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Abstract
We present a novel method for quantifying transitions within multivariate binary time series data, using a sliding series of 
transition matrices, to derive metrics of stability and spread. We define stability as the trace of a transition matrix divided 
by the sum of all observed elements within that matrix. We define spread as the number of all non-zero cells in a transi-
tion matrix divided by the number of all possible cells in that matrix. We developed this method to allow investigation into 
high-dimensional, sparse data matrices for which existing binary time series methods are not designed. Results from 1728 
simulations varying six parameters suggest that unique information is captured by both metrics, and that stability and spread 
values have a moderate inverse association. Further, simulations suggest that this method can be reliably applied to time 
series with as few as nine observations per person, where at least five consecutive observations construct each overlapping 
transition matrix, and at least four time series variables compose each transition matrix. A pre-registered application of this 
method using 4 weeks of ecological momentary assessment data (N = 110) showed that stability and spread in the use of 20 
emotion regulation strategies predict next timepoint affect after accounting for affect and anxiety’s auto-regressive and cross-
lagged effects. Stability, but not spread, also predicted next timepoint anxiety. This method shows promise for meaningfully 
quantifying two unique aspects of switching behavior in multivariate binary time series data.

Keywords Multivariate binary time series · High dimensionality · Transition matrix · Switching · Emotion regulation

Patterns within multivariate binary time series occur eve-
rywhere. To understand individual differences in how peo-
ple use various emotion regulation strategies throughout 
their lives, one could repeatedly ask them whether or not 
they were using each of the following common strategies: 
distraction, cognitive reappraisal, expressive suppression, 
experiential avoidance, acceptance, social support seeking, 
and rumination. Their answers would result in a multivariate 
binary time series space comprised of seven univariate time 
series (one time series per strategy).

To clarify how multivariate binary time series data can 
contain complex patterns, consider the choices of a chef. 
When cooking, a chef can choose to flavor their food with 
or without cumin. The sequence of a chef’s choice to use or 
not to use this spice over time can be modeled as a binary 
time series. On its own, the information contained in this 
time series can provide some insight into what cuisine the 
chef likely specializes in. However, chefs generally combine 
many spices to create their desired flavor profiles. Suppos-
ing a chef stocks ten spices, then ten binary univariate time 
series—not one—comprise the choices that define a multi-
variate system. Modeling univariate binary time series in 
isolation of other relevant time series can obscure the true 
complexity of the system. Without considering the multi-
variate binary time series space of all ten spices, for exam-
ple, it is not clear whether the chef’s use of cumin at one 
time point is one of many spices used to create a rich curry 
or is the standalone spice in a burrito filling. Modeling the 
use of only one spice at a time also reduces the opportunity 
to observe the number of unique spice combinations a chef 
switches between each time they cook. This could obscure 
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insight into how the chef varies the meals they cook over 
time. Novel and nuanced insights into a system are gained 
when interactions and transitions between multiple binary 
time series data are considered together. Although binary 
time series data are common, modeling complex patterns in 
a high-dimensional multivariate binary time series system 
can be challenging when using existing methods.

Existing methods for analyzing binary time 
series data

Markov models are perhaps the most common class of mod-
els used to analyze binary time series outcomes. Anderson 
and Goodman (1957) first developed hypothesis testing and 
maximum likelihood estimation procedures to test transition 
probabilities of Markov chains. Traditionally, Markov mod-
els have been used to assess the likelihood that a transition 
will occur between two states of a variable of interest: e.g., 
identifying the point when a patient is most likely to transi-
tion from being alive to dead (Muenz & Rubinstein, 1985). 
More recently, Tian and Anderson (2000) generalized these 
procedures to study joint transition probabilities between 
more than one variable of interest at a time; however, these 
procedures are limited to a small number of variables (i.e., 
four) because they return nonidentifiable parameters when 
data are sparse. Sparse data matrices can occur when many 
time series are included because as more time series are 
added, the size of the state space and the number of potential 
combinations between time series grows combinatorically. 
Additionally, modeling every possible state combination 
as its own discrete state quickly becomes computationally 
intractable. To illustrate, consider that you are interested in 
20 binary time series. If each possible state combination is 
modeled as its own unique state, then  220 combinations are 
possible, and the solution quickly becomes intractable.

Recurrence quantification analysis (RQA; Webber & 
Zbilut, 1994) has been used to understand switching pat-
terns in univariate time series; visualizing and character-
izing aspects of change in non-linear dynamical systems. 
Using a recurrence plot (Eckmann et al., 1987), researchers 
can derive metrics such as the probability that a specific 
state will recur (recurrence rate) and the predictability of the 
system (determinism), among others (see Webber & Mar-
wan, 2015 for review). Since their debut in the early 1990s, 
bivariate extensions (Marwan & Kurths, 2002; Romano 
et al., 2004; Zbilut et al., 1998) allow researchers to study 
the correlation, coupling, or synchronization between two 
dynamical systems using cross recurrence plots or joint 
recurrence plots. Multidimensional cross-recurrence quan-
tification analysis extended the bivariate case to study the 
relationship between multidimensional rather than binary 
time series (Wallot, 2019). However, the number of time 

series that can be investigated jointly with multidimensional 
RQA becomes computationally intractable as the number of 
time series under study increases.

While Markov models and RQA have made exciting con-
tributions to the study of complex multivariate time series, 
they were not designed to analyze high-dimensional mul-
tivariate binary data. When data are too sparse to return 
identifiable parameters with these methods, Tian and Ander-
son (2000) recommend that researchers collapse their data 
into fewer transition categories (e.g., by conceptually or 
empirically using factor-level information, by modeling 
only those states with conditional independence) or model 
the processes separately. While these dimension reduction 
approaches may be sufficient for some research questions, 
other questions depend on capturing transition information 
involving many time series. For example, a researcher might 
want to study how a person transitions between using 40 
possible emotion regulation strategies; reducing strategy-
level specificity to a few broad categories would prevent 
asking the research question. We propose the current method 
as one tool for researchers who are interested in studying 
transitions within large, complex, high-dimensional systems 
that are too sparse to be effectively analyzed using existing 
RQA or Markov chain methods.

Use cases for high‑dimensional binary time 
series systems

High-dimensional binary time series data are prevalent 
across many fields. For example, health insurance admin-
istrators track which service a patient receives each time 
they file a claim. Developmental psychologists code what 
classroom activity a kindergartener is engaging in every 5 
minutes throughout the school day. Therapists note where a 
patient was located each time that they have a panic attack. 
Dieticians track what types of food their clients eat through-
out the day. Linking response patterns across successive 
observations shows person-level patterns in time-ordered 
changes between measured states. As such, increasing mod-
eling options for complex, high-dimensional systems have 
the potential to expand the range of testable research ques-
tions afforded by those data streams. For example, a health 
insurance payee with multiple comorbidities might alter-
nate between using a wider range of services than a healthy 
payee. A student in a traditional public-school setting might 
explore fewer activities in the classroom compared to a stu-
dent in a Montessori school. A patient with post-traumatic 
stress disorder might tend to exclusively have panic attacks 
in the location that is linked with a traumatic event whereas a 
patient with panic disorder might tend to have panic attacks 
across many different locations. A very picky eater might 
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report less variety in the food groups they eat over time com-
pared to a more adventurous eater.

Proposing a new method

To offer a way to analyze large, complex, sparse phase 
spaces, we present a new method to quantify switching 
behavior between binary variables over time using transition 
matrices. This method is specifically designed for research 
questions interested in how a multivariate binary system 
switches between endorsed states over time. We quantify 
binary switching according to two dimensions: stability 
and spread. We define stability as the proportion of tran-
sitions within the multivariate time series when the same 
binary time series is endorsed at consecutive timepoints (i.e., 
the trace of a transition matrix) relative to all consecutive 
between- and within-time series transitions observed within 
the multivariate time series (i.e., the sum of all elements 
within that transition matrix).1 This metric is useful when 
the extent to which a system transitions from endorsing one 
binary variable to endorsing a different binary variable is 
of theoretical interest. We define spread as the proportion 
of unique transitions observed between all possible binary 
time series within a multivariate time series (i.e., the number 
of non-zero cells observed in a transition matrix) relative 
to the total number of possible transitions afforded by the 
time series (i.e., the number of cells within that transition 
matrix). This metric is useful when the diversity of the tran-
sition states that are observed within a multivariate binary 
time series affording many possible transition states is of 
theoretical interest.

However, the quantified pattern for how a system changes 
over time might not only vary between people but also 
within individual. For example, a health insurance payee 
might alternate between using fewer services when they are 
healthy compared to when they are actively seeking treat-
ment for a health condition. A dietician’s client with binge 
eating disorder might report eating a small range of “safe” 
foods during the day but report eating many food groups 
with frequent switching in consumed food during nightly 
binge episodes. Calculating all the transitions within these 
systems at once would obscure meaningful within person 

changes over time. Thus, this method also incorporates the 
option to repeatedly calculate stability and spread on dif-
ferent parts of the full timeseries using a sliding series of 
transition matrices.

First, we mathematically define and describe charac-
teristics of the method according to results from an initial 
simulation study. We also conduct an initial comparison 
between our method and RQA. Next, to illustrate its poten-
tial to advance theory, we apply the proposed method to 
a real data example with high socially anxious individuals 
who repeatedly reported their in-the-moment use of 20 emo-
tion regulation strategies across 4 weeks.

Methods

In this section, we define our method for measuring concepts 
of stability and spread within multivariate binary time series 
data. We calculate stability and spread by first constructing 
individual-level matrices that count all transitions that occur 
between successive time points within a multivariate binary 
time series. Then, we compute stability and spread from 
the resulting transition matrix. Instead of constructing only 
one transition matrix using data from the entire time series, 
which would result in only one stability and one spread value 
per person, we take a repeated measures approach that is 
similar to that which was used by Marwan and colleagues 
(2002). By using small windows that slide over the time 
series to segment it into a set of subseries, multiple transi-
tion matrices are constructed per person. This allows for the 
detection of within-person variation in stability and spread 
over time.

Defining a transition matrix

We define a transition matrix as

Where Xij is a k x k transition matrix for person i within 
time window j; k is the number of binary variables to be 
included in the analysis;2 N is the number of participants; 

(1)�ij ∶ i ∈ {1, 2,… ,N}, j ∈
{

1, 2,… , Ji
}

1 Given our focus on quantifying patterns of switching amongst 
endorsed binary states over time, we define transitions as those that 
occur between endorsed variables in two successive observations 
(i.e., observed-to-observed). We do not treat unobserved-to-observed, 
unobserved-to-unobserved, or observed-to-unobserved as transitions 
because, in the high-dimensional and sparse data systems for which 
this method was designed, they would far outnumber the observed-
to-observed transitions and potentially make it more challenging to 
detect these less frequent transitions that are of greater interest.

2 We designed this framework to be flexible. If the researcher is 
interested in modeling n states where at least one of the states is 
always observed (e.g., weather—weather can be described even on a 
still, clear day), then k = n. If the researcher is interested in modeling 
states where it is possible that, at some time points, none of the rel-
evant states would be observed (e.g., medication use—a person is not 
always taking a pill), then the researcher has two choices. First, they 
could pre-process the data to create a new time series that codes a 1 
every time that none of the measured states were selected and 0 every 
time that at least one of the measured states was selected. This choice 
would be appropriate if the researcher is interested in also including 
transitions into and out of states of “none of the above” and thus k 
= n +1. Alternatively, they could retain k = n such that if none of 
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Ji is the number of transition matrices that are constructed 
for each individual after sub-setting all of the individual’s 
observations into a series of smaller windows of observa-
tions. A hyperparameter W can be defined to set the num-
ber of observations that contributes to a given matrix Xij, 
if different from the total number of observations. W must 
be a positive integer ≥ 2 and cannot exceed the number of 
observations. The value of Ji is determined by W relative 
to the length of the individual’s overall time series and the 
lag that is set between initial observations of the subseries 
that construct two successive transition matrices (i.e., the 
windowing lag). Assuming a windowing lag of one, then

where Li is the number of observations in person i’s 
overall time series. As Eq. (2) shows, if W equals the total 
number of time points observed for person i, then only one 
transition matrix will be constructed for that person (Xi1). If 
W is less than Li, then Ji > 1.

Building  Xij to depict switches over a multivariate 
subseries

We first create Xij with k x k dimensions and initialize all 
elements to zero. To build Xi1, we iterate through person i’s 
subseries of length W and increment elements of Xi1 by 1 for 
each observed transition between k options for all observa-
tions within the first subseries. If the same binary variable 
(e.g., variable A) was selected at consecutive time points, 
we increment the diagonal of Xi1 in the element (a,a) of the 
matrix. If two different binary time series variables were 
selected at consecutive time points (e.g., variable A then 
variable B), we increment the off-diagonal of Xi1 in element 
(b,a). We continue this process until the last transition within 
individual i’s first subseries is accounted for, stopping with 
the Wth observation.

To build Xi2, we iterate through person i’s second sub-
series of length W, starting with their second overall obser-
vation and stopping with time series observation W+1. We 
continue building transition matrices, sliding the subseries 
window down the length of person i’s overall time series by 
one each time until observation Li is captured in Ximax(ji). 
Unlike traditional Markov models, our method can account 
for multiple states being endorsed simultaneously. Addi-
tionally, the windowed approach to the data allows for this 
method to account for non-stationarity inherent in many time 

(2)Ji = Li −W + 1

series derived from human behavioral data (Boker et al., 
2002; Molenaar et al., 2003).

Visual demonstration

To demonstrate, we provide a verbal description of this pro-
cess using a simple case that is accompanied by a visual 
representation in Fig. 1. Suppose a given individual i rated 
whether or not each of four different outcomes  (k1,  k2,  k3, 
 k4) had occurred at six time points  (T1,  T2,  T3,  T4,  T5,  T6). 
With these data, suppose we want to construct two transition 
matrices (Xi1, Xi2), where each transition matrix contains 
data from five observations (W = 5) within these multivari-
ate binary time series data and the windowing lag is set to 
one.

To construct Xi1, we would start by creating a 4 × 4 
matrix for which all elements are initialized to zero. Suppose 
the data show that  k1 and  k2 occurred at the first observation 
 (T1) and  k1 occurred again at the second observation  (T2). 
This would suggest that a transition from  k1 to  k1 and a 
transition from  k2 to  k1 occurred between the first two time 
points. Given this pattern, we would increment the (1,1) ele-
ment of Xi1 by one (to reflect the transition from  k1 to  k1) 
and we would increment the (1,2) element of Xi1 by one (to 
reflect the transition from  k2 to  k1). All other elements would 
remain at 0. Next, suppose  k3 and  k4 were both observed at 
 T3, indicating that a transition from  k1 to  k3 and a transition 
from  k1 to  k4 occurred between  T2 and  T3. To account for 
these two transitions, we would increment the (3,1) element 
of Xi1 by one (to reflect the transition from  k1 to  k3) and we 
would increment the (4,1) element of Xi1 by one (to reflect 
the transition from  k1 to  k4). Next, suppose  k4 was the only 
variable reported at  T4. This would indicate that a transition 
from  k3 to  k4 and a transition from  k4 to  k4 had occurred 
between  T3 and  T4. In response, we would increment the 
(4,3) element of Xi1 by one (to reflect the transition from 
 k3 to  k4) and the (4,4) element of Xi1 by one (to reflect the 
transition from  k4 to  k4). Next, suppose  k4 was the only vari-
able reported at  T5, thereby indicating that a transition from 
 k4 to  k4 had occurred between  T4 and  T5. In response, we 
would once again increment the (4,4) element of Xi1 by one, 
such that the (4,4) element now equals two. At this point, all 
transitions between the four binary variables across the first 
five time points are reflected in Xi1 (see Fig. 1).

To construct Xi2 we would start with a second 4 × 4 
matrix, also initialized to zero. The window of observa-
tions being read into Xi2 would be shifted down the time 
series by one compared to what was read into Xi1, such 
that the transitions between  T1 and  T2 described above 
would not be captured by the new matrix. The transitions 
between  T2 and  T3,  T3 and  T4, and  T4 and  T5, however, 
would be incremented into the new matrix like in Xi1. 
Finally, because the window of observations was shifted 

Footnote 2 (continued)
the measured states were observed at successive timepoints within 
a given transition matrix, the stability calculation would return a 
“noUse” solution and spread would be 0.
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down one, there would be one new transition to add to Xi2 
(i.e., the transition between  T5 and  T6). Suppose  k4 was the 
only time series variable reported at  T6, thereby indicating 
that a transition from  k4 to  k4 had occurred between  T5 
and  T6. In response, we would once again increment the 
(4,4) element of Xi2 by one, such that the (4,4) element 
now equals three. At this point, all transitions between the 
four binary variables across the next five time points are 
reflected in Xi2 (see Fig. 1).

Calculating stability

Stability is a proportion bounded between 0 and 1. It is 
defined as the trace of a transition matrix divided by the sum 
of all elements within that matrix, and thus is the proportion 
of transitions that are stable.

Here, tr(Xij) is the sum of the elements along the diagonal 
of Xij; ∑ ∑ Xij is the sum of all elements of Xij; Stability is 
calculated for each Xij and is stored as a vector. An example 
of how two stability values are calculated from two example 

(2)Stij =
tr
�

�ij

�

∑∑

�ij

transition matrices, each with 4 × 4 dimensions and com-
prised of five time points, is provided in Fig. 1.

Calculating spread

Spread is a proportion bounded between 0 and 1. It is 
defined as the number of all non-zero cells in a transition 
matrix divided by the number of all possible cells in that 
matrix.

nz(·) is a count of the number of non-zero elements in ·; k2 is 
number of elements in Xij; Spread is calculated for each Xij 
and is stored as a vector. An example of how two spread val-
ues is calculated from two example transition matrices, each 
with 4 × 4 dimensions and comprised of five time points, is 
provided in Fig. 1.

R package

We provide an R package on GitHub (https:// www. github. 
com/ Katha rineD aniel/ trans ition Metri cs) that includes 

(3)Spij =
nz
(

�ij

)

k2

Example Time 

Series Data

Xi1 Xi2

k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

T1 1 1 0 0 k1 1 1 0 0 k1 0 0 0 0

T2 1 0 0 0 k2 0 0 0 0 k2 0 0 0 0

T3 0 0 1 1 k3 1 0 0 0 k3 1 0 0 0

T4 0 0 0 1 k4 1 0 1 2 k4 1 0 1 3

T5 0 0 0 1

T6 0 0 0 1
Stability Xi1 = Stability Xi2 = 

Spread Xi1 = Spread Xi2 = 
4

W
in

do
w

 2
W

in
do

w
 1

Note. Two transition matrices constructed from example time series data with six observations 

(T1 through T6), window size of 5 observations per transition matrix, four binary time series (k1 

through k4), and a windowing lag of one. We chose not to reduce the stability and spread 

fractions, when appropriate, to avoid obscuring the relationship between the transition matrices 

and the resulting stability and spread values.  

Fig. 1  Visual demonstration of method

https://www.github.com/KatharineDaniel/transitionMetrics
https://www.github.com/KatharineDaniel/transitionMetrics
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functions that transform binary time series data into transi-
tion matrices and then calculate stability and spread val-
ues per transition matrix per person. These functions allow 
researchers to specify their chosen W value and can operate 
on any number of time series variables or length of data.

Simulation study

Method

To gain insight into the relationship between stability and 
spread and their reliability, we simulated multivariate binary 
time series data that varied according to set values along the 
following dimensions: Number of participants (N = {20, 50, 
75, or 100}); number of variables included in the transition 
matrix (k = {2, 10, 20, or 30}); length of each person’s over-
all time series or the number of total observations per person 
(L = {10, 25, 50, or 100}); and the number of consecutive 
observations within a set of time series that contributes to 
a given matrix or window size (W = {.02, .05, .1, .2 of L}). 
Given that W is defined as a proportion of L, but by defini-
tion W must be a positive integer that is greater than or equal 
to 2, we constrained W to 2 if the percentage of L would have 
been below that lower bound. We set the windowing lag to 
one for all simulations.

We conducted 1000 runs for each possible combination of 
the above dimensions. Here we focus on results from simula-
tion runs with randomly generated stability and spread val-
ues. However, we ran additional simulations with specific 
expected values of stability and spread (Stability = {.01, 
.10, .25, .50, .75, .90}; Spread = {.10, .25, .50, .75, .90, 
.99}) that are included in supplemental materials. Including 
those shown in the supplement, we ran 1728 different simu-
lations taking approximately 3000 CPU hours on a high-
performance computing cluster. For each set of simulated 
data, we calculated the mean and standard deviation of the 
resultant stability and spread values and calculated the cor-
relation between the two stability and spread values.

Results

Table 1 depicts how mean and standard deviation stability and 
spread values vary across differing W when: N = 75, k = {10, 
30}, and L = {25, 100}. Additional tables depicting how mean 
and standard deviation values vary across differing W, k, and 
L when data were generated with different expected values for 
stability and spread (rather than having been randomly gener-
ated) are included in the supplement. We discuss general pat-
terns observed within these simulations here, but provide all 
results as a 4 × 4 × 4 × 4 × 5 × 5 × 3 × 5-dimensional array 
in an R.data file on our OSF page (https:// www. osf. io/ xqdk5/).

Effect of W

Across all simulations, the number of observations that 
contribute to a given transition matrix, W, exerts a positive 
influence on the average spread value obtained across all 
Xij while exerting little noticeable influence on the average 
stability value obtained across all Xij. With increasing W, 
more observations are able to contribute to a given transition 
matrix. Greater observations afford greater opportunities to 
enter into new cells within the transition matrix, which nec-
essarily increases spread values. The standard errors of the 
spread estimates do not appear to monotonically decrease as 
more observations are included until W = 5, which suggests 
that spread values calculated with fewer than five observa-
tions may not be trustworthy. Unlike spread, average stabil-
ity values remain relatively unchanged due to the effect of 
taking an average across a sliding window. While the aver-
age stability values appear near-perfectly consistent in the 
large simulations run for the current study, within person 
variability in stability does occur across the sliding transition 
matrices (see Table 2 for a simplified example).

Effect of k

The number of variables that contribute to a given transition 
matrix, k, is functionally related to spread. Definitionally, 

Table 1  Selected simulation results when stability and spread indicators are randomly generated

N = 75 for all cases

https://www.osf.io/xqdk5/
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spread is calculated with reference to the number of possible 
transition states (i.e., k2 is the denominator). As such, varia-
tion in spread values is constrained by k such that, assuming 
sufficiently large W, the number of possible spread values 
for a given transition matrix is k2+1. For example, the only 
possible spread values when k = 2 are 0, .25, .50, .75, 1. 
Thus, as k increases, greater precision in spread between 
people and across transition matrices is possible. Whereas 
variance in spread is constrained by k, variance in stability 
is constrained by the number of observed transitions irre-
spective of k. That said, if a time series is randomly gen-
erated, maintaining a high stability value is less probable 
when there are more options available that would increment 
a transition matrix along its off diagonal.

Effect of L

The number of total observations within a timeseries, L, 
appears to be less influential on the mean stability and spread 
values calculated from these simulations than the W and k 
parameters. Indeed, in tables where L appears to increase 
along with spread values, it is important to note that it is 
increased W, rather than increased L, which explains these 
increases to spread (W is defined as a proportion of L and as 
such, when L increases, raw W increases in turn).

Key considerations for setting W, k, and L are outlined 
in Table 3.

Inverse relationship between stability and spread

Plotting values of stability and spread against each other 
shows that while there is some overlap in these two metrics, 
stability and spread capture unique information about short-
term switching behavior in multivariate time series data (see 
Fig. 2). The shapes of these plots show that stability and 
spread values have a moderate inverse association, such that 

as a transition matrix is characterized by increasing levels of 
spread (i.e., more overall cells are populated within the tran-
sition matrix), stability values tend to decrease (i.e., more 
cells along the off-diagonal are populated). However, the 
curved banana-like shape suggests there is unique informa-
tion captured by each metric. Further, these plots also show 
us that, assuming a random process, as stability approaches 
1, spread necessarily converges to 1

k2
 . However, as spread 

approaches 1, stability converges to 1
k
.

Interim discussion

We varied the number of binary time series, number of 
observations in the sliding window, and length of the time 
series to explore the relationship between stability and 
spread and the effect of different parameters on stability 
and spread metrics. Simulation results found that stability 
and spread are moderately inversely correlated but capture 
unique information. Results also indicated that: (1) the num-
ber of observations that contribute to a transition matrix (W) 
has a positive influence on average spread but little influ-
ence on average stability, (2) that the number of time series 
variables that contribute to a transition matrix (k) has a 
probabilistically negative influence on average stability and 
mathematically constrains the number of possible spread 
values, and (3) the length of the overall time series (L) has 
little effect on either average stability or spread. Notably, 
these metrics are based off the observed transition matrix, 
which implies that their statistical consistency is entirely 
dependent on the consistency of the observed data (i.e., the 
transition matrices and related metrics will accurately depict 
the transition behavior of the system if and only if the time 
series data that are fed into the transition matrices accurately 
capture the transitions within the system). As such, these 
metrics should be treated as sample statistics rather than 
parameter estimates.

Table 2  Depicting changes in stability and spread values calculated from the same timeseries data but with different window size

W window size, k number of timeseries, L number of observation in timeseries
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Relationship between stability and spread

The current method calculates two inversely related meas-
ures that capture unique information about transitions in 
multivariate binary time series data. To elucidate the differ-
ence between stability and spread, consider these examples: 
a person who alternates between using cognitive reappraisal 
and suppression to regulate their emotions would receive 
the same stability score as a person who switches from 
cognitive reappraisal to distraction to acceptance, but the 
latter would receive a larger spread score than the former 
based on greater diversity in the specific strategies they used 
over time. Conversely, although two people who both used 
cognitive reappraisal and distraction as their only emotion 
regulation strategies would earn the same spread score, they 
could still earn different stability scores based on the order 
in which they reported using those two strategies (i.e., cog-
nitive reappraisal to distraction to cognitive reappraisal to 
distraction is more unstable than distraction to distraction 
to distraction to cognitive reappraisal).

The differences in these metrics are not only mathemati-
cally distinct; they also capture theoretically interesting 
information. The degree of stability in one’s emotion regu-
lation strategy selections, for example, speaks to whether or 
not a person tends to rigidly employ the same strategy from 
one moment to the next (i.e., higher stability) or to vary 
their strategy use across time (i.e., lower stability). Given the 
presumed adaptiveness of flexible emotion regulation (Aldao 

et al., 2015), some degree of instability (i.e., some shifting 
between strategies over time) is likely to be associated with 
positive emotional outcomes. However, complete instability 
may also indicate that a person is undiscerning and erratic 
in their attempts to regulate their emotions (Moulder et al., 
2021). Separately, the greater number of unique emotion 
regulation strategy transitions that a person uses, the more 
“spread out” their observations will be across their transi-
tion matrix. This suggests that the relative spread of one’s 
emotion regulation strategy selections speaks to the breadth 
of their strategy repertoire, which has been positively asso-
ciated with psychological well-being (Rusch et al., 2012).

Considerations for selecting parameter values

The hyperparameter W affects the stability and spread met-
rics. Simulation results suggest that researchers seeking to 
apply this method to their own data should refrain from setting 
a particularly small window size, given this would depress 
possible variance in spread values. For example, if W = 2, 
there is only one transition opportunity per matrix, making 
it challenging to observe between-person significant differ-
ences in spread. Window sizes smaller than 5 also do not 
evidence the expected relationship between increased obser-
vations and reduced standard errors, which further supports 
the importance of including at least five observations per 
transition matrix. However, researchers should also refrain 
from setting a very large window size relative to the number 

Table 3  Selecting parameter values

* = assuming a windowing lag of 1 and researcher interest in within-person differences in stability or spread

Parameter Definition Recommended 
Minimum

Effect on Average Stability Effect on Average Spread Consideration

W Number of observations 
that contribute to a given 
transition matrix

5 Little influence Positive influence Avoid setting W to be 
significantly higher than 
k, as this would restrict 
variance in spread by 
increasing the likelihood 
to observe each state 
at least once within the 
transition matrix

k Number of time series 
variables that contribute 
to a given transition 
matrix

4 Negative influence (assum-
ing a random generating 
process)

Constrains the number of 
possible spread values for 
a given transition matrix 
(k2+1)

To avoid overly sparse 
matrices, set larger W val-
ues if larger k or allow >1 
time series to be endorsed 
simultaneously

L Number of total observa-
tions within a timeseries

9* Little influence Little influence The total number of transi-
tion matrices for indi-
vidual i is given by L – W 
+ 1. Collect sufficiently 
long time series relative 
to chosen W to observe 
within-person change 
across transition matrices
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of variables contributing to their transition matrices, given 
this would inflate spread values such that there would also 
be a restriction in variance preventing meaningful statistical 
inference. For example, if k = 4 and W = 100, most transition 
matrices would evidence a spread score of 1 simply because 
there are so many opportunities to observe each transition 
state at least once within the transition matrix. Researchers 
should also consider theoretical aspects of the process under 
investigation when setting W. For example, if a chef changes 
jobs from an Indian to a Mexican restaurant, thereby changing 
their pattern of typical spice use, a large W would obscure this 
change whereas a small-to-medium W may not. Therefore, we 
recommend that researchers set their W according to the the-
ory within their substantive field and the number and length 
of their time series of interest. To allow for sufficient within-
spread variance, however, we recommend that researchers set 
W to be greater than or equal to 5.

Stability and spread metrics will also be influenced by 
the number of binary variables that a researcher includes in 
their transition matrices. The number of elements in a given 
matrix increases by the square of the number of binary time 
series included. Two binary time series yields a 2 × 2 matrix 
with four elements, three binary time series yield a 3 × 3 

matrix with nine elements, and so on. As a result, includ-
ing a greater number of binary time series while holding 
W constant yields sparser matrices because there are more 
elements in the resultant matrix to fill despite there being no 
additional transitions reflected in the matrix. Specifically, 
spread values will be systematically lower in larger transi-
tion matrices (given that k2 is the denominator for spread) 
and stability values will be probabilistically lower assum-
ing a random process, but the effect of k on stability is not 
mathematically constrained (given that k is not directly 
included in stability’s equation). Although we recommend 
that researchers set their specific k according to the theory 
within their substantive field and the window they use per 
transition matrix, we recommend that researchers use four or 
more timeseries (k > 4), thereby allowing sufficient variabil-
ity in spread values. Four is the suggested minimum because 
when k = 4, there are 17 different possible spread values, 
which means that the possible variance in spread behaves 
more like a continuous variable.

Notably, because W and k can each influence stability and 
spread values, raw stability and spread values should not be 
compared across samples that use different W values and/
or different numbers of binary time series. For this reason, 

Note. Stability and spread values, assuming a random process, generated when N = 75 and
number of observations (L) is 25 or 100 and number of timeseries (k) is either 10 or 30. Each dot
is the result of one simulation.  

Fig. 2  Relationship between stability and spread
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researchers should always report the parameter values they 
select.

Although L has little effect on either average stability or 
spread, there is a functional relationship between L and W: 
The total number of possible transition matrices that can be 
calculated for individual i is L – W + 1. Thus, researchers 
should collect sufficiently long time series relative to their 
chosen W to be able to observe within-person change across 
these transition matrices. Given W = 5 and a windowing lag 
of one, we recommend a minimum of L = 9 observations to 
allow for five different stability and spread values per person 
over time.

Assumptions and boundary conditions of stability 
and spread

Although we recommend minimum values for W, k, and L, 
the value of this method comes from its ability to function 
with high-dimensional, sparse, multivariate binary time 
series that have been prohibitively difficult to analyze with 
existing methods. We show that this method works when 
analyzing as many as 30 time series, the highest value for k 
included in this initial simulation study. To work with these 
high-dimensional time series, stability and spread values 
function as summary statistics. A trade-off when capturing 
information in high-dimensional data is that stability and 
spread are agnostic to the specific variables included in each 
row and column of a given transition matrix. Thus, while 
spread and stability summarize the diversity and order in 
which a person selects between a set of binary variables over 
time, respectively, they do not differentiate between a person 
who occupies one off-diagonal element from a person who 
occupies a different off-diagonal element. As such, multi-
ple transition patterns could occur that result in the same 
stability or spread value. Therefore, stability and spread can 
be thought of as summary statistics that capture dynamic 
change patterns within a system over a given window of 
time and should be interpreted accordingly. These metrics 
are designed to be used when interest is at the level of (in)
stability or spread within a system without strong interest in 
differentiating between a given level of stability due to one 
state’s frequent endorsement over the same level of stability 
due to a different state’s frequent endorsement. Future work 
should seek to identify ways to compare specific patterns of 
elements observed within transition matrices if which binary 
options are endorsed over time is of theoretical interest. 
Additional measures may also be used alongside stability 
and spread to enhance understanding of the system from 
different perspectives (e.g., recurrence rate on dimension-
reduced data along with stability: Wallot, 2019; Shannon 
entropy along with spread: Rajaram et al., 2017).

Similarly, the metrics that we present are not exhaustive 
of all that could be taken from these transition matrices. 

For example, our operationalization of spread does not cap-
ture the degree or weight of certain transitions over others. 
Rather, its values are affected by whether each possible tran-
sition occurred, not by the extent to which each transition 
type occurred relative to the others. Future method devel-
opment work may seek to extend the current spread metric 
to a continuous spread metric. Eigenvalues-based methods, 
matrix rotations, or decompositions, among others, may offer 
useful additional approaches towards leveraging the range of 
information that can be learned from these transition matri-
ces. Further, our operationalizations of stability and spread 
only consider observed-to-observed transitions, irrespective 
of other potentially interesting transitions afforded by the 
multivariate binary time series (i.e., observed-to-unobserved, 
unobserved-to-observed, unobserved-to-observed). Should 
researchers wish to contextualize observed-to-observed tran-
sitions relative to all classes of transitions, it would be inter-
esting to create block matrices that reflect all four types of 
transitions and subsequently construct equations that leverage 
the desired information contained within.

Finally, this method does not account for the amount of 
real time that passes between successive observations. Simi-
larly, the statistical consistency of stability and spread are 
entirely dependent on the consistency of the sample transi-
tion matrix. As such, researchers should take care to sample 
at a rate that best captures the underlying process of interest 
because sampling frequency may influence the validity of 
the stability and spread values that are derived. Because this 
method does not account for elapsed time, and given sam-
pling frequency may influence derived values, this method 
may be best suited to repeated-measures data that are col-
lected with equal time intervals. However, given that we 
use overlapping sliding windows and time delay embedding 
has been shown to be robust to sampling interval misspeci-
fication (Boker et al., 2018), it is likely that equal interval 
measurement is not a necessary condition.

Comparison against recurrence 
quantification analysis

As an initial comparison of stability and spread against com-
mon metrics from RQA, we simulated 1000 binary time 
series data sets with a random generating process where each 
data set was defined with N = 100, L = 100, and k = 10. For 
each simulated participant in each data set, we calculated 
stability and spread with W = 20 and a lag of 1, which is 
consistent with one of the simulation sets described above. 
We averaged the stability and spread scores from across 
the windows within a given simulation set to arrive at one 
stability and one spread score per simulated participant to 
reflect the system’s transition behavior. On those same data 
we also calculated recurrence rate, determinism, and entropy 
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between each unique bivariate time series combination using 
the crqa package in R (Coco et al., 2022). We then aver-
aged all pairwise recurrence rate, determinism, and entropy 
values for a given simulation set, respectively, to arrive at the 
average recurrence rate, determinism, and entropy scores for 
a given simulated participant for that multivariate system. 
Next, we used the psych package in R (Revelle, 2022) to 
calculate the correlations between each of these five metrics 
using all simulated data. After inspecting the correlation 
plots between stability and the RQA metrics, we decided 
to remove observations where stability was greater than 0.4 
(n = 14) because these behaved as outliers. See Table 4 for 
results of the correlation values after outlier removal. The 
simulation results suggest that stability and spread provide 
different information about the transition behavior of time 
series data than does RQA.

Applied example: Emotion regulation

Although the study of emotion regulation (ER) initially 
focused on the effect of a single or a few strategies in iso-
lation (see Ford et al., 2019, for review), there are myriad 
ways to influence emotions (e.g., Heiy & Cheavens, 2014) 
and people can use more than one strategy in response to 
the same emotional event (Ford et al., 2019). Importantly, 
using a limited number of ER strategies has been associ-
ated with impaired psychological well-being (e.g., Rusch 
et al., 2012) and greater levels of depression, trait anxiety, 
and social anxiety (Lougheed & Hollenstein, 2012). As such, 
researchers are increasingly recognizing the need to sample 
a wide range of ER strategies.

The risk to psychological well-being that is associated 
with a limited repertoire of ER strategies may be driven 
by context-insensitive, rigid application of a few strategies 
over time (Aldao et al., 2015), instead of selecting from 
numerous strategies to optimally match a given situation 
(Bonanno & Burton, 2013). Indeed, Cheng (2001) found that 
those who reported higher variability in problem-focused 

and emotion-focused coping during a series of in-lab tasks 
endorsed lower levels of depression. More recently, Birk 
and Bonanno (2016) found that the ability to switch from a 
suboptimal strategy to an optimal strategy during an in-lab 
study was associated with higher life satisfaction. Similarly, 
variably choosing between different ER strategies within a 
given situation in a person’s daily life was associated with 
reduced negative affect (Blanke et al., 2019) and people with 
major depressive disorder reported lower trait ER diversity 
across adaptive ER strategies than people without a history 
of depression (Wen et al., 2021). As such, ER variability, 
or the tendency to use different strategies across different 
contexts, is theorized to be adaptive insofar as it supports 
flexible ER (Aldao et al., 2015).

However, a lack of existing methods to dynamically quan-
tify patterns in ER transitions over time, especially when a 
large range of strategies are assessed via binary response 
scales, has hindered robust empirical tests of theories that 
tout flexible ER as adaptive. As an initial step to address this 
gap, this study constructs transition matrices on 4 weeks 
of ecological momentary assessment (EMA) ER data to 
investigate the dynamic interplay between ER strategy tran-
sition patterns and affective experiences in the daily lives of 
socially anxious people.

Overview and hypotheses

To better characterize the association between patterns in 
ER strategy selections over time with how affect changes 
over time, this study investigates the order of transitions that 
people high in trait social anxiety symptoms make, or fail to 
make, between 20 different ER strategies (i.e., their strategy 
switches). The sample is composed of individuals scoring 
relatively high on a measure of trait social anxiety symptom 
severity given previous research showing that socially anx-
ious people have deficits in ER (Jazaieri et al., 2014) and 
have lower intensity and less lasting positive emotions than 
healthy, non-anxious people (Kashdan et al., 2011).

Table 4  Correlations between average recurrence rate, determinism, entropy, stability, and spread values across 1000 simulated data sets of N = 
100, k = 10, and L = 100

For each simulated data set, N number of participants, k number of binary timeseries, and L number of observations in each time series. M and 
SD represent mean and standard deviation, respectively. Values in square brackets indicate the 95% confidence interval for each correlation. All 
correlations were significant at p < .001

Variable M SD 1 2 3 4

1. Recurrence Rate 49.49 7.56
2. Determinism 80.72 6.54 0.97 [0.97, 0.97]
3. Entropy 1.67 0.30 0.98 [0.98, 0.98] 0.96 [0.96, 0.96]
4. Stability 0.11 0.01 -0.08 [-0.09, -0.08] -0.11 [-0.12, -0.11] -0.07 [-0.08, -0.07]
5. Spread 0.87 0.20 -0.49 [-0.49, -0.49] -0.48 [-0.48, -0.48] -0.48 [-0.48, -0.48] -0.34 [-0.35, -0.34]
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The current study aims to test whether including informa-
tion about how people switch between ER strategies over 
time predicts subsequent in-the-moment, self-reported affect 
and anxiety beyond previous timepoint’s affect and anxiety 
ratings. We approach this question by including stability 
and spread metrics into a large cross-lagged panel model 
and testing for path significance coming from stability and 
spread at one timepoint onto next-timepoint affect and anxi-
ety. We hypothesize that an individual’s stability and spread 
metrics will predict their next-timepoint affect and anxiety 
ratings, although we do not have specific hypotheses for 
the direction of the effects given the novel methodological 
approach. Thus, these analyses are primarily exploratory and 
are conducted as a means of furthering future hypothesis-
driven work that attempts to employ similar methods to 
answer questions about affect and ER dynamics.

Method

Participants

One hundred and 14 individuals scoring relatively high on 
a measure of trait social anxiety symptom severity enrolled 
in the 5-week EMA study. Participants were eligible for the 
study if they scored at least a 29 on the Social Interaction 
Anxiety Scale (SIAS; Mattick & Clarke, 1998). Participants 
also had to own an Android or iPhone that was compat-
ible with Metricwire (the EMA mobile phone sampling 
application used in the study). Given that we were inter-
ested in the effect of recent strategy switching behavior on 
in-the-moment affect and anxiety, we retained only those 
participants who contributed at least six survey responses, 
leaving a final sample of n = 110 participants. Participants 
in the final sample were 73.64% female and 20.44 years old 
on average (SD = 2.96 years old). The self-reported racial 
composition of the final sample was 69.09% white, 6.36% 
African American/Black, 15.45% Asian, 1.82% Middle 
Eastern, and 7.27% multiple races. The self-reported eth-
nicity of the final sample was 2.73% Hispanic and 97.27% 
not Hispanic.

Study procedure

The University of Virginia’s ethics review board 
approved all study procedures. Participants provided 
written, informed consent to participate in two, 1.5-h 
in-lab sessions separated by 5 weeks of EMA surveys 
on their personal smartphone. As part of a larger study, 
approximately half of the participants were randomized 
to receive an online cognitive bias training intervention 
designed to reduce anxious thinking half-way through 
the study period (i.e., during week 3; see Daniel et al., 

2020).3 Within the EMA portion of the study, partici-
pants received up to six randomly timed surveys per day 
(although participants in the intervention group only 
received two surveys per day during week 3 to reduce par-
ticipant burden), one end-of-day survey, and one end-of 
week survey for 5 weeks. MetricWire delivered randomly 
timed surveys at a random time between each 2-h window 
from 9 am to 9 pm. Surveys were designed to take less 
than 2 min to complete and to remain active for no more 
than 45 min. Consistent with our pre-registered plans for 
analyses (https:// www. osf. io/ xqdk5/), the current study 
only uses data from the first 4 weeks of randomly timed 
surveys. A full list of the in-lab, randomly timed EMA, 
end-of-day EMA, and end-of-week EMA procedures and 
measures can be obtained by contacting the first author.

Measures

In‑the‑moment anxiety At each randomly timed survey, 
participants rated their momentary anxiety using the single 
item, “Right now, I am feeling…”, with anchors ranging 
from 1 (very calm) to 10 (very anxious).

In‑the‑moment affect At each randomly timed survey, par-
ticipants rated their momentary affect using the single item, 
“Right now, I am feeling…”, with anchors ranging from 
1 (very negative) to 10 (very positive). We reverse-scored 
this item so that the interpretation of the direction of scores 
would be consistent with the in-the-moment anxiety item 
(i.e., higher scores indicate more distress on both items).

In‑the‑moment emotion regulation At each randomly timed 
survey, participants reported their momentary ER strategy 
attempts throughout the 30 min before the survey prompt. 
Participants could either report that they did not attempt to 
change their thoughts or feelings, or they could select from 19 
unique strategies that were displayed using a check-all-that-
apply list. Conceptual labels are provided for each strategy 
here, but participants saw lay-person descriptions of those 
strategies: rumination, problem solving, acceptance, self-crit-
icism, cognitive reappraisal, thinking good thoughts, thought 
suppression, tackling the issue head on, alcohol, drugs, eating, 
exercising, TV/gaming, sleeping, advice-seeking, situational 
avoidance, expression suppression, doing something fun with 
others. See Daniel et al. (2020) for lay-person descriptions 
of strategies. Participants were not limited in the number of 
strategies they could select at each survey and each endorsed 
strategy was coded as a 1 (vs. 0). Participants could also report 
that they were not regulating their emotions at all.

3 We discuss our approach to accounting for intervention condition in 
greater detail in the Analytic Approach section.

https://www.osf.io/xqdk5/


2972 Behavior Research Methods (2023) 55:2960–2978

1 3

Calculating stability and spread in ER transitions 
in daily life

We constructed transition matrices using the ‘buildTran-
sArray’ function in the TransitionMetrics package 
on GitHub (Daniel & Moulder, 2020). The dimension of 
each transition matrix was 20-by-20. Six observations were 
included in each matrix and the windowing lag was set to 
one. We set W = 6 because ER strategy use was sampled six 
times daily and we were interested in short-term ER dynam-
ics. We pre-registered these decisions. We calculated stabil-
ity and spread using the ‘transStats’ function in the same 
package. A stability value of 1 indicates rigid repetition of 
the same strategy over time and a value of 0 indicates no 
repetition of the same strategy across consecutive surveys. 
Spread values closer to 1 indicate more unique transitions 
between strategies and values closer to 0 indicate fewer 
unique transitions between strategies. To aid model conver-
gence, we then rescaled the stability and spread by multi-
plying their values by 100 so their variances were closer 
in magnitude to those of the ten-point affect and anxiety 
variables.

Analytic approach

Consistent with our pre-registered plans for analysis (https:// 
www. osf. io/ xqdk5/), we constructed a series of nested 

cross-lagged panel models using OpenMX version 2.20.6 
(Neale et al., 2016) in R version 4.1.3 (R Core Team, 2022) 
on the first 4 weeks of data from all participants. After 
transforming the data into wide format, we built a complex 
model for this data that included all paths to represent how 
stability and spread might be influencing affect and anxiety 
over time. The complex model auto-regressed affect, anxi-
ety, stability, and spread, regressed affect and anxiety onto 
each other from  Tt to  Tt+1, regressed stability and spread 
onto each other from  Tt to  Tt+1, and regressed stability and 
spread onto the affect and anxiety variables from  Tt to  Tt+1 
(see Fig. 3). All autoregressive paths per variable, all cross-
regressive paths between variables, and all intercepts per 
variable were constrained to be equal across time. Note that, 
although negative affect and anxiety are positively corre-
lated in the present data (r = .52, p < .001), they are not 
perfectly correlated and, as such, capture distinct yet related 
constructs. Further, note that while some authors call autore-
gressive paths “stability coefficients,” we reserve the word 
“stability” to mean the stability of the multivariate binary 
ER choices. We also modeled as a covariate the study condi-
tion to which each participant was randomly assigned. Spe-
cifically, this covariate was coded as “0” for participants 
who were not assigned to the intervention condition and 
“1” for participants who were assigned to the intervention 
condition. Paths going from this condition covariate to the 
affect, anxiety, stability, and spread variables were fixed to 

Note. ER = Emotion Regulation. Covariances between all variables at initial and final time points are included in the
diagram to improve legibility, but these covariance paths were included at all time points in the model estimation.
The paths from Condition to all other variables were constrained to zero within the first two weeks, freely estimated
within the third week, and re-estimated within the fourth week. Parallel paths from the condition variable are constrained 
to be equal within the third week and are again constrained to be equal within the fourth week. 

Fig. 3  Complex model path diagram

https://www.osf.io/xqdk5/
https://www.osf.io/xqdk5/
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zero for all participants for all time points within the first 2 
weeks of the study (i.e., prior to the intervention starting in 
week 3). These four paths were freely estimated for all time 
points within week 3 (i.e., estimating the effect of the treat-
ment during the intervention period) and were re-estimated 
during the fourth week (i.e., estimating a lagged treatment 
effect). Paths from the condition covariate were constrained 
to be equal within each week.

Prior to testing our hypothesis that including paths from 
stability and spread at one timepoint to affect and anxiety at 
the next timepoint would improve model fit, we first reduced 
model complexity by testing if we could remove paths from 
the condition covariate. First, we constrained all paths from 
the condition variable to be zero and compared this condi-
tion-reduced model to the complex model depicted in Fig. 3. 
A likelihood ratio test found that all paths from the condition 
variable could be removed without worsening fit (χ2(8) = 
5.41, p = .713), indicating that the effect of condition could 
be entirely removed from the model. Thus, models that test 
the effect of stability and spread on next timepoint affect and 
anxiety did not estimate any regression paths coming from 
the condition covariate.

To test our hypothesis that including information about 
a person’s recent ER strategy switches improves prediction 
of affect and anxiety ratings, we constrained the paths from 
stability and spread at one timepoint to affect and anxiety 
at the next timepoint to be zero (see Fig. 4). We then again 
compared the constrained model to the complex model 
using a likelihood ratio test which resulted in significantly 
worse model fit (χ2(12) = 115.41, p < .001), indicating 

that the effect of stability and spread on next timepoint 
affect and anxiety should not be entirely removed from 
the model.

Given that we observed a significant difference in fit 
between the complex (Fig.  3) and constrained models 
(Fig. 4), we tested a series of intermediary models to better 
understand the effect of stability and spread within the sys-
tem. One at a time, we constrained each path from stability 
or spread to either next timepoint affect or next timepoint 
anxiety to be zero and compared it to the complex model 
(Fig. 3). The order we took to constrain the paths to zero was 
selected based on the relative strength of each effect’s esti-
mate found by the complex model (i.e., we first removed the 
path of the weakest effect, then the path of the second weak-
est effect, etc.). This iterative process concluded that the 
paths from one timepoint stability to next timepoint anxiety 
(χ2(9) = 51.55, p < .001) and from one timepoint stability 
to next timepoint affect (χ2(9) = 81.24, p < .001) were both 
meaningful and should be retained in the final model. How-
ever, the path from one timepoint spread to next timepoint 
anxiety (χ2(9) = 6.18, p = .722) could be removed without 
harming model fit, but the path from spread to next time-
point affect should not also be removed (χ2(9) = 25.41, p = 
.005). As a result, the final model depicted in Fig. 5 explains 
the data comparably to the complex reference model (χ2(9) 
= 6.18, p = .722) that estimated all possible paths within the 
system. Interpretation of beta values from the final model 
are provided below. Raw data and the R scripts used for 
the current paper are openly available on the Open Science 
Framework (https:// www. osf. io/ xqdk5/).

Note. ER = Emotion Regulation. Covariances between all variables at initial and final time points are included in the
diagram to improve legibility, but these covariance paths were included at all time points in the model estimation.
Each set of covariances were held constant across all time points.     

Fig. 4  Constrained model path diagram

https://www.osf.io/xqdk5/
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Results

The direction of the estimates for the autoregressive paths 
indicates that, on average and across the full sample, previ-
ous timepoint scores for affect, anxiety, stability, and spread 
were positively associated with next timepoint scores for 
those same variables. The cross-lagged paths between affect 

and anxiety were also positively associated, such that greater 
anxiety at one timepoint was associated with greater negativ-
ity at the next timepoint, and vice versa. The cross-lagged 
paths between stability and spread were negatively associ-
ated, such that greater stability at one timepoint was associ-
ated with less spread at the next timepoint, and vice versa. 
See Table 5. These regression paths were not tested for path 
significance.

Including information about strategy switching (measured 
as stability and spread) improved model fit when predicting 
an individual’s subsequent in-the-moment affect and anxi-
ety ratings. Specifically, instances of greater stability in ER 
reports were associated with less anxiety and less negative 
affect at the next timepoint, even after accounting for the 
autoregressive and cross-lagged effects of affect and anxiety. 
Further, instances of greater spread in ER reports were asso-
ciated with less negative affect at the next time point, even 
after accounting for the autoregressive and cross-lagged 
effects of affect and anxiety. The effect of spread onto next 
time point anxiety was not significant, so it was removed 
from the final model (see Tables 5 and 6).

Interim discussion

The current study applies our approach to quantifying transi-
tions within multivariate binary time series data to 4 weeks 
of ER EMA data collected from a sample of 110 socially 
anxious people. Results of this study demonstrate that ER 
stability and spread constructs calculated from transition 
matrices within high-dimensional time series data signifi-
cantly predict next timepoint affect and/or anxiety, even after 

Note. ER = Emotion Regulation. Covariances between all variables at initial and final time points are included in the
diagram to improve legibility, but these covariance paths were included at all time points in the model estimation.

Fig. 5  Final model path diagram

Table 5  Unstandardized regression weights for single-headed arrows 
from the final model

Likelihood confidence intervals (CIs) did not converge, indicating 
that 1.96*standard error may not reflect an accurate 95% CI. Refer to 
Model 5 for a visual depiction of the final model

Path Estimate Standard  
Error

Affect Autoregressive Effect (b1) 0.462 0.010
Affect to Anxiety Cross-Lagged Effect 

(b2)
0.064 0.011

Anxiety to Affect Cross-Lagged Effect 
(b3)

0.046 0.010

Anxiety Autoregressive Effect (b4) 0.412 0.010
Stability to Affect Cross-Lagged Effect 

(b5)
-0.005 0.001

Stability to Anxiety Cross-Lagged Effect 
(b6)

-0.005 0.001

Spread to Affect Cross-Lagged Effect (b7) -0.036 0.008
Stability Autoregressive Effect (b17) 0.933 0.004
Stability to Spread Cross-Lagged Effect 

(b18)
-0.001 0.0002

Spread Autoregressive Effect (b19) 0.944 0.003
Spread to Stability Cross-Lagged Effect 

(b20)
-0.334 0.056
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accounting for the autoregressive and cross-lagged effects 
of previous timepoint affect and anxiety. Specifically, this 
exploratory cross-lagged panel model analysis showed that 
greater stability in ER behavior was associated with less 
anxiety and less negative affect at the next timepoint and 
greater spread in ER behavior was associated with less nega-
tive affect, but not less anxiety, at the next timepoint.

This work is exploratory and should be replicated to pre-
vent overinterpretation. However, that stability and spread 
were each significant in the prediction of next timepoint 
affect and/or anxiety, even after accounting for the autore-
gressive and cross-lagged paths between one timepoint affect 
and anxiety and next timepoint affect and anxiety, demon-
strates a promising new method for high-dimensional, com-
plex datasets like the one used for this example. These find-
ings suggest that the sequenced frequency and diversity in 

switches that people make in their ER strategies are associ-
ated with affect and anxiety dynamics in daily life.

Stability in ER

There is a robust literature to support the importance of flex-
ible (i.e., not rigidly stable) ER strategy use over time (Aldao 
et al., 2015; Bonanno & Burton, 2013). However, flexibility 
does not necessitate constant changing over time. In fact, it 
is likely that there is some degree of optimal flexibility, such 
that both too much stability and too much instability in ER 
behaviors is maladaptive (Southward et al., 2018). In the 
current data, we observed a negative association between 
stability and affect and anxiety, such that greater stability 
in ER behavior was associated with less anxiety and less 
negative affect at the next time point. It could be that we 

Table 6  Unstandardized estimates for variance, covariance, and mean score values from the final model

* = The gradient appears to be asymmetric so the standard error may not accurately reflect the variability of this estimate. Covariances, means, 
and intercepts were not drawn in the path diagrams for legibility, but their estimates are provided for full information. Refer to Model 5 for a 
visual depiction of the final model

Estimate Standard Error

Variance of Affect (V1) 3.46 0.50*
Error Variance of Affect (Ve1) 3.83 0.05
Variance of Anxiety (V2) 4.23 0.64*
Error Variance of Anxiety (Ve2) 4.47 0.06
Variance of Stability (V3) 924.15 125.87*
Error Variance of Stability (Ve3) 149.83 2.12
Variance of Spread (V4) 4.96 0.67*
Error Variance of Spread (Ve4) 0.56 0.01
Variance of Condition (V5) 0.25 0.03
Covariance between Anxiety and Affect  (Cov1) 1.77 0.47
Covariance between Anxiety and Stability  (Cov5) -1.43 3.18*
Covariance between Anxiety and Spread  (Cov4) -0.21 0.40*
Covariance between Affect and Stability  (Cov3) 1.34 1.65*
Covariance between Affect and Spread  (Cov2) 0.08 0.02
Covariance between Stability and Spread  (Cov6) -36.96 7.43*
Residual Variance between Stability and Spread  (eCov6) -3.08 0.01
Residual Variance between Anxiety and Stability  (eCov5) -1.41 0.26
Residual Variance between Affect and Stability (eCov3) -2.12 0.25
Residual Variance between Affect and Anxiety  (eCov1) 1.90 0.04
Residual Variance between Affect and Spread  (eCov2) 0.08 0.02
Residual Variance between Anxiety and Spread  (eCov4) 0.08 0.02
Mean of Condition 0.51 0.05
Mean of Anxiety 4.57 0.20
Mean of Affect 4.82 0.18
Mean of Stability 35.02 3.02*
Mean of Spread 2.22 0.22
Intercept of Anxiety 2.36 0.06
Intercept of Affect 2.55 0.06
Intercept of Stability 3.91 0.27
Intercept of Spread 0.14 0.02
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observed this pattern of results because, when there is a rela-
tive degree of stability in a person’s strategy choices over 
a few consecutive survey responses, the person may have 
found a strategy or set of strategies that is effective for them 
during that period. Importantly, because stability is repeat-
edly calculated over time, this result does not imply that 
people who are more stable in their strategy selections across 
the entire study or throughout their entire life necessarily 
have better emotional outcomes. Rather, we found evidence 
to suggest that continuing with a strategy selection pattern 
within a segment of six surveys (i.e., in the short-term) is 
associated with better affect and anxiety outcomes at the 
next survey than is rapidly switching from one strategy to 
another strategy. Following Bonanno and Burton (2013) and 
Southward et al. (2018), it is possible that some amount 
of stability within active ER attempts is emotionally ben-
eficial such that people can reap the emotional rewards of 
short-term continued used of a given strategy, especially if 
the situational demands do not change dramatically over the 
period that the surveys span.

Spread in ER

There is a robust literature to support a positive association 
between size of ER strategy repertoire and long-term psy-
chological well-being (e.g., Rusch et al., 2012). However, 
little attention has been paid to the importance of diversity in 
strategy transitions to affective dynamics (cf., Eldesouky & 
English, 2021). In the current data, we observed a negative 
association between one timepoint spread and next timepoint 
negative affect, such that greater spread in ER behavior was 
associated with less negative affect at the next timepoint. 
Greater spread might be associated with less negative affect 
at the next timepoint because a larger repertoire of strate-
gies employed in the short term could be beneficial, follow-
ing Rusch et al. (2012). Further, since participants could 
select multiple strategies at a time, participants who engage 
in emotion polyregulation earn greater spread scores and 
increased between-strategy variability has been associated 
with lower negative affect levels (Blanke et al., 2019). How-
ever, it is interesting to note that spread was not associated 
with next timepoint anxiety. This may be because some 
participants who identify as anxious might notice that they 
have used many ER strategies and therefore assume that 
must mean they are anxious. Other participants who do not 
identify as particularly anxious may not jump to the same 
conclusion. Thus, in the aggregate, the effect may be null.

Limitations of applied ER example

The high dimensionality of these data and theoretical inter-
est in ER switching patterns among a sample likely expe-
riencing emotion dysregulation make this dataset a useful 

candidate in which to apply this method. However, like 
many datasets collected through EMA, the amount of time 
between observations varied within and between people. 
There are open questions as to whether inconsistent sam-
pling rates introduce bias into the outcomes of this method. 
However, given the sliding window approach we took, there 
is reason to expect bias from time misspecification may be 
minimal (Boker et al., 2018). Relatedly, although W was set 
to 6 because ER was measured six times daily, imperfect 
compliance resulted in transition matrices that conceptually 
did not always reflect within-day stability and spread in ER 
choices. Improved compliance through stronger incentive 
schemes would be helpful. Researchers could also choose 
to prevent the windowing procedure from combining data 
from multiple days, for example, if that would offer greater 
theoretical justification. However, we decided to allow mul-
tiple days’ data to contribute to a given transition matrix 
to increase the number of observations and because our 
hypotheses did not depend on stability and spread being 
resolved each day.

Similarly, the validity of the stability and spread values 
solved for in this study depend on the statistical consistency 
of the data that were collected. Although this is ultimately 
unknown, given the data are irreducible and aperiodic and 
that the stability and spread sample statistics returned sig-
nificant results that were consistent with theory, we view this 
application as useful.

Further, given the complexity of the cross-lagged panel 
models that we used in the current analyses, we constrained 
all auto-regressive and cross-regressive paths to be equiva-
lent over time. Although this reduced the estimated param-
eters in the model by over 700, future models that allow for 
the association between stability and spread at one timepoint 
with next timepoint affect and anxiety to change over time 
would enable more nuanced relationships to be uncovered. 
Models that better leverage the repeated measures nature of 
stability and spread values per person to ask dynamic and 
developmental questions will be all the more exciting. That 
said, the analytic approach we took in this initial application 
still captures greater detail in the ways that people switch 
between ER strategies in their daily life than has been pos-
sible to date.

Overall conclusions

We presented a novel method for quantifying transitions 
within high-dimensional multivariate binary time series by 
constructing transition matrices to derive metrics of stabil-
ity and spread. We define stability as the trace of a transi-
tion matrix divided by the sum of all elements within that 
matrix. We define spread as the number of all non-zero cells 
in a transition matrix divided by the number of all possible 
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cells in that matrix. Simulation results show that stability 
and spread are inversely related but unique metrics, and the 
simulation results point to recommended guidelines for set-
ting mathematically and theoretically principled minimum 
parameter values for: i) the number of observations to be 
included in a given transition matrix (W ≥ 5); ii) the number 
of timeseries variables to be included in a given transition 
matrix (k ≥ 4); and iii) the minimum length of the overall 
timeseries data, assuming a windowing lag of one and inter-
est in time-varying stability and spread questions (L ≥ 9).

As an applied example, stability and spread were calcu-
lated for a sample of socially anxious people. This complex 
dataset is ideally suited to the proposed method because 
participants repeatedly reported their use of 20 different ER 
strategies and individual differences in how people transition 
between strategies over time is expected to be meaningful 
for psychosocial functioning. Indeed, we found that stability 
and spread in short-term ER are unique constructs that each 
predict next timepoint affect and stability also predicted next 
timepoint anxiety, even after accounting for auto-regressive 
and cross-lagged effects of affect and anxiety. This suggests 
that transition matrices can be used to extract meaningful 
quantifications of how switches in ER strategies are associ-
ated with affect and anxiety dynamics in daily life.
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