged together
and formed one deviant state, corroborating our hypothesis.
The transition model in Table 12 suggests that the student
showed a strong propensity to maintain the same S1 and S2

attitudes once adopted. The staying probabilities in these
states equaled .959 and .957, respectively, indicating high
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Fig. 2 An example student displaying two states. Note. State 1 was considered a flow state. The dotted vertical lines indicate the points at which
the problems were demarcated in the LTM analysis

stationarity. When the student was in State 3, he maintained
the same state with .598 probability and moved to State 2 or
1 with probabilities of .204 and .198, respectively.

Figure 4 presents a state transition pattern of a
student displaying four attitudes. The student attempted 50
problems in 51 minutes. Figure 4 shows that the student

rarely made errors and asked for only a few hints when
working on the first three-quarters of the unit. As he worked
on the last quarter, he began to show deviating behaviors,
making many mistakes and asking for multiple hints. The
indicator patterns in each state suggest that when the student
was in State 1 or 2, he made no or very few mistakes (.250
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Fig. 3 An example student displaying three states. Note. State 1 was considered a flow state. The dotted vertical lines indicate the points at which
the problems were demarcated in the LTM analysis

on average) and asked for zero help. When in State 3, the
student made 5.333 errors and asked for more help (.833
hints on average). In State 4, the student showed a sharp
increase in both indicators, making 24.333 mistakes and
asking five hints on average. The total task interaction time
similarly indicated different degrees of lassitude. In each of

the four states, the student spent on average 19.873 seconds,
49.216 seconds, 1.470 minutes, and 5.829 minutes on the
problems, respectively, indicating that the student spent
substantially longer time when in States 3 and 4. Across the
50 problems attempted, the student displayed States 1 and
2 most frequently (42%, T = 21; 40%, T = 20 each) and
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Fig. 4 An example student displaying four states. Note. State 1 was considered a flow state. The dotted vertical lines indicate the points at which
the problems were demarcated in the LTM analysis

States 3 and 4 less frequently (12%, T = 6; 6%, T = 3 each).
When the two-state HMM was fit to the same data, States
1 and 2 were grouped together to form one state, describing
82% of the observations (T = 41 problems). States 3 and 4
combined together to form the other state, explaining 18%
of the observations (T = 9 problems). The present results

suggest that States 3 and 4 are likely to indicate the deviant
state. In both states, the student tended to make distinctly
large numbers of errors and lingered on the problems longer.
The transition probability estimates in Table 12 suggest that
the student showed high stationarity when in State 1 or 2
(.780 probability on average). When he was in State 3 or 4,
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Table 12 Emission and transition model parameters of HMMs

Emission Transition

Task Time Num Err Num Hint From \To St = 1 St = 2 St = 3 St = 4

Student 1 (M = 2; Grade 9, White-Asian, Male, Free lunch, No ESL)

State 1 N (10.448, .9072) Pois(.000) Pois(.088) St−1 = 1 .934 .066

State 2 N (11.917, .4912) Pois(2.731) Pois(6.916) St−1 = 2 .202 .798

Student 2 (M = 3; Higher grade, Black-Multi, Male, Free lunch, ESL)

State 1 N (9.840 .4872) Pois(.000) Pois(.143) St−1 = 1 .959 .000 .041

State 2 N (10.375, .3512) Pois(1.791) Pois(.413) St−1 = 2 .000 .957 .043

State 3 N (12.082, .6402) Pois(3.820) Pois(4.152) St−1 = 3 .198 .204 .598

Student 3 (M = 4; Higher grade, White-Asian, Male, Free lunch, No ESL)

State 1 N (9.875, .2672) Pois(.000) Pois(.000) St−1 = 1 .788 .068 .097 .047

State 2 N (10.706, .4282) Pois(.000) Pois(.251) St−1 = 2 .228 .772 .000 .000

State 3 N (11.360, .2482) Pois(.824) Pois(5.286) St−1 = 3 .000 .605 .197 .197

State 4 N (12.687, .3872) Pois(5.000) Pois(24.333) St−1 = 4 .000 .000 .667 .333

Note. M = Number of latent states

he showed great mobility shifting to each State 2 (.605) or 3
(.667).

Conclusion

The purpose of this study was to explore a latent variable
modeling approach for tracking learning flow in the ITS
data. The study considered three models that give discrete
profiles of latent states and applied to log data from
CTA to demonstrate the application. In drawing learning
flow, the study especially focused on three aspects: (i) the
progression of flow states across tutoring, (ii) interaction
modalities under in- and out-of-flow states, and (iii) relation
between the flow and student’s demographic profiles.
The experimental application suggests that the models
can reveal substantive information about students’ flow
process. Despite the difference in the assumptions and data
constraints, the models suggested consistent findings on
the flow pattern and students’ learning behaviors under
different flow states.

The models were applied in three gradual phases. The
first stage applied the latent class models to identify latent
profiles underlying the knowledge-level data. The study in
particular applied the random-effect LCMs to account for
extra variance in the students and measurement stimuli.
For fitting the models, the evaluation data were rearranged
at the knowledge level to regulate the dimensionality
of measurement times. The results from the latent class
analysis suggested that students generally showed uniform

behaviors when working on the CTA. A small group of
students (18.97%) displayed deviant behaviors, spending
distinctly longer time, asking for more help, and making
more errors. The latent profile estimates suggested that
students with lower pre- or gain-scores, students in minority
groups, and male students were more prone to exhibit
deviating behaviors from the flow state.

As the latent class analysis revealed that students
displayed distinct behaviors under different learning states,
subsequent analysis examined the evolution of latent states
across tutoring windows. The state profiles identified in
the latent class analysis gave only temporal portrayal of
the states that underlie at each measurement time and
do not provide a full picture of the flow development
across tutoring. The second analysis was conducted to
evaluate such progression of flow states across the tutoring
sessions. Specifically, the study applied the latent transition
models to explicitly model the evolution of flow states
across the problem series. To model different amounts of
measurement noninvariance, the models were modified to
include person-level random intercepts. The results from the
transition analysis suggested that the majority of students
showed adequate persistence in general (about 68.58% of
the time), spending a reasonable amount of time and making
conscientious efforts. At other times, students showed
deviating behaviors (31.42%), dawdling on the problems
and making distinctly more attempts. The deviant behaviors
appeared more prevalently in the beginning and final stages
of tutoring, possibly suggesting warm-up or fatigue. The
transition probability estimates suggested that students with
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higher pre- and gain-scores and male students had a stronger
tendency to stay in flow. Female students and students in
minority ethnic groups were more likely to transition to the
deviant state.6

The last analysis examined flow development across
individual problems using the hidden Markov models.
The latent transition analysis revealed heterogeneity in the
students’ behaviors and their flow transition over time
but the analysis was performed on the aggregated data to
accommodate the constraints in the estimation software.
The HMM allows a finer-grained description of flow
transition at the individual measurement level and is more
flexible in modeling different kinds of indicator variables.
In this study, HMMs were applied to examine flow states
underlying the individual problem solvings. The models
were fit to the student-level data to address the possible
measurement noninvariance. The outcomes of the model
generally indicated consistent findings with those from
LCM and LTM while giving more detailed descriptions
of the flow progression and revealing specific problems at
which points students deviated from the flow.

As described, the findings from the three analyses were
generally consistent and indicated similar conclusions on
the flow states and related patterns. The information from
each model was however unique enough to warrant separate
attention and appeared to complement each other such
that they together give a comprehensive overview of the
students’ behaviors and underlying states.

While the present study demonstrated the potential utility
of the latent variable models for describing the ITS data, it
also revealed room for further improvement. As illustrated
throughout the analyses, the models required additional
modifications to accommodate the assumptions and esti-
mation constraints. The latent class model needed random-
effect terms to account for extra variance inherent in the
students and measurement stimuli. Introducing a large num-
ber of random-effect terms however created a challenge in
fitting the models and necessitated corrective steps. In addi-
tion, the model did not explicitly describe the progression
of latent states, limiting the inference to each measurement
time. The latent transition model improved some of the lim-
itations of the latent class model, for example, by explicitly
modeling the state transition and applying a more afford-
able estimation routine. The model however placed strict
constraints on the number of measurements and the mea-
surement invariance. The currently available estimation pro-
grams are not generally suited for intensive time-series data

6The flow pattern in gender differed between the latent class and
transition analyses because in LCMs the covariates were used to
predict state probability at a given time point whereas in LTMs the
covariates were used to model transition probability between the states.

and require transformation or recoding of indicator variables
to meet the distributional assumptions of the estimation
program. Among the three latent variable models, the hid-
den Markov model was most flexible in modeling different
kinds of indicator variables and placed the least constraint.
This flexibility was however achieved at the cost of ignor-
ing systematic effects of measurement stimuli, and con-
sequently, it was more susceptible to random fluctuations
in the indicators and was likely to overextract latent states.

Our empirical analysis of CTA data suggests that, while
the current latent variable models have some merits, the
development of a more comprehensive and systematic
modeling framework is generally more desirable. For
example, the current modeling frameworks can be extended
to accommodate various indicator variables and parametric
distributions that are commonly observed in the interactive
ITS. The framework can also be further advanced using a
more efficient estimation program that supports the analysis
of intensive time-series data and allows integration of
covariate information as well as prior information on the
latent states. Together with the efficient estimation routine,
the model can also be used online to signal a change in
behaviors in real time.

Open Practices Statement:
The program code and data that support the findings of

this study are available from the authors’ GitHub pages:
https://github.com/HyeonahKang/LatentVariableModel-Intel-
ligentTutor; https://github.com/adamSales/SELS.

Appendix A: Measurement properties
of the problems within units

Given the lack of supporting tools, summary statistics of the
problem indicators were used to examine the measurement
invariance. For count data (i.e., number of hints/errors),
we examined the mean and standard deviation (SD) of the
observed values, E(Xit : i = 1, . . . , N) and SD(Xit :
i = 1, . . . , N), where i and t each indexes students
and problems (administered across time). For timing data
(i.e., interaction time), we examined the mean and SD of
the log-transformed values, E(log Xit : i = 1, . . . , N)

and SD(log Xit : i = 1, . . . , N). The (dis)similarity of
the statistics across the problems within a unit was then
evaluated by the variance across the problems. Table below
reports the variance of the summary statistics observed
from each unit. As can be seen, es1—the unit examined
in this study—, showed the smallest variance on both the
evaluation criteria. The unit was administered to a fairly
large sample of students and yet showed small variance in
the measurement summary statistics.
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Table 13 Variance of summary statistics of the problems within each unit

Mean SD

Unit N nerr nhint ltime Avg nerr nhint ltime Avg

cta1 01 2841 10.258 1.285 .222 3.921 5.658 .908 .005 2.190

cta1 02 2469 55.882 4.542 .073 20.166 62.809 4.092 .002 22.301

cta1 04 2067 7.970 .800 .290 3.020 5.820 .869 .002 2.230

cta1 06 1531 53.186 3.725 .319 19.076 66.601 4.380 .000 23.661

cta1 08 1045 6.631 .705 .084 2.473 6.239 .769 .001 2.336

cta1 10 1129 3.076 .420 .071 1.189 2.126 .448 .001 .858

cta1 13 1677 3.349 .370 .112 1.277 1.901 .423 .001 .775

cta1 14 974 4.517 .749 .119 1.795 6.102 1.522 .004 2.543

cta1 12 702 12.883 1.280 .225 4.796 3.459 .944 .011 1.471

es 01 2270 .354 .021 .690 .355 1.391 .351 .028 .590

es 02 1646 1.000 .177 .442 .540 4.193 2.336 .037 2.189

es 03 1315 2.365 .144 .528 1.012 7.169 3.761 .021 3.650

es 04 1232 .491 .058 .624 .391 2.814 .799 .017 1.210

es 05 701 1.134 .070 .647 .617 3.554 .518 .016 1.363

es 07 784 14.207 4.673 .760 6.547 11.050 2.566 .015 4.544

General linear form 743 10.329 2.088 .065 4.160 14.270 .942 .051 5.088

Linear inequal graphing 516 2.671 .158 .079 .969 17.273 2.077 .004 6.451

Quad add area alg1 422 22.198 2.445 .053 8.232 29.401 4.255 .033 11.230

Quad vertical motion 326 38.662 3.878 .076 14.205 103.537 4.516 .007 36.020

expt product simp a-es 401 .413 .034 .463 .303 4.730 .549 .028 1.769

expt quotient simp a-es 397 7.444 .708 .510 2.888 9.441 1.545 .004 3.663

Polynomial arith es 279 .614 .012 .058 .228 1.371 .049 .009 .476

Exponential functions 61 31.586 3.208 .095 11.630 47.612 6.037 .006 17.885

Unit conversions 1

Inequality systems 1

glf modeling 1

Ratiol irratiol numbers 1

Note. nerr = Number of errors. nhint = Number of hints. ltime = Logarithm of interaction time. Avg = Average

Appendix B: Fitting the random-effect latent
class model in Stan

The latent class model described in “Flow across
tutoring stages” was fit in Stan, called from R via the
rstan package. In this appendix, we will first give the
full likelihood equation and prior model, and then the
Stan code defining the model. Complete replication code
may be found the in this manuscript’s companion GitHub
repository.

The full likelihood is given by

P(Y | η, Z, δ, β, μ, σ , �δ, σ η)

=
N∏

i=1

Ti∏

t=1

⎧
⎨

⎩

M∑

m=1

P(Sit =m | ηi, Zi =zi , β)

3∏

j=1

Pj (Yij t

= yijt | Sit = m, δjk[t])
} × · · ·

×φ

(
β0

5

) 3∏

j=1

{

φ(σδj
)
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φ
(μjm

5

)}

×
N∏

i=1

φ

(
ηi

ση

) 18∏

k=1

φ3

(
�

1/2
δ δk

) 6∏

l=1

φ(βl)

where φ(·) is the standard normal density, φ3(·) is the stan-
dard multivariate normal density with three components,
and σ δ = (σδj

: j = 1, . . . , 3) represents the three
diagonal elements of the covariance matrix �δ .

The Stan code is written as
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data {

int<lower=1> nworked; //number of worked items--rows of data

int<lower=1> nprob; // number of items

int<lower=1> nstud; // number of respondents

int<lower=1> ncov; // number of person-level covariates

int<lower=0> hint[nworked];

int<lower=0> err[nworked];

real ltime[nworked];

int<lower=1,upper=nprob> prob[nworked];

int<lower=1,upper=nstud> stud[nworked];

matrix[nstud,ncov] X;

vector[3] zeros;

real<lower=0> sigStud;

}

parameters {

real meanTime[2];

real<lower=0> sigTime[2];

real effHint[2];

real effErr[2];

vector[3] probEff[nprob]; // hint, err, time

corr_matrix[3] OmegaProb;

vector<lower=0>[3] sigProb;

real alpha;

vector[nstud] studEff;

vector[ncov] beta;

ordered[2] cHint;

ordered[2] cErr;

}

transformed parameters {

vector[nstud] nu=inv_logit(alpha+X*beta+studEff);

cov_matrix[3] SigmaProb=quad_form_diag(OmegaProb, sigProb);

}

model{

// priors

meanTime˜normal(0,5);

sigTime˜normal(0,5);

effHint˜normal(0,5);

effErr˜normal(0,5);

sigProb˜normal(0,1);

to_vector(beta)˜normal(0,1);

studEff˜normal(0,sigStud);

probEff˜multi_normal(zeros,SigmaProb);

//measurement model

for(w in 1:nworked)

target += log_sum_exp(

log(nu[stud[w]])+

ordered_logistic_lpmf(hint[w]|probEff[prob[w]][1]+effHint[1],cHint)+

ordered_logistic_lpmf(err[w]|probEff[prob[w]][2]+effErr[1],cErr)+

normal_lpdf(ltime[w]| probEff[prob[w]][3]+meanTime[1],sigTime[1]),

log(1-nu[stud[w]])+

ordered_logistic_lpmf(hint[w]|probEff[prob[w]][1]+effHint[2],cHint)+

ordered_logistic_lpmf(err[w]|probEff[prob[w]][2]+effErr[2],cErr)+

normal_lpdf(ltime[w]| probEff[prob[w]][3]+meanTime[2],sigTime[2])

);

}
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Table 14 Estimated posterior means

μ1 σ μ2 μ3

Chain Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

1 −0.50 0.99 0.76 0.84 −1.76 2.43 −6.29 6.00

2 0.91 −0.58 0.84 0.76 1.93 −2.26 6.18 −6.17

3 1.02 −0.48 0.84 0.76 1.85 −2.34 6.14 −6.11

4 −0.46 1.03 0.76 0.84 −2.07 2.12 −5.95 6.32

5 −0.50 0.99 0.76 0.84 −2.60 1.60 −6.14 6.14

6 1.00 −0.49 0.84 0.76 2.53 −1.66 5.70 −6.53

7 −0.51 0.98 0.76 0.84 −1.85 2.34 −5.78 6.57

8 −0.48 1.01 0.76 0.84 −2.19 2.00 −5.95 6.24

This model syntax was saved in a file called
lca2class.stan, and the data was encoded in R in an
object named sdat. Then we fit the model with the code:

mod <- stan(’lca2class.stan’,data=sdat,

iter=2000,chains=8)

That is, we fit eight separate chains, beginning from
randomly-chosen initial values, running for 2,000 iterations
each. By default, the first 1,000 of these iterations were
denoted as “warm-up,” and discarded. The hope is that the
Markov chains would have each converged on the posterior
distribution during the warm-up iterations. We checked the
convergence of the algorithm by examining traceplots and
the Gelman-Rubin R̂ statistic (Gelman et al., 2013, § 11.4).
Inference was based on the remaining 1,000 iterations in
each chain, which we consider as samples from the posterior
distribution.

Relabeling classes in LCM Two different runs of a Markov
Chain Monte Carlo estimation technique can return
essentially equivalent posterior estimates, but with the labels
of the latent classes switched. Here we illustrate our ad hoc
solution to label switching.

First, some parameters in the model are invariant to label
switching, such as the optimized log posterior, denoted
lp in rstan. We began assessing model convergence
by inspecting lp . If this parameter has converged,

Table 15 Gelman-Rubin R̂

μ11 μ12 σ1 σ2 μ21 μ22 μ31 μ32

Original 6.88 7.10 11.32 10.22 1.18 1.18 1.91 1.96

Relabeled 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00

we re-label the classes and assess convergence on the
remaining parameters.

To re-label, we first examined the posterior means for
each of the four measurement parameters, μ1, μ2, and
μ3, location parameters for the distributions of time spent,
errors made, and hints requested, respectively, and σ ,
parameterizing the scale of the distribution of time spent, for
each of the two latent classes, as estimated by the 8 Markov
chains. These are reproduced in Table 14.

Note that for parameter μ1, chains 1, 4, 5, 7, and 8 have
means between -.51 and -.46 for class 1 and between 0.98
and 1.03 for class 2, but that these values are reversed for
chains 2, 3, and 6. Similar patterns hold for measurement
parameters σ , μ2, and μ3. This discrepancy between the
chains leads to the unacceptably large R̂ values in the first
row of Table 15. However, if we switch the labels of classes
1 and 2 for chains 2, 3, and 6, all chains roughly agree on all
four parameters, leading to acceptable R̂ values in the 2nd
row of Table 15. Importantly, we switch the labels on the
same chains—2, 3, and 6—for all parameters.

Once we have determined the chains whose labels need
to be switched, we relabel those chains’ estimates for
Pr(Sit = m|ηi, Zi = zi , β) by subtracting the initial draws
from 1, and we correct posterior draws for structural model
coefficients β by multiplying the original draws by −1.
Once the draws have been suitably transformed, we pooled
the draws across all 8 chains to calculate the estimates in
Tables 3 and 11.

Code for this full process can be found on the Github site.
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