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Abstract
In order to support the burgeoning field of research into intra- and interpersonal synchrony, we present an open-source 
software package: multiSyncPy. Multivariate synchrony goes beyond the bivariate case and can be useful for quantifying 
how groups, teams, and families coordinate their behaviors, or estimating the degree to which multiple modalities from an 
individual become synchronized. Our package includes state-of-the-art multivariate methods including symbolic entropy, 
multidimensional recurrence quantification analysis, coherence (with an additional sum-normalized modification), the cluster-
phase ‘Rho’ metric, and a statistical test based on the Kuramoto order parameter. We also include functions for two surrogation 
techniques to compare the observed coordination dynamics with chance levels and a windowing function to examine time-
varying coordination for most of the measures. Taken together, our collation and presentation of these methods make the study 
of interpersonal synchronization and coordination dynamics applicable to larger, more complex and often more ecologically 
valid study designs. In this work, we summarize the relevant theoretical background and present illustrative practical examples, 
lessons learned, as well as guidance for the usage of our package – using synthetic as well as empirical data. Furthermore, we 
provide a discussion of our work and software and outline interesting further directions and perspectives. multiSyncPy is freely 
available under the LGPL license at: https://github.com/cslab-hub/multiSyncPy, and also available at the Python package index.
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Introduction

Across physical, biological, and social systems, interacting 
components of complex systems coordinate and, at times, 
synchronize their behavior. When two or more system com-
ponents are aligned temporally and spatially, then their 
behavior is thought to be synchronized. Synchronization is 
a well-known natural phenomenon, and a seemingly uni-
versal property exhibited by complex systems (Amazeen, 
2018; Kelso, 1995; Lee, 2005; Pikovsky et al., 2001; Xuan 
et al., 2018; Xuan & Filkov, 2013) appearing in the temporal 
alignment, for example, in the cycles of subpopulations of 
cells (Banfalvi, 2017), in the oscillations of pendulums and 

brainwaves (Dikker et al., 2017; Lai et al., 2006), light pulses 
in groups of fireflies (Strogatz & Stewart, 1993), primate 
interaction behaviors (Yu & Tomonaga, 2015), physical 
networks such as power grids (Motter et al., 2013), and in a 
variety of physiological and behavioral modalities of inter-
acting humans (Feldman, 2007; Hoehl et al., 2020; Palumbo 
et al., 2017; Wiltshire, Philipsen, et al., 2020a). Despite its 
pervasiveness, there is still much uncertainty about how 
synchronization originates in systems, its functional role 
in different contexts and different modalities, what forms it 
takes in groups larger than two (or between more than two 
variables), and how it changes over time (Duranton & Gau-
net, 2016; Hoehl et al., 2020; Knoblich et al., 2011; Launay 
et al., 2016; Mayo & Gordon, 2020; Nowak et al., 2017; 
Timmons et al., 2015; Wiltshire, Steffensen, et al., 2020b).

In order to advance the scientific exploration of multivariate 
coordination dynamics, an area of inquiry that “describes, 
explains and predicts how patterns of coordination form, 
adapt, persist and change in living things” (p. 1537, Kelso, 
2009), this paper, and the corresponding Python package, 
focuses on metrics that are used to measure multivariate 
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synchrony. Coordination, in the broadest sense, is a behavior 
exhibited by dynamical systems that is sometimes recognized 
as a superordinate construct characterizing the ways in which 
components and processes of complex dynamical systems 
covary over time (Butner et al., 2014; Richardson et al., 
2013; Turvey, 1990; Wiltshire, Philipsen, et al., 2020a), in 
which phenomena like synchronization, coupling, alignment, 
entrainment, behavior matching, and so on are forms of 
coordination (Butler, 2011). While some work aims to 
differentiate these forms of coordination, in our work, we use 
these terms somewhat interchangeably with the consistent 
aspect being that they are all concerned with the temporal 
covariation of multivariate time series.

While there has been much work on the bivariate and 
dyadic synchronization (Abney et al., 2015; Altmann et al., 
2020; Cohen et al., 2021; Delaherche et al., 2012; Likens & 
Wiltshire, 2020; Louwerse et al., 2012; Palumbo et al., 2017; 
Paulick et al., 2018; Ramseyer & Tschacher, 2011; Tsch-
acher & Meier, 2020; Wiltshire, Steffensen, et al., 2020b), 
there are relatively fewer cases examining multivariate syn-
chrony (e.g., Butner et al., 2014; Dias et al., 2019; Reinero 
et al., 2020; Wallot & Leonardi, 2018; Zhang et al., 2019), 
which can be useful for understanding how for example 
groups, teams, and families coordinate their behaviors, or 
how multiple modalities from an individual can become 
synchronized. While the relatively simpler bivariate case 
only considers dyadic (pairwise) relationships, multivariate 
synchrony, in general, extends this beyond dyads such that, 
e.g., triads or even larger groups can be analyzed.

Past work on interpersonal coordination comprises a 
diverse body of work with investigations in general social 
interactions (Abney et al., 2015; Chanel et al., 2013; Lou-
werse et al., 2012), parent–child interactions (Abney et al., 
2017; Crowell et al., 2017; Feldman, 2007; Nguyen et al., 
2020), child–child interactions (Altmann, 2011), romantic 
partners (Butler & Barnard, 2019; Gottman, 2014; Ran-
dall et al., 2013; Timmons et al., 2015), families (Butner 
et al., 2018), strangers and friends (Bizzego et al., 2020; 
Galati et al., 2020), mental health-related interactions (But-
ner et al., 2017; Ramseyer & Tschacher, 2011; Soma et al., 
2019; Wiltshire, Philipsen, et al., 2020), teamwork (Dias 
et al., 2019; Likens et al., 2014; Palumbo et al., 2017; Rein-
ero et al., 2020; Wiltshire et al., 2019), performance groups 
(Keller et al., 2014; Setzler & Goldstone, 2020), and even 
inter-species interactions (Wanser et al., 2021). In addition, 
there is evidence of synchronization phenomena in many 
modalities including non-verbal behaviors and movements 
(Ramseyer, 2019; Schoenherr et al., 2019), acoustic proper-
ties of speech (Fischer et al., 2017; Imel et al., 2014; Wieder 
& Wiltshire, 2020), alignment and matching in language 
(Duran et al., 2019; Fusaroli & Tylén, 2016; Lord et al., 
2015; Niederhoffer & Pennebaker, 2002), physiological sig-
nals from the autonomic nervous system (Kleinbub, 2017; 

Kleinbub et al., 2020; Konvalinka et al., 2011), patterns of 
neural activation (Dikker et al., 2017; Hoehl et al., 2020; 
Koban et al., 2019), and between multiple modalities (Amon 
et al., 2019; Gorman et al., 2016).

Not only this, but a growing number of options exist 
for measuring signals to examine interpersonal coordina-
tion, ranging from the traditional method of hand coding 
video frames (Bernieri & Rosenthal, 1991), motion capture 
systems (Romero et al., 2017), video and audio and speech 
processing (Cao et al., 2021; Kleinbub & Ramseyer, 2020; 
Paxton & Dale, 2013; Pouw et al., 2020; Vilela Barbosa 
et al., 2012; Weusthoff et al., 2018), physiological sensors 
(Guastello & Peressini, 2017; Palumbo et al., 2017), neu-
roimaging devices (Dumas et al., 2010, 2011; Reindl et al., 
2018), and sociometric sensors (Kozlowski, 2015; Montan-
ari et al., 2018; Parker et al., 2018). To be able to measure 
coordination in a variety of modalities and across groups 
or teams of sizes three or greater, different methods are 
needed. It has been toward that aim that we developed this 
package and in which we include a measure based on Sym-
bolic Entropy, Multidimensional Recurrence Quantification 
Analysis (mdRQA), Coherence (and a related but newly pro-
posed ‘Sum-Normalized cross-spectral density (CSD)’), the 
Cluster-Phase ‘Rho’ metric, and a statistical test based on the 
Kuramoto order parameter. That being said, while many of 
the metrics we present have been utilized for examining the 
coordination of behavioral and physiological signals in these 
inherently social contexts, the methods are also applicable to 
other pertinent research contexts such as human–computer 
interaction (Novick & Gris, 2014) that look at coordination 
properties of a variety of multivariate signal streams.

In this paper, we present multiSyncPy, a Python package 
for computing a variety of synchrony metrics on multivariate 
time series. Our aim in developing this package is to make 
these methods more accessible and to encourage their system-
atic use to enrich our understanding of coordination dynamics 
beyond the dyad (Amon et al., 2019). In the next section, we 
discuss related past work, focusing on the background of the 
metrics included in our Python package while highlighting 
important considerations for their use in research. After that, 
we present the contents of the package and show how to use 
it with some example code. Following this, we demonstrate 
the use of our multivariate synchrony metrics on a series 
of synthetic datasets and two real-world empirical datasets, 
showcasing the results obtained from a variety of situations.

Importantly, we aim to explore the performance of the 
multivariate synchrony metrics included in multiSyncPy on 
a variety of datasets and types as there are always a num-
ber of decisions to be made. Thus, we also provide several 
lessons learned from this initial investigation. In particu-
lar, using synthetic data from autoregressive processes 
with additional correlated noise, we find that some metrics 
respond more strongly than others to unstructured noise that 
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is duplicated across all variables. Synthetic data from Kura-
moto models is used to show that the metrics are capable of 
distinguishing different degrees of coupling; it also provides 
evidence of convergent validity between different multivari-
ate synchrony metrics as well as an aggregated version of 
a well-established bivariate synchrony metric. Two empiri-
cal datasets provide realistic examples of how multiSyncPy 
can be used, specifically when investigating synchronization 
in body movement data from groups with more than two 
members. Finally, in our paper, we conclude with a sum-
mary, discuss our work in its broader scientific context, and 
highlight some important future directions.

Multivariate synchronization metrics 
in multiSyncPy

Symbolic entropy

One approach to the investigation of synchronization in 
multi-component systems is investigating the level of tem-
poral regularity of state sequences. Since complex systems 
have many components (Amazeen, 2018; Favela, 2020), 
they exhibit a large number of possible states and can cycle 
through varied combinations of these behavioral states. If 
the components of the system are synchronized, then the 
system will exhibit a smaller number of different states and 
it will do so with increased repetitiveness. One approach 
in this vein is what we will refer to as ‘symbolic entropy’. 
This information-theoretic approach, following the work of 
Stevens and colleagues on neurodynamic and physiological 
synchronization in teams (Dias et al., 2019; Likens et al., 
2014; Stevens, 2012; Stevens et al., 2012; Stevens & Gal-
loway, 2014), aims to characterize the state of the system 
at each point in time as a discrete value, and examines the 
entropy of these discrete states over some window of time. 
Low values of entropy are considered indicative of behav-
ior synchronized around some shared, regular and ordered 
pattern. This method can readily apply to nominal data, 
but additionally, to obtain discrete states from continuous 
measurements, each variable can be individually mapped 
to a value of either ‘low’, ‘medium,’ or ‘high’ at each time 
step (or some other discretization procedure). Each conjunc-
tion of low, medium, and high values in the variables in 
the system then becomes an element in a symbol set that 
characterizes the overall collective system state for a given 
observation, where for example, a symbol for a three-person 
team could be one that captures the high, high, low pattern 
and so on (Dias et al., 2019; Stevens et al., 2019).

Each method for measuring synchronization has its advan-
tages and disadvantages, which often relate to the type of 
data being analyzed. In the case of symbolic entropy, one 
consideration is that the number of possible system states 

increases exponentially with the number of components in 
the system, potentially to the point that entropy becomes hard 
to estimate without an extremely long time series to analyze. 
Since entropy is based on an estimation of the probability of 
the different states occurring, with many states, a long time 
series may be required in order for all possible states of the 
system to be observed enough times to reliably estimate their 
probabilities. Additionally, because entropy is affected by the 
number of possible states, symbolic entropy scores should 
be compared between time series with the same number of 
variables. An advantage of the entropy-based method is that 
it makes no assumptions about the temporal signature so it 
can apply to cyclical or non-cyclical signals. And, even if it is 
difficult to get a reliable estimate of the state probabilities, it 
is still suitable for relative synchrony comparisons between, 
for example, experimental conditions assuming the lengths 
of time series are approximately equal.

Another consideration is that our implementation of sym-
bolic entropy is based on categorizing values into ‘low’, 
‘medium’, and ‘high’ based on tercile boundaries. Compo-
nents that are synchronized at a high frequency might pass 
through the tercile boundaries (and so have increased entropy) 
compared to unrelated components that each have a low fre-
quency. Note that other methods do exist for generating sym-
bolic states from continuous time series (Cysarz et al., 2013; 
Qumar et al., 2013). Finally, it is important to remember that 
low entropy is not the same as synchronization, and this could 
reflect other phenomena, such as a period of rest in which the 
components of the system stay at ‘low’ measurement values 
for some amount of time. Some options like surrogate test-
ing, which will be discussed later, might help to distinguish 
synchrony from other phenomena leading to low entropy.

mdRQA

Similar to symbolic entropy, multidimensional recurrence 
quantification analysis (mdRQA) uses the temporal regular-
ity and recurrence of system states and sequences of states 
as a proxy for synchronization (Wallot & Leonardi, 2018). 
The regularity of the system is described using a binary 
recurrence matrix that indicates which points in time are 
similar to which other points in time (Coco et al., 2020). 
For a given state to count as recurrent, the similarity of two 
states is typically determined using the Euclidean distance, 
and then a radius threshold is applied to provide a binary 
classification: states are either ‘recurrent’, meaning that they 
are sufficiently similar, or not. The results of these binary 
classifications form a square matrix, where the row index 
and the column index both specify times (the times being 
compared). Multivariate time series data series can either 
be entered ‘raw’ into mdRQA or following time-delayed 
embedding to reconstruct higher-dimensional dynamics of 
the system (Takens, 1981; Wallot & Leonardi, 2018). Recent 
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methods for selecting appropriate multidimensional delay 
and embedding dimension parameters have also been devel-
oped (Wallot & Mønster, 2018).

Once a recurrence matrix has been created, mdRQA pro-
ceeds by computing metrics that summarize the recurrence 
observed in the system. These are based on the diagonals 
of the recurrence matrix, which represent the initial time 
series compared to itself at some particular time delay. For 
example, the main diagonal represents a comparison of the 
system to itself without any time delay, and so is always 
populated entirely with ones – indicating that the system is 
recurrent, or similar to itself, all the way along. Diagonals 
close to the main diagonal represent a comparison of the 
system to itself with a short delay, while diagonals further 
from the main diagonal represent a comparison with a longer 
delay. Four main metrics are commonly used to summarize 
the recurrence matrix. All of these metrics consider only 
cells that are off the main diagonal, which is an assumption 
of the following descriptions. The proportion of recurrence 
(%REC) is simply the number of recurrent cells divided by 
the total number of cells. The proportion of determinism 
(%DET) only considers sequences of diagonally recurrent 
cells that are longer than a specified length. It is the number 
of recurrent cells left after applying this criterion, divided 
by the number of recurrent cells. The average length of a 
diagonal sequence (ADL) of recurrent cells provides a third 
metric, and the length of the longest diagonal sequence pro-
vides the final metric (maxL).

One of the benefits of recurrence-based analysis is that 
it is considered to handle nonlinearity and nonstationarity 
well, since it does not explicitly model the variables or their 
interactions as some particular set of functions (Wallot & 
Leonardi, 2018; Webber & Marwan, 2015; Webber & Zbilut, 
2005). This may make mdRQA more desirable than other 
metrics in contexts where nonlinearity and nonstationarity 
are expected. If mdRQA is chosen, there are some additional 
considerations that do not apply to other metrics for syn-
chrony. First, there is the ‘radius’ parameter, which cannot 
typically be decided analytically, and so an appropriate value 
must be determined empirically by iteratively running the 
analysis with different values until a reasonable amount of 
recurrence is returned, typically between 1 and 5% recur-
rence (for further discussion and insights on setting the 
radius and other mdRQA parameters see Wallot & Leonardi, 
2018; Wallot & Mønster, 2018). Because an unweighted 
Euclidean distance is used to compare time steps, normali-
zation is also an important part of data processing, to make 
sure that all variables vary across a similar scale. A final 
point to note is that, like with symbolic entropy, the recur-
rence in a system is not exactly the same as synchrony and 
the difference might be noticeable in the results when look-
ing at periods of relatively low activity (which could have 
high recurrence though little synchronization).

Coherence

Another method used to measure group synchrony is averag-
ing of spectral coherence scores. This is based on examin-
ing the power spectrum of each variable through spectral 
decomposition and comparing the power at each frequency 
between signals (White, 1984). Mathematical details and 
sensitivity analysis for this measure can be found in (Win-
terhalder et al., 2006). Ultimately, the metric ranges from 
0 to 1 indicating how well one signal can be approximated 
by a linear function of the other signal. As described so 
far, the spectral coherence metric only operates with two 
signals. However, recent work by Reinero et al. (2021) has 
used a multivariate version of coherence in the context of 
comparing synchrony between individuals in EEG record-
ings across multiple frequency bands (Reinero et al., 2021). 
Their method provided aggregated scores across a team by 
simply averaging across frequencies and across participants. 
This process is what we use in our software package to offer 
a multivariate synchrony metric based on coherence.

There are two important assumptions to the spectral 
coherence measure of synchrony: that the signals are related 
by a linear rather than nonlinear function, and that the sig-
nals are stationary (White & Boashash, 1990). In contexts 
where these assumptions are violated, this may mean that the 
performance of the synchrony metric is impaired. Another 
note about this metric is that it relies on cross-spectral den-
sity, which may be difficult to reliably compute with lower 
sampling frequencies or shorter time series.

There is one additional and important consideration for 
the averaged coherence metric. This method uses an average 
across frequencies of the coherence, which is a normalized 
value (ranging between 0 and 1). This means that information 
about the relative amplitude at different frequencies is ignored, 
which may be undesirable for some types of signals. For 
example, this issue often becomes noticeable when a record-
ing includes Gaussian noise, since Gaussian noise impacts 
the spectral content at all frequencies, whilst the meaningful 
content of the ‘true’ signal may only be contained in a limited 
range of frequencies. If this is the case, then the Gaussian noise 
may dominate over the meaningful content when averaging 
across frequencies, especially when using a high sampling rate 
which allows for many frequency components to be computed. 
If possible, the reliability of the metric could be improved if 
filters are applied to remove noise such as a bandpass filter that 
removes noise occurring at irrelevant frequencies.

If filtering is not possible, noise may have a serious 
impact on the results. To mitigate this issue, we propose 
an additional metric that is closely related to the averaged 
spectral coherence. Observing that the coherence value at 
each frequency component is a normalized version of the 
cross-spectral density (CSD) at that component, we propose 
to use the cross-spectral density to define an additional metric, 
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but postpone normalization until after aggregating the values 
across frequencies. As a consequence, information contained 
in the cross-spectral density regarding amplitude can be used to 
moderate the impact that each frequency component has on the 
final output. Our proposal is to use the sum across frequencies 
of the squared cross-spectral density, and normalize by the 
sum across frequencies of the auto-spectral density of the first 
signal multiplied by the auto-spectral density of the second 
signal. This then produces a value between 0 and 1 for a pair 
of variables. For two variables, the calculation is as follows:

where each sum is across n frequency components. 
Repeating the process across all pairs of variables and then 
averaging leads to a final multivariate metric. Hereafter, 
we shall refer to this additional metric as “sum-normalized 
CSD”. This metric may be preferable when there is substan-
tial noise that cannot be filtered out, for example, because it 
is in a frequency range of interest.

A final point to note about both the aggregated coherence 
and sum-normalized CSD is that they are based on estimating 
the spectral density at different frequencies. As with any 
time-frequency analysis, the number of frequencies that 
can be analyzed varies according to the length of the input 
time series, making it difficult to compare results from 
multivariate time series of different lengths.

Rho

The remaining two synchrony metrics are based on the con-
cept of the phase of a periodic signal, which describes how far 
the signal is along its cycle of behavior, at any given moment 
in time (Haken et al., 1985). Signals can be compared based 
on how similar their phases are over time using, for example, 
the relative phase measure (Lamb & Stöckl, 2014), which is 
the difference in phase between signals.

Richardson et  al. (2012) developed a ‘cluster-phase’ 
method, which looks at an aggregate relative phase across 
multiple signals, and then computes how closely the phases 
of each individual signal are to the aggregate-level phase. 
Their method is able to provide an overall measure of syn-
chronization across an entire set of signals, and also makes it 
possible to obtain a synchrony estimate at each point in time.

Before these analyses can be completed, it is necessary 
to extract phase information from the raw signals. There are 
various ways of doing this, which take a time series of amplitude 
measurements as an input and return a time series of phase 
values as an output. Two of the most common methods are 

(1) to perform the Hilbert transform and then calculate angles 
from the resulting complex numbers, and (2) to perform wavelet 
analysis (Issartel et al., 2015). This is a necessary step in data 
preparation that the analyst must decide. One potential issue for 
the cluster-phase rho metric is that it may be more difficult to 
extract reliable phase information from quasi-periodic signals 
(see Hurtado et al., 2004 for some strategies to mitigate this). 
Extracting meaningful phase information is a precondition for 
obtaining meaningful results from the ‘rho’ metric.

Kuramoto weak null test

The next metric operates on a collection of several multivariate 
recordings, rather than a single recording, and provides an 
estimation of the statistical significance of the synchrony 
observed in the collection, based on a null hypothesis that the 
observed levels of synchrony are due to chance. The method is 
based on the relative phases of the multiple variables in each 
recording, which are summarized using the Kuramoto order 
parameter. This ‘order parameter’ is based on Kuramoto’s 
mathematical model of coupled oscillators, and represents a 
key value for describing the behavior in the model (Kuramoto, 
1975; O’Keeffe et al., 2017). The values observed for the order 
parameter across the sample can then be analyzed with reference 
to the values that would be expected due to chance, leading to a 
statistical test for significant levels of synchrony in the sample. 
The Kuramoto order parameter is based on the idea that if a 
system is composed of oscillators that are coupled to each other 
with equal strength, then the oscillators will experience some 
attraction to the average phase (the average across all oscillators 
in the system). There are some free parameters for the model 
that will determine what proportion of the oscillators in the 
system will synchronize. First, there is the coupling strength, 
which represents how strongly each oscillator influences the 
others. Second, each oscillator has its own natural frequency, 
and an oscillator’s preference for its natural frequency may pull it 
away from a shared/common frequency of synchronization. This 
mathematical model of course relies upon some simplifying 
assumptions, specifically that the oscillators follow sinusoidal 
patterns of amplitude and that they are all equally coupled to 
each other, which may not be true in all real-world examples. 
Nevertheless, it is a highly influential model of synchronization 
and is often used to model real-world data.

Frank and Richardson (2010) constructed null hypotheses 
for the Kuramoto order parameter values observed across 
a sample of recordings. These hypotheses predict a prob-
ability distribution of what will be observed when sampling 
oscillators that are not coupled to one another. We focus on 
the ‘weak null hypothesis’ and associated test for signifi-
cance, which does not assume that autocorrelation is absent 
in the variables, since this is more general than the alterna-
tive ‘strong null’, which does make that assumption. The 
‘weak null’ was deemed more appropriate because it relies 
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on fewer assumptions and so is applicable to a wider range 
of scenarios (Frank & Richardson, 2010). Before running 
the test, we recommend visually inspecting the distribu-
tion of phase values that were extracted during data prepa-
ration from the variables in the time series of the sample, 
because it is important to check the assumption that each 
variable has an approximately uniform distribution of phase 
values. An uneven distribution of extracted phase values can 
lead to highly overestimated significance.

Overview and examples of the multiSyncPy 
package

A number of packages in different programming languages 
exist to calculate synchronization measures. Gouhier and 
Guichard (2014) presented one such package, named 
‘synchrony’, for the R statistical programming language, 
offering Kendall’s W, Loreau and de Mazancourt’s φ and two 
‘nonlinear’ metrics based on similarities between phase as 
determined after applying a preliminary peak-picking step, as 
synchrony metrics to use on multivariate time series. Wallot 
and Leonardi (2018) created functions for the R programming 
language for performing multidimensional recurrence 
quantification analysis (‘mdRQA’) on multivariate time series, 
and the same functionality was also presented by Wallot et al. 
(2016) in the context of MATLAB instead of R. For the Python 
programming language, there is the syncPy package from Varni 
et al. (2015) for analyzing synchrony in dyadic or multiparty 
contexts, which mostly provides metrics designed for bivariate 
time series, although some methods work for multivariate 
data, specifically: Granger causality, Omega complexity, the 
S-Estimator, and partial coherence. The scientific analysis 
package Scipy (Virtanen et al., 2020) contains digital signal 
processing methods such as spectral coherence, which can be 
used to quantify synchronization, although these are limited to 
bivariate data. For the analysis of neuronal activity, Mulansky 
and Kreuz (2016) introduce PySpike, which provides various 
methods for computing spike chain synchrony. Functions 
for quantifying synchrony are also available for MATLAB, 
such as in the HERMES toolbox of Niso et al. (2013), which 
primarily focuses on bivariate synchrony, but does include the 
multivariate ‘synchronization likelihood’ metric. Recently, 
Baboukani et al. (2019) created a MATLAB package that 
provides the ability to calculate four different multivariate 
synchronization metrics. These tools are published openly, but 
they are tied to MATLAB, which requires a paid license.

Our Python package is unique in that it is the only package 
we know that is completely free to use that focuses exclu-
sively on multivariate synchrony, and the only one to offer 
our particular combination of metrics, the value of which 
is demonstrated by the fact that these metrics have been 
used in recent empirical investigations of synchronization. 

As previously stated and reviewed, six types of multivariate 
synchrony analysis are included in our package: symbolic 
entropy, multidimensional recurrence quantification analysis 
(mdRQA), coherence, the cluster-phase ‘rho’ metric, and a 
statistical test based on the Kuramoto order parameter (based 
on Frank and Richardson’s weak null hypothesis), plus our 
proposed ‘sum-normalized CSD’.

In addition to the different multivariate synchronization 
methods mentioned above, multiSyncPy also offers func-
tions to generate surrogate datasets from samples containing 
several multivariate time series. Surrogate data is often used 
in synchronization-focused research as a way to determine 
whether or not the observed dynamics are different than 
chance levels (Moulder et al., 2018; Schreiber & Schmitz, 
1996; Strang et al., 2014; Theiler et al., 1992). This is useful 
because in many cases it is not possible to deduce the likeli-
hood of observed synchrony scores without an appropriate 
null hypothesis value to compare to. We offer two ways to 
create surrogate data: segment shuffling and variable swap-
ping. Segment shuffling first involves dividing each variable 
in a time series into windows, and shuffling the windows 
independently for each variable. This aims to preserve most 
of the structure of the signals while removing temporal rela-
tionships arising from synchronization. The second method 
is to swap variables across time series, by separating out 
the variables and then rearranging into new time series, so 
that temporal relationships between observations are lost, 
but each signal and its temporal relationships with itself are 
retained. For example, if there are three time series consisting 
of variables (X,Y,Z), (U,V,W) and (R,S,T), then after swap-
ping variables the surrogate time series might be (X,U,R), 
(Y,V,S) and (Z,W,T). This requires that the time series have 
the same number of variables and time steps, but is desirable 
because it preserves the full structure of the signals.

Prior to giving our demonstration of how to compute the 
different metrics multiSyncPy offers using Python, we give 
an overview of the workflow and then details of the synthetic 
data we generated. As a scientist prepared to analyze data 
from an experiment, in which they wish to establish syn-
chronization within a collection of multivariate recordings, 
the typical workflow is shown below in Fig. 1A. First, the 
scientist would prepare the sample of time series that they 
want to analyze by doing any necessary pre-processing, for 
example by removing outliers or applying a bandpass filter 
to remove noise from the recordings, and by preparing cor-
responding phase time series to be used with the phase-based 
metrics. If the variables in a multivariate time series are of 
different lengths (e.g., R-R intervals from a group), then time 
normalization may be necessary. Testing the Kuramoto order 
parameter can be done directly on the prepared time series, 
while surrogate data should be prepared in order to test the 
other metrics. When using surrogate data, metrics should be 
calculated on both the prepared sample and the surrogate 
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sample, and the resultant values can then be compared via a 
t test. In the case that two experimental conditions are being 
compared, it may be preferable to simplify the workflow 
by not creating surrogate data or performing the test on the 
Kuramoto order parameter, and instead comparing the com-
puted synchrony metrics between the two conditions.

Another workflow could be more practitioner-oriented, 
suited for those studying groups or teams and aiming to pro-
vide immediate feedback on their coordination. This workflow 
is shown in Fig. 1B. The data should be prepared with any 
necessary pre-processing, for example by removing outliers or 
applying filtering, and by preparing corresponding phase time 
series. A window size should be chosen within which to cal-
culate the various metrics. The metrics can then be computed 
and their progression over time can be visualized as a time 
series plot, which can then be presented by the practitioner 
for interpretation and discussion. The multiSyncPy package 
includes a windowing function that allows the user to estimate 
changes in synchrony over time for most of the measures. 

In addition to offering the synchrony metrics and sur-
rogation methods mentioned previously, multiSyncPy also 
provides the ability to generate two types of synthetic time 
series to support users’ initial exploration of the synchrony 
metrics. In fact, we make use of this synthetic data genera-
tion to showcase our code, and we also use it in the subse-
quent section to test out the results given by each metric, by 
systematically varying the properties of the synthetic data.

The first kind of synthetic data is generated using a 
stochastic autoregressive function (Gouhier & Guichard, 
2014). At each time step, this computes the new value based 
on a weighted sum of the previous two values and some 
additional Gaussian noise. Iterating the process enough 
times will lead to a time series of any desired length. This is 
used to produce multiple univariate times series of the same 
length, which can then be stacked alongside one another 

and treated as the different variables of a multivariate time 
series. It is important to note that, due to the stochastic 
nature of the autoregressive function used, and the fact that 
the univariate time series are created independently, there is 
no coupling or other interaction between the variables that 
would lead to synchrony. The different variables do however 
exhibit a similar autocorrelation since they come from the 
same class of process. This synthetic data therefore serves 
as our ‘null scenario’ in which the amount of synchrony 
computed should not be above chance level.

The second process used to generate synthetic data is 
a Kuramoto model (Kuramoto, 1975), which models the 
behavior of coupled oscillators over time. Each oscillator 
has its own natural frequency at which it cycles when there 
is no influence from the others, and the model overall has a 
coupling strength parameter which reflects how strongly each 
oscillator influences the others. Our implementation also 
adds a small amount of Gaussian noise to make the data more 
naturalistic. Keeping the natural frequencies of the oscillators 
the same whilst increasing the coupling strength should lead 
to higher levels of synchrony. We investigate the extent to 
which the synchrony metrics match to this expectation. The 
outputs of the Kuramoto model are naturally multivariate, 
with a variable corresponding to each simulated oscillator. 
The model specifies how to update the phase of each 
oscillator at each time step, from the phases at the previous 
time step. Iterating this procedure leads to a time series of any 
desired length. In contrast to the autoregressive data, which 
produces variables independently with no above chance-level 
synchrony expected, the data from the Kuramoto model is 
expected to exhibit synchrony as the coupling strength is 
increased. Synthetic data from the Kuramoto model therefore 
constitutes a verifiable example of multivariate synchrony, 
which should be reflected in the values computed for our 
synchrony metrics.

Fig. 1   Example workflows for analysis with multiSyncPy
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Computing the synchronization metrics

First of all, before computing the synchronization metrics, we 
import multiSyncPy and related packages into Python, as below.

Next, for the purposes of illustration, we generate 
some synthetic data on which to compute synchrony 
metrics, in this case using the Kuramoto model. The 
function ‘kuramoto_data’ requires specification of mul-
tiple parameters, which correspond to the parameters 
of the Kuramoto model (described in more detail in the 
next section). The parameter K is the coupling strength. 
The initial phases for the oscillators are provided as a 
numpy array, and so too are the natural frequencies in 

the parameter ‘omegas’. The alpha value modulates the 
contribution of Gaussian noise to the signals. The stand-
ard deviation of the Gaussian noise is the square root of 
parameter ‘d_t’, which is the length in seconds of the 
period between time steps, and the noise is multiplied 
by alpha before being added. The length is the number 
of time steps to generate. Below is the code to generate 
some example data.

The function returns a numpy array of shape (number_
oscillators, sequence_length). Note that the numpy array is 
the data structure used across our package to represent mul-
tivariate time series.

If we had chosen to use autoregressive synthetic data 
instead of data from a Kuramoto model to showcase our 
code, the synthetic data would be generated using the 
following code. The length must be specified, along 

with ‘phi_1’ and ‘phi_2’, respectively, the weighting 
of the values one and two time steps ago in the autore-
gressive process, ‘epsilon’ which is the standard devia-
tion of Gaussian noise added at each time step, and an 
optional bias term ‘c’. These parameters correspond to 
the parameters of the autoregressive process described 
in more detail in the next section.
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This returns a univariate time series of the desired length. 
To construct a multivariate time series, multiple univariate 
time series would be generated and stacked together.

With some data on which to compute the metrics, now it 
is possible to calculate the symbolic entropy. This requires 
only a simple function call:

The symbolic entropy across the entire time series is 
returned as a single number.

For mdRQA, our package includes a function to create 
the recurrence matrix for a multivariate time series. The 
user must specify a ‘radius’, which is used as a threshold 
to decide when two time points are sufficiently similar 
to be considered recurrent. If an appropriate value is not 
known a priori, then typically the radius is established 

by iteratively running the mdRQA analysis and adjusting 
the radius until the percentage of recurrence is between 
1 and 5 (see Wallot & Leonardi, 2018). By default, nor-
malization is applied so that each variable has a mean 
of 0 and variance of 1 before computing Euclidean dis-
tances and deciding which points count as recurrent. In 
addition, users can also optionally provide an ‘embed-
ding dimension’ and a corresponding delay parameter to 
use when constructing the recurrence matrix, if they want 
to use embedding in the mdRQA. Using embedding is 
not obligatory however, and its value and validity when 
applied to multivariate time series is still open to discus-
sion. Wallot and Leonardi (2018) provide a more detailed 
explanation of embedding in recurrence quantification 
analysis and a discussion about its use with multivariate 
time series. With the recurrence matrix available, the 
mdRQA metrics can be computed easily:

The ‘rqa_metrics’ function returns four values in a tuple: 
proportion of recurrence (%REC), proportion of determin-
ism (%DET), mean diagonal length (ADL), and max diago-
nal length (maxL). Each of these are a single number.

The next metric is the aggregated coherence score, as 
used in Reinero et al. (2021). Once again, this is a simple 
function call on a numpy array containing our multivariate 
data. The coherence is returned as a single number which is 

the aggregation of the pairwise coherence values. The code 
is as follows:

 
 
It is worth noting that the aggregated coherence score can 
be affected by the presence of Gaussian noise, and if this is 
likely, then it may be valuable to also compute the ‘sum-
normalized CSD’ metric proposed in this paper, as follows:
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The remaining metrics are slightly different because they 
are based upon analyzing the phase time series of the different 
variables. This means that it is necessary to convert the raw 
amplitude values in the time series into phase values. Because 
there are multiple valid ways to do so, such as extracting them 

from the Hilbert transform or using wavelet analysis, it is left 
open to the user to decide which method to use. The example 
code below shows how to use functions from the numpy 
(van der Walt et al., 2011) and scipy (Virtanen et al., 2020) 
packages to obtain phase time series via the Hilbert transform 
(including a refinement to normalize the data to have a mean 
value of zero, which facilitates the phase calculation):

Given estimation of the phase angle time series, it is now 
possible to compute the cluster-phase ‘rho’ metric described 
by Richardson et al. (2012), and here it can be called using 
the ‘rho’ function as follows:

The cluster-phase ‘rho’ metric is different from those 
showcased above, in that it provides both a time-varying 
synchrony estimate as well as an overall estimate for the 
entire time series. For this reason, the rho function returns 
two objects: (1) a numpy array of length equal to the length 
of the input time series, which is a continuous estimate of 
synchrony at each moment, and (2) the overall score as a 
single value.

By default our ‘rho’ function returns a continuous and 
time-varying estimate of synchronization. In contrast, we 

also provide a windowing function that allows users to do 
the same in order examine the development of synchrony 
over time using the other metrics. In other words, by 
default a majority of these metrics return values that 
summarize the entire time series, but our windowing 
function allows one to conveniently estimate the change 
in coordination over time. The user simply provides the 
time series data, the function used to compute a specific 
metric, the number of time steps to use as a window, 
and the number of time steps to use as a step size 
between successive windows. The outputs are provided 
in a numpy array with the first dimension representing 
windows, and the other dimensions being determined 
by the synchrony metric in question. For example, to 
calculate the symbolic entropy in windows of size 100 
with an offset of 100 and thus, no overlap, the code is 
as follows:
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The final synchrony metric included in our package is a 
statistical test on the Kuramoto order parameter, to determine 
how likely a sample of data is according to the weak null 
hypothesis of Frank and Richardson (2010). Unlike the 
methods described previously, the statistical test operates 
over a sample of data, and so multiple time series are 
required. The Kuramoto order parameter values of multiple 
different time series, for example coming from multiple runs 
of an experiment, are put into an aggregate comparison to the 
values expected under a null hypothesis that synchronization 
is not occurring. Therefore, the function to compute this 

metric requires as input a list of numpy arrays which each 
have the shape (number_variables, length_of_time_series). 
The lengths of the multivariate time series can vary (as long 
as each variable in a particular multivariate time series is 
the same length), but they must all have the same number 
of variables since this affects the predicted values under 
the null hypothesis. Moreover, it is important to remember 
that the inputs should be the phase time series rather than 
the raw amplitude values. To demonstrate this function, we 
generate a sample of multivariate time series from Kuramoto 
models and convert them into phase time series.
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Once the synthetic data are available, performing the test 
can be done using the ‘kuramoto_weak_null’ function as 
follows:

each variable in each time series of the sample into windows, 
and reorders the windows. The code to construct this type of 
surrogate data from a sample is as follows. A list containing 
numpy arrays of shape (number_variables, number_time_
steps) is required, as is the desired length of a window.

This function returns the p value, t-statistic, and degrees 
of freedom for the sample provided.

Lastly, multiSyncPy provides two functions for generating 
surrogate data from a sample of time series, which for example 
can then be used to calculate baseline results. The first cuts 

The second method for constructing surrogate data works 
by swapping variables between time series, leaving the vari-
ables the same individually, but combined into new time 

series (with other randomly selected variables). The code to 
create this type of surrogate data is as follows.

The sample must be a numpy array of shape (number_
time_series, number_variables, number_time_steps). The 
function returns a surrogate sample with the same shape.

Simulated and empirical demonstrations

Now that we have demonstrated how to compute the various 
metrics and take advantage of the functions of multiSyncPy, we 
next showcase the use of our package using the aforementioned 
two types of synthetic data as well as two existing empirical 
datasets. Doing so allows us to compare the methods for quan-
tifying multivariate synchrony, and provide lessons learned 
from their application to different types of data. First, explora-
tions of two types of synthetic data are presented. We used a 
stochastic autoregressive function, following the example of 
Gouhier and Guichard (2014), which produces variables that 
have temporal structure, but no above chance-level synchrony. 
Such variables can be stacked together to create a multivariate 
time series. Adding correlated noise to the variables in one of 
these synthetic time series gives a simplified illustration of the 
effects of unstructured noise on the synchrony metrics. Our 
other synthetic data comes from a stochastic Kuramoto model, 
which mathematically models a group of interacting oscillators, 
and in which the strength of coupling between oscillators can 
be systematically varied. With this data, it is possible to test 
our prediction that multivariate synchrony increases with the 
strength of the coupling parameter.

In addition to synthetic data, we use two datasets from 
real experiments. The ELEA corpus of recordings (Sanchez-
Cortes et  al., 2012) includes video recordings of small 
groups performing a team task, along with transcripts, ques-
tionnaires and annotations. We focus on the video recordings 
and use OpenPose (Cao et al., 2021) to extract information 
about the body posture of participants and how it changes 
over time. The synchronization of body movement is ana-
lyzed using various synchrony metrics as a case study. We 
also use data from another experiment investigating interac-
tions in small groups (Gervais et al., 2013), which has previ-
ously been used to study the dyadic synchronization of body 
movement in triads (Dale et al., 2020), but not multivariate 
synchronization.

Synthetic data results

As explained in the previous sections, the multiSyncPy 
package provides the ability to compute a range of metrics 
which assume varying forms of underlying coordination 
(e.g., matching of states, matching phase, etc.). However, 
so far it is not clear what the relative merits of the different 
methods are because most studies examining multivariate 
coordination employ only a single technique. Using synthetic 
data, we can compare the performance of these multivariate 
synchrony metrics by systematically varying simple 
parameters used to generate this data. Examples of our two 
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types of synthetic time series (stochastic autoregressive 
process and Kuramoto oscillators) are visualized in Fig. 2.

Autoregressive data with correlated noise  The first type of 
synthetic data we examine comes from a stochastic autore-
gressive function. The data generated by this process has 
temporal structure, as each value in the time series is a prod-
uct of the previous two (plus Gaussian noise), however the 
way that the values develop over time is unpredictable and a 
consequence of the Gaussian noise added at each time step. 
The process is described by the following equation, where 
Xt is the value of the process X at time t, β0, β1, β2 are fixed 
parameters and εt is Gaussian noise added at time t.

The advantage of this is that two different time series 
generated in this manner should have temporal structure, 
but no above chance-level synchrony with one another. We 
generate five time series of length 1000 from the autoregres-
sive function, and stack them alongside one another to act as 
the variables of a multivariate time series.

Following the example of Gouhier and Guichard (2014), 
an important addition to our method is that we also add a 
certain amount of correlated noise to the multivariate time 
series. Gouhier and Guichard contend that correlated noise, 
added to the signals in this way, might lead to the ‘false’ 
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detection of synchrony occurring despite the fact that the 
underlying autoregressive processes are unrelated. Accord-
ing to this line of reasoning, how a metric is impacted by the 
presence of correlated noise is an important characteristic of 
how the metric performs.

We select a number from a Gaussian distribution at each 
time step, and then add this same number to each variable 
in the multivariate data. The relative contribution of the cor-
related noise to the final data is a parameter that we vary 
through the course of our experiments, i.e., we treat it as 
an independent variable. The variables in the synthetic data 
are each normalized to have mean 0 and variance 1, and the 
Gaussian distribution used to generate correlated noise has a 
mean of 0, but a variable standard deviation. To perform our 
investigations, we gradually increase the standard deviation 
of the correlated noise. It begins at zero, and increases in 
steps of 0.1 up to 1.0. At each value for the standard devia-
tion of the correlated noise, we use the aforementioned pro-
cedure to create a sample of 500 time series, each containing 
five variables and 1000 time steps, and then compute the 
synchrony metrics. See Fig. 2 for example time series that 
might appear in a sample.

To help us evaluate the observed values for each metric, we 
create surrogate data for each sample after adding correlated 
noise and re-calculate the metrics on these, providing 
‘surrogate baseline’ results. The observed values without 

Fig. 2   Synthetic data time series examples
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surrogation are compared to the surrogate baseline and we 
report Cohen's d and the percentage change to determine 
how robust the metrics are to changes in parameters of the 
synthetic data. We attempted both strategies mentioned in 
the previous section for constructing surrogate data, namely 
(1) shuffling windows of data, and (2) swapping variables 
between time series so that the variables have the same 
structure but appear in different time series. For the approach 
of shuffling windows, each variable was cut up into windows 
with length 1/10 of the total time steps and reordered. 
However, this produced unexpectedly large discrepancies 
between the main results and the surrogate results even when 
there was no correlated noise, while in this circumstance there 
is no synchrony expected between variables in the original 
time series or the surrogate baseline (since the variables 
come from unconnected autoregressive processes), and so 
the outputs should not differ noticeably. For this reason, we 
report the results using the second type of surrogate data, in 

which variables are swapped. For this type of surrogate data, 
the results were as expected when no correlated noise had 
been added. The results are presented in Figs. 3 and 4, which 
respectively show the (absolute value of) Cohen’s d and the 
average percentage increase in each metric, compared to the 
surrogate baseline where variables had been swapped between 
time series after adding correlated noise.

Using the outputs of this investigation, we are able to 
compare how synchrony metrics perform as the standard 
deviation of the correlated noise is increased, and highlight 
some important differences. All of the metrics are evidently 
affected once the standard deviation of the correlated noise 
becomes sufficiently high. As shown in Fig. 4, the coher-
ence metric appears to be affected soonest, increasing 
quickly over the corresponding baseline values. Coherence 
and percentage of recurrence exhibit dramatic rises as a 
response to the correlated noise, ending up with such high 
values compared to the baselines that it is impractical to plot 

Fig. 3   Absolute values for Cohen’s d when comparing synchrony scores on autoregressive data to surrogate data

Fig. 4   Change in synchrony scores on autoregressive data compared to surrogate with increasing levels of noise

945



1 3

Behavior Research Methods (2023) 55:932–962

fully in the figure. Coherence reaches a plateau of approxi-
mately 500% average change in value when scores reach 
the maximum value of 1.0 while baseline values remain 
essentially unchanged. Our proposed sum-normalized CSD 
metric takes longer to rise over the baseline, compared to 
the closely related coherence metric, although eventually 
this also becomes strongly affected by the correlated noise. 
The reason for this difference is that the noise tends to affect 
all the frequency components of the signals, even when it is 
added in a small degree. The coherence score is much more 
influenced by the number of frequency components at which 
there is high cross-spectral density, whilst the sum-normal-
ized CSD is also sensitive to the amplitude of the frequency 
components and therefore is less affected when there is only 
a small degree of synchronization (due to correlated noise) 
in many of the frequency components.

Relative to the other metrics, rho appears to stay close to 
zero for the longest, and has one of the lowest increases over 
the baselines when the correlated noise has its highest stand-
ard deviation. Unlike with coherence, the rho metric did not 
reach values close to its maximum of 1.0. One reason rho 
is less likely to be impacted by correlated noise is that this 
metric is based upon phase, which quantifies progression 
through some structured pattern; since the added noise does 
not have temporal structure, it may have a limited impact 
on the extracted phase, and therefore affect rho less than it 
affects the other metrics.

When interpreting the percentage change results, it is 
important to note that, while the surrogate baseline values 
for coherence and rho remained largely consistent while 
changing the correlated noise and then shuffling variables 
to create surrogate data, the opposite was true for recurrence. 
The recurrence of the first baseline was on average 13.6% 
without correlated noise, but fell to 1.1% when the standard 
deviation of the noise was 1.0. This may help to explain the 
larger over-the-baseline increases observed in the recurrence. 
Symbolic entropy appears to have remained close to zero for 
longer than recurrence and coherence while increasing the 
standard deviation of the noise, but not for as long as rho. 
At no point was the change over the baselines particularly 
large for symbolic entropy. When interpreting the symbolic 
entropy, it is worth noting that there is a theoretical minimum 
of roughly 1.1 and a theoretical maximum value of 5.5 when 
using five variables. This provides some limitation on how 
much the observed entropy can increase over a baseline, 
which is not the case for the other metrics.

Before moving on, a note of caution is that these results 
give a limited impression of how the metrics will perform in 
real scenarios. The autoregressive data, especially when we 
use a high parameter value for noise, adds correlated random 
numbers at each time step, which may be quite different 
from what would be expected with real sources of noise. 
Real sources might occur infrequently rather than having a 

consistent impact over all time points or have a more dis-
tinctive spectrum. Nevertheless, these investigations with 
unstructured but correlated noise can help to give an initial 
characterization of the different metrics in multiSyncPy.

Kuramoto model data  Next, we quantify the impact of 
increasing the coupling strength of oscillators in a Kura-
moto model on the synchrony metrics. We assume that data 
generated from models where the coupling is higher will 
have higher levels of synchrony on average, and the follow-
ing results show how well our metrics reflect this assumed 
trend. For each variable i in the model (which we base on 
the equations of Acebrón et al., 2005), the update rule for the 
phase of the variable is given below. θi is the phase/angle of 
the variable and ωi is the natural frequency of the variable. 
K is the coupling strength parameter, which is shared across 
the system. ψ is the average phase. If each variable is repre-
sented as a point along the circumference of the unit circle, 
then r is the distance of the centroid from the origin. The 
final term, ξi(t) denotes the random noise added at time t.

We systematically increase the coupling strength param-
eter K, from 0.0 to 2.0 in steps of 0.2 and investigate the 
impact on the synchrony metrics. For each setting of K, we 
create a sample of 500 Kuramoto models and generate a 
multivariate time series with five variables and 1000 time 
steps. For each model in the sample, we choose a different 
set of natural frequencies for the oscillators sampled from an 
exponential distribution. This is important for the sake of our 
surrogate baseline where variables are swapped across time 
series, remaining the same but ending up in different time 
series, since high levels of synchrony could be observed in 
the surrogate data simply because the same natural frequen-
cies are repeated across variables in the sample. Figures 5 
and 6 show how the synchrony scores vary as the coupling 
strength is increased, compared to a surrogate baseline made 
by swapping the very same variables across time series in 
the sample.

Using these results to compare the metrics, we find that 
all metrics increase as the coupling in the Kuramoto mod-
els is strengthened. Figure 5 shows that the estimated effect 
increases similarly for all metrics, although Fig. 6 shows 
that the magnitude of the change over the baseline can differ 
quite considerably.

In Fig. 6, the potential effect of Gaussian noise on the 
coherence metric is exposed, with the coherence scores 
barely rising above the baseline, even with strong coupling 
between oscillators. This is due to the fact that coherence at 
frequencies where the amplitude is high are treated equally 
with coherence at low-amplitude frequencies, when averag-
ing across frequency components. In our Kuramoto data, 
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each signal is a combination of a sinusoidal progression and 
a small amount of added Gaussian noise. Synchronization 
of the main sinusoidal component occurs at a single fre-
quency, while the unsynchronized Gaussian noise (being 
white noise) affects the signal at all frequencies. Due to 
the normalization that occurs when calculating coherence 
at each frequency component (which removes information 
about amplitude), the presence of white noise at many fre-
quencies ends up being dominant in the final averaged coher-
ence score. The sum-normalized CSD metric we propose 
is better able to handle this issue, by adjusting the way that 
normalization is applied to the cross-spectral density. This is 
demonstrated by the fact that it rises quickly over the base-
line as the coupling strength between oscillators is increased. 
Note that despite this issue with coherence, Fig. 5 indicates 
that an effect is observed when comparing the coherence 
scores to the baseline, meaning that the metric may still be 
useful in analyzing experimental data.

Rho seemingly exhibits an increase over the baseline 
more quickly than some of the other metrics when coupling 
strength becomes larger, suggesting it does detect synchrony 
well in this context. The percentage of recurrence also seems 
to be responsive to coupling strength when looking at the 
percentage increase over the baseline, however the estimated 
effect size increases slightly more slowly than with the other 
metrics. Symbolic entropy showed lower increases over the 
surrogate baseline for smaller coupling strengths, but still 
demonstrated increases when the coupling strength was 
higher. Overall, the metrics fit the assumption that increased 
synchrony should be detected when the coupling between 
oscillators is increased.

Using this type of synthetic data from Kuramoto models, 
it is possible to investigate various types of validity for our 
metrics. First, we can gain an insight into convergent valid-
ity by calculating the correlation between the metrics, since 

they are all expected to measure some form of multivari-
ate synchrony. We do this across all Kuramoto time series 
generated according to the above procedure. With the same 
data, we also consider whether the multivariate metrics have 
concurrent validity with a metric that reflects the related 
concept of dyadic synchrony. We chose cross-correlation 
as a standard dyadic metric (Schoenherr et al., 2019) with 
a lag of 0, and averaged across all pairs within a time series 
to obtain a single value per time series. Pearson correlation 
coefficients are presented in Table 1.

The absolute values of the correlation coefficient are all 
above .66, which Schoenherr et al. (2019) classified as ‘high’ 
correlation when comparing dyadic synchrony metrics, sug-
gesting that there is substantial convergent validity between 
the different measures. Coherence has slightly lower scores 
than the others, perhaps due to the effect that Gaussian noise 
has on the metric when using this type of synthetic data (as 
described earlier). Nevertheless, these correlations are gen-
erally high and give support for convergent validity amongst 
the metrics.

Additionally, it is possible to examine how well each mul-
tivariate metric is suited to predicting the known coupling 
parameter of the Kuramoto models, providing an insight into 
criterion validity. Figure 6 shows that across all metrics, 
there is a nearly perfect correlation (|r(9)| > .95) between 
the coupling parameter and the average synchrony score 
of the time series generated using that coupling parameter. 
This provides strong evidence of criterion validity, in that 
all metrics increase when synchrony in the form of coupling 
is increased.

It is worth noting that this synthetic data may not resem-
ble all of the important aspects of empirical signals as the 
Kuramoto data we generated assumes that the signals all 
come from periodic oscillators with equal and constant 
coupling.

Fig. 5   Absolute values for Cohen’s d when comparing synchrony scores on Kuramoto data to surrogate data
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Empirical data results

To complement the investigation of synthetic data, which 
allows us to vary key parameters of the data and examine the 
consequences, we also examine data from empirical studies, 
which have more complex and realistic properties, but at the 
cost that we do not know what parameters are driving it. We 
present two case studies using openly available data from the 
ELEA corpus (Sanchez-Cortes et al., 2012) and a study of 
triadic interaction (Gervais et al., 2013; Dale et al., 2020).

Using these real-world data sets, we are able to showcase 
how multiSyncPy is used to perform novel scientific work, 
while also presenting new results from an analysis of bodily 
synchrony in two different tasks. In fact, our results on the 
ELEA corpus are the first to our knowledge to investigate 
bodily synchrony in this data. Through the case studies, we 
are able to provide ‘lessons learned’ from initial usage of 
the package. This makes it possible to describe the difficul-
ties that real-world data, as opposed to synthetic data, can 
present. It also serves to highlight that it can be difficult 
to detect group-level synchrony, including in a case study 
where dyadic synchrony had been observed previously.

ELEA corpus  The ELEA corpus (Sanchez-Cortes et  al., 
2012) contains video recordings and transcripts from groups 
of three or four people performing a disaster survival task 
where the group must rank the importance of a list of items 
given a disaster scenario. The corpus also includes details 
of the rankings that individuals came up with individually 
and the group rankings they agreed upon, plus personal-
ity questionnaires, and ratings of dominance and leadership 
provided by experts.

We use the videos included in the corpus to investigate 
postural synchrony within the teams. First, key points of the 
participants’ bodies were extracted for each frame of video 
using OpenPose (Cao et al., 2021). Then, we select a subset 

of key points to represent posture. Specifically, we use key 
points 0, 1, 2, 5, 15, 16, 17 and 18 from model ‘BODY_25’, 
which correspond to the nose, neck, right and left shoulders, 
right and left eyes, and right and left ears. These were cho-
sen on the basis that they reflect postural information while 
being visible in the ELEA video recordings, which show 
participants from above the waist. Calculating the Euclidean 
distance for each key point across frames and then averaging 
across key points gives a single postural movement signal 
for each participant; the three or four participants together 
make a multivariate time series. This method is commonly 
used for dimensionality reduction of motion capture data 
and is sometimes referred to as an interpoint distance time 
series (Davis et al., 2016) or displacement time series (Bor-
jon et al., 2018).

Additionally, there are occasional jumps in the positions 
of key points estimated with OpenPose, for example where 
the participant moved out of view of the camera, or another 
person appears briefly, which leads to sudden large changes 
in the Euclidean distances. These points were identified using 
outlier detection (if they possessed a z-score greater than 5) 
and replaced using linear interpolation. This affected only 
0.3% of data. Because the recordings are different lengths, 
we take 14,000 frames from the middle of each recording, to 
produce a dataset with greater consistency and with which 
it is easier to swap variables across recordings to produce a 
surrogate baseline. Because we are interested in the videos, 
we use the ELEA-AV sub-corpus, which includes all the ses-
sions which were video-recorded, amounting to 26 different 
teams. From these, the 20 recordings with four members in 
a team were selected for use, so that each multivariate time 
series would contain the same number of variables. Win-
dows containing 300 time steps of data (equating to 10 s of 
recording) with high and low levels of synchronization are 
displayed below in Fig. 7 (each letter/line refers to postural 
movements from different group members).

Fig. 6   Change in synchrony scores on Kuramoto data compared to surrogate at increasing levels of coupling strength
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Our first goal in investigating the data is to identify 
whether synchrony occurs at above the level expected by 
chance. Our first option in this regard is to apply the statis-
tical test of Frank and Richardson on the Kuramoto order 
parameter. This method compares the observed data to a null 
hypothesis stating how a sample of values is expected to be 
distributed. This works for the Kuramoto order parameter. 
For the other metrics included in the package, the expected 
distribution of values in a sample is not known, and so we 
use surrogate data to gain an understanding of whether 
observed synchrony is above chance level.

In general, the test of the Kuramoto order parameter offers 
one way to examine levels of synchrony within a sample of 
recordings. However, this is predicated on the data being 
suitable for such analyses. The test is based upon the Kura-
moto model of oscillating components, in which the com-
ponents follow sinusoidal progressions and have a uniform 
distribution of phase values. As can be seen from Fig. 7, 
the ELEA data is characterized by short spikes or peaks 
in movement occurring with a background of no motion 
otherwise. Using this data, the phase values extracted by 
the Hilbert transform have a skewed rather than uniform 

distribution (due to the periods of stillness between spikes 
which have no progression).

To demonstrate the point, we examine what happens if 
one does perform the test of the Kuramoto order parameter 
on the movement data. For the 20 recordings of four vari-
ables, t(19) = 51.7, p < .001, 95% CI [.49, .61], Cohen’s d 
= 10.4, demonstrating a strong effect. However, we also find 
that when shuffling variables between time series to create a 
surrogate baseline in which synchronization is not expected, 
we achieve very similar results: t(19) = 46.5, p < .001, CI 
= [.45, .56], Cohen’s d = 10.4. This acts as a word of cau-
tion and a ‘lesson learned’ from our empirical case study, 
confirming that the test of the Kuramoto order parameter 
must be used on data from which appropriate phase informa-
tion can be extracted, otherwise the results may be highly 
inflated. The distribution of phase values can be inspected 
to see if it is (roughly) uniform before performing the test. 
These findings also suggest that there is value in having 
access to multiple methods for analyzing synchrony, which 
is what multiSyncPy offers, since one method may overcome 
the limitations of another method and provide a way to iden-
tify inconsistent results. Further investigations to determine 

Table 1   Pearson correlation coefficient between multivariate synchronization metrics

Rho Coherence Symbolic entropy Sum-normalized
CSD

Mean 
dyadic cor-
relation

% Recurrence .74 .82 – .91 .67 .88
Rho .69 – .90 .92 .88
Coherence – .76 .68 .80
Symbolic entropy – .83 – .93
Sum-normalized CSD .85

Fig. 7   Example movement data extracted from ELEA from two meetings each with four participants, with participants indicated by line style 
and color
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how both the type of data and the extracted phase informa-
tion impact the test of the Kuramoto order parameter, using 
synthetic data and alternative methods for extracting phase, 
is presented in our Appendix I.

Our next focus is the performance of the remaining 
synchrony metrics compared to a surrogate baseline. We 
take the same data and compute the percentage of recur-
rence (using a radius of 0.4 to determine recurrent points), 
cluster-phase rho, coherence, sum-normalized CSD and 
symbolic entropy. Then, the variables are shuffled across 
recordings to produce a surrogate baseline and the metrics 
are re-computed for comparison. The mean values of the 
different metrics are presented in Table 2, along with stand-
ard deviations, the results of a Welch’s independent samples 
t test, and estimated effect sizes. All of the metrics show 
some differences that are consistent with the hypothesis that 
synchrony is greater in the real compared to the surrogate 
data, and t tests suggest significance across all metrics except 
recurrence (as shown in Table 2) after applying a Bonfer-
roni adjustment for the fact that we are running five tests, 
which lowers the significance level to .01. For all metrics, 
the differences appear quite small in terms of absolute differ-
ence, although the effect sizes for rho, coherence, symbolic 
entropy and sum-normalized CSD are typically considered 
large. These results give some indication that global multi-
variate synchrony may have occurred during the team task.

The relative distribution of the synchrony metrics across 
ELEA meetings is shown in Fig. 8, giving an indication of 
variability in the data. Because the range and units of each 
measure varies, each has its own scale determined by the 
theoretical minimum and maximum. Recurrence values are 
generally close to 5%, which is to be expected since the 
radius used to decide recurrence was chosen specifically 
to produce around 5% recurrence. Coherence and sum-
normalized CSD have low values relative to the theoreti-
cal maximum, although this is highly influenced by the fact 
that the time series have 14,000 time steps, allowing for the 
extraction of many frequency components, while it would 
not be expected that synchronization occurs at all of these 
frequencies. Symbolic entropy scores tend to be close to the 
theoretical maximum, but still demonstrate variability.

We also analyzed the data dividing each meeting into 
smaller, non-overlapping windows, following the example 

of (Dale et al., 2020). We used 300 frames for a window, 
corresponding to 10 s. Since OpenPose is unable to accu-
rately extract key point locations in every frame, which may 
impact the reliability of the results, we select windows where 
OpenPose reports a confidence of 100% when extracting key 
points in all frames. The number of windows obtained from 
a meeting can vary, according to the length of the meet-
ing and the proportion of frames where OpenPose reports 
less-than-perfect confidence. The number of windows from 
a meeting varies between 9 and 79, with a median of 48.5.

We then identify the maximum values of synchrony across 
all windows for a meeting, and use this score to summarize 
the entire meeting (Dale et al., 2020). This is motivated by 
the notion that synchrony may not occur consistently across 
a group meeting and instead has time-varying properties 
(Likens & Wiltshire, 2020; Mayo & Gordon, 2020; Wiltshire, 
Steffensen, et al., 2020b). With this method it should be 
possible to detect the presence of synchrony in general by 
looking at the maximum across time segments of a meeting 
(or observed period of interaction). Like with our previous 
analyses, we also create a surrogate baseline by swapping 
variables across windows, and then extracting maxima per 
meeting. The number of meetings and the number of windows 
per meeting is kept the same in the surrogate baseline.

There are a few additional things to note about how the 
different metrics are calculated on this data. First, extracting 
the maximum recurrence across windows in a meeting led 
to particularly high values, being above 30% in some cases. 
This implies that the radius used previously to decide when 
points are recurrent might be too large, and so we reduce the 
radius for this piece of analysis from 0.4 to 0.3 (see (Wal-
lot & Leonardi, 2018) for guidance on setting the radius 
parameter for recurrence quantification analyses). Second, 
the highest point of synchronization is reflected by the low-
est entropy, and so the minimum value rather than the maxi-
mum is used for that metric. Because the sequences consist 
of only 300 time steps, we reduced the window length to 75 
(from the scipy default of 256) when using Welch’s method 
to determine power spectral density within the coherence 
calculation. This allows for multiple overlapping windows 
to be used in the calculation, which improves the estima-
tion of spectral density and leads to usable results that are 
reported here. The results for the actual observations and 

Table 2   Synchrony metrics on ELEA recordings

Metric M SD M (surrogate) SD (surrogate) df t p Cohen’s d

Recurrence (%) 5.00 2.42 3.59 0.81 23.3 2.48 .021 0.74
Rho 0.57 0.03 0.52 0.01 26.4 7.46 < .001 1.52
Coherence 0.03 0.01 0.02 0.00 19.8 3.92 < .001 1.06
Symbolic entropy 4.30 0.10 4.38 0.01 19.2 – 3.31 .004 – 0.93
Sum-normalized CSD 0.03 0.02 0.01 0.00 19.4 3.72 .001 1.02
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the surrogate baseline are shown in Table 3. The first two 
columns show the mean value across meetings, with the 
standard deviation in parentheses. The next columns show 
the results from Welch’s independent samples t tests, and the 
estimated effect size.

Consistent with our previous results, we find that the syn-
chrony values show an increase over the surrogate baseline, 
except for entropy which changes negligibly, giving us some 
added confidence that synchrony is still present after exclud-
ing frames where OpenPose had low confidence. How-
ever, using independent-samples t tests with a Bonferroni 
adjustment to reduce the significance level to .01 does not 
suggest that there is statistical significance to any of these 

differences. All of the metrics showed increased synchrony 
scores compared to the baseline, but the increases are small 
and not statistically significant. Figure 9 shows the relative 
distribution of the synchrony metrics for this data, i.e., using 
the value reflecting highest synchronization from the win-
dows for each ELEA meeting. Compared to the 14,000 time 
step data used previously, the variability observed is greater 
with these windows of 300 time steps.

Previously, we examined the convergent validity between 
different multivariate synchrony metrics and an averaged 
dyadic measure when using synthetic Kuramoto data. With 
the ELEA data, we are able to examine convergent validity 
when using empirical data. The correlations between metrics 

Fig. 8   Distribution of scores for each metric, with scales determined by theoretical minimum and maximum

Table 3   Synchrony metrics based on maximum value from windows per ELEA recording

Metric M SD M (surrogate) SD (surrogate) df t p Cohen’s d

Recurrence (%) 6.70 3.10 6.43 2.96 37.9 0.28 .780 0.09
Rho 0.83 0.05 0.82 0.05 37.8 0.87 .391 0.28
Coherence 0.28 0.04 0.26 0.03 35.6 1.02 .316 0.32
Symbolic entropy 3.00 0.08 3.00 0.12 34.4 – 0.33 .744 – 0.11
Sum-normalized CSD 0.31 0.07 0.28 0.05 34.6 1.83 .076 0.56
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across all 1222 windows of 300 time steps are presented in 
Table 4.

The correlations presented here are generally of lower 
magnitude than when using Kuramoto data, however they 
also show a similar positive correlation between different 
metrics, with the exception of symbolic entropy which 
decreases when synchronization is higher, as is expected. 
Where the magnitude is greater than .05, the results are sig-
nificant. This gives some additional confirmation of conver-
gent validity even when using empirical data.

Triadic synchrony dataset  A final component of our inves-
tigations into the performance of our metrics was to apply 
our analysis method to a dataset that has previously been 
used to study synchrony. We use the data analyzed by Dale 
and colleagues (Dale et al., 2020; Gervais et al., 2013) in 
their investigation of cross-correlation in triads. Their work 
looked at the interactions between groups of three partici-
pants in a period of open-ended conversation, with no goal 
or topic provided as part of the experiment. From video 
recordings, they extracted information about body move-
ment and examined it for evidence of synchronization. 
Instead of using OpenPose, an ‘optical flow’ method was 
applied that measures the average change in pixel intensity 
over time to provide a proxy for body movement (Barbosa, 

2017; Latif et al., 2014). The analysis focused on cross-
correlation amongst the dyads that comprise a triad, and 
whether these cross-correlations themselves synchronized. 
Our approach is different in that it directly investigates syn-
chrony as a group-level construct. Windows containing 300 
time steps of data (equating to 10 s of recording) with high 
and low levels of synchronization are displayed below in 
Fig. 10 (with the movements of each participant correspond-
ing to a different line/letter).

We apply the same pre-processing as used in the original 
work, specifically a low-pass filter at 0.05 of the Nyquist 
frequency followed by excluding the first 200 frames from 
each meeting. The meetings are then split into non-overlapping 
windows of 300 frames, representing 10 s duration. We select 
the maximum observed synchrony across the windows for 
each meeting, and compare these per-meeting maxima to those 
observed in a surrogate baseline, where the variables have been 
swapped across recordings. In our surrogate baseline, we use 
a number of meetings and windows equal to those used in 
the main results. Consistent with our analysis of windows of 
ELEA data, a radius of 0.3 was used for mdRQA, the minimum 
rather than the maximum entropy per meeting is used, and the 
window size when computing power spectral density as part 
of the coherence calculation was reduced to 75. The mean 
values of the various synchrony metrics are presented in 

Fig. 9   Distribution of scores for highest synchrony across windows per ELEA meeting, with scale determined by theoretical minimum and 
maximum
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Table 5, along with standard deviations and results of Welch’s 
independent samples t tests and estimates of effect size.

The percentage of recurrence is higher in the real 
data compared to the surrogate baseline, consistent with 

the hypothesis that synchronization occurs during the 
conversations. The change is still quite small however, so this 
provides only weak evidence of multivariate synchrony. Similar 
to recurrence, symbolic entropy is slightly lower on the real 
data as would be expected if a small amount of synchrony is 
present in the data. Applying a Bonferroni adjustment to lower 
the significance level to .01 for our independent-samples t 
tests, recurrence, symbolic entropy and the cluster-phase ‘rho’ 
metric do not exhibit a significant change over the baseline. 
Coherence and the related sum-normalized CSD do suggest the 
presence of synchrony, with the difference from the surrogate 
baseline being significant according to a Welch’s independent 
samples t test. The results are mixed, with only two related 
metrics suggesting a significant change from the baseline, but 
there is some limited evidence of the presence of group-level 
synchronization.

For most of our metrics, the average increase over the baseline 
is smaller for our metrics than was found in the investigation 
of cross-correlations in the original paper (Dale et al., 2020). 
This may be because the earlier work used a pairwise concept 

Table 4   Pearson correlation coefficient between metrics, windows of 
ELEA movement data

Rho Coherence Sym-
bolic 
entropy

Sum-
normal-
ized
CSD

Mean 
dyadic 
correla-
tion

Recurrence (%) .48 .38 – .40 .23 .37
Rho .33 – .27 .26 .58
Coherence – .02 .41 .47
Symbolic 

entropy
-.04 -.01

Sum-normal-
ized CSD

.41

Fig. 10   Example triadic movement data with high and low synchronization

Table 5   Synchrony metrics on triadic meeting data

Metric M SD M (surro- gate) SD (surro- gate) df t p Cohen’s d

Recurrence (%) 12.82 4.52 11.74 3.43 63.4 1.13 .264 0.27
Rho 0.91 0.03 0.89 0.04 67.2 1.70 .095 0.40
Coherence 0.59 0.08 0.51 0.08 67.9 3.62 < .001 0.80
Symbolic entropy 2.50 0.10 2.55 0.11 64.3 – 2.45 .017 – 0.57
Sum-normalized CSD 0.50 0.07 0.46 0.08 66.9 3.26 .002 0.73
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of synchrony rather than a full triadic/group-level metric. 
It may simply be less common for all three members of a 
group to synchronize together than it is for two individuals to 
synchronize, hence the difference in our results compared to the 
average cross-correlations reported in the original work (Dale 
et al., 2020). The relative distribution of the synchrony metrics 
is shown in Fig. 11, giving an indication of variability when 
using the triadic data.

As with the data sets described previously, it is possible 
to examine the correlations between metrics on this empiri-
cal data. Table 6 displays Pearson correlation coefficients 
when using the full 1960 windows available from the triadic 

meetings. The metrics have small to medium correlations, all 
of which are significant at p < .001, giving further evidence 
of convergent validity between the metrics included in our 
package.

Discussion

In this paper, we presented the multiSyncPy package for 
computing multiple multivariate synchrony metrics. Our 
work aims to make such methods accessible while providing a 
good balance of alternatives, which the simple code examples 

Fig. 11   Distribution of scores for highest synchrony across windows per triadic meeting, with scale determined by theoretical minimum and 
maximum

Table 6   Pearson correlation coefficient between metrics, windows of triadic movement data

Rho Coherence Symbolic entropy Sum-normalized
CSD

Mean 
dyadic cor-
relation

Recurrence (%) .40 .17 – .33 .15 .22
Rho .33 – .44 .32 .59
Coherence – .20 .41 .47
Symbolic entropy – .12 – .27
Sum-normalized CSD .49
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presented earlier attempted to demonstrate. Relative to other 
software packages in the area of synchrony, multiSyncPy 
provides a valuable new contribution by focusing on multivariate 
synchrony, with applications in diverse areas of inquiry in the 
cognitive and behavioral sciences as well as other disciplines 
that might be interested in such phenomena (e.g., ecology, 
human–computer interaction).

Another contribution of our work is to present an initial 
investigation of how different metrics perform on the same 
tasks. The methods collated in multiSyncPy have previously 
only been introduced in isolation from one another, and this 
initial comparison of multivariate metrics is novel. By exam-
ining two types of synthetic data, we observed that some 
metrics are more responsive than others to the addition of 
correlated noise to a multivariate signal, and some metrics 
appear more sensitive to the coupling strength in situations 
that can be modeled as coupled Kuramoto oscillators. The 
‘rho’ metric, for example, seemed the least influenced by 
increased correlated noise, while being one of the metrics 
that increased most quickly with the Kuramoto coupling 
strength parameter.

The synthetic data used in this paper are of course based 
on simplified mathematical models. They are useful, though, 
because they give the opportunity to change parameters of 
the data generation process and then observe corresponding 
trends in the values of synchrony metrics; however, there 
are some limitations worth noting. In particular, some of 
the interesting and complex properties of real-life signals 
may not be present in the data. One property that might be 
worthwhile to investigate in future work is quasi-periodicity, 
which is not reflected in our Kuramoto model since it is 
composed of oscillators following simple sinusoidal pat-
terns. Methods for generating synthetic quasi-periodic data 
would make it possible to compare how different metrics 
perform under a wider range of conditions. Moreover, it is 
likely that a wide variety of nonlinear relationships between 
variables in a system are possible, and can be modeled in 
synthetic data. Future work could examine whether and how 
various nonlinear relationships impact synchrony metrics in 
different ways.

Overall, on data from real-life experiments, our metrics 
showed limited increases over a surrogate baseline when 
considering windows of data, although a significant effect 
was observed for four out of five metrics on the full ELEA 
recordings. The fact that the increases were frequently quite 
small or not statistically significant might indicate that it 
may be hard to detect group-level synchrony in team tasks, it 
may be less common than the more frequently-investigated 
phenomenon of dyadic synchrony in teams, or it could be 
that this form of surrogation is quite conservative compared 
to simple randomization (Moulder et al., 2018). Looking 
at our results on the data analyzed by Dale and colleagues 
(Dale et al., 2020), it seems that the dyadic synchronization 

studied by the original authors was more noticeable against 
a surrogate baseline. This is to say that it is important to 
consider that pairs within larger teams may move in and out 
of coordination with each other over time. Future work could 
more systematically investigate not only in more detail the 
relationship between the multivariate metrics (see Schoenherr 
et al., 2019 for inspiration), but also convergence in pair-wise 
versus group-level coordination metrics, and changes over 
time in multivariate coordination (Amon et al., 2019). We 
expect that a key differentiator is in measuring synchrony 
as a system-level construct, which may not be the same as 
an aggregation of the synchrony between component dyads. 
Since the change above the surrogate baseline was generally 
small in our case studies on real data, future work could 
also search for examples of situations where multivariate 
synchrony is more obviously present. And, more generally, 
much remains to be known about the conditions under which 
system-level synchrony emerges in the variety of domains we 
mentioned involving social interactions.

In terms of the practical utilization of our package, while 
these methods might now be more accessible than previ-
ously, we cannot understate the importance of carefully 
considering the methods, revisiting the original sources for 
these metrics, carefully inspecting the data to ensure the 
analyses are appropriate (e.g., periodic vs. non-rhythmic), 
choosing the correct pre-processing techniques (e.g., appro-
priate filtering, phase extraction, window size, time-norma 
etc.), analyzing multivariate systems with the same number 
of variables, and determining which segments of the data to 
analyze (removing transients, selecting for periods of activ-
ity vs. inactivity). As the field shifts from primarily bivari-
ate to multivariate coordination dynamics, careful thinking, 
experimentation, and systematic comparison and validation 
of the multiple possible methods (including those presented 
in this paper and others such as (Zhang et al., 2020) and 
(Baboukani et al., 2019)) are required to fully understand 
these metrics.

In conclusion, multiSyncPy provides a range of syn-
chrony metrics that can be computed easily through simple 
function calls in Python. These metrics come from a range 
of theoretical backgrounds, and the context may make some 
metrics more appropriate or informative than others. All of 
the metrics apply to multivariate time series, and so can 
be used to investigate system-level constructs of synchrony. 
System-level synchrony is under-researched, even in con-
texts where synchrony has been studied previously, such as 
small group interactions. Our methods are also appropri-
ate in situations where there are numerous variables and it 
would be difficult to make sense of a large number of pair-
wise synchronizations. In other words, we aim to contrib-
ute tools that may advance the field's understanding of how 
coordination functions across scales (Kelso, 2021; Zhang 
et al., 2019). For the benefit of future researchers interested 
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in multivariate coordination dynamics, multiSyncPy is made 
freely available under the liberal LGPL license.

Appendix I: Investigation of data 
characteristics on Kuramoto order 
parameter

This subsection provides supplementary results concerning 
how the test of the Kuramoto order parameter is affected by 
characteristics of the data, in particular comparing results 
from Kuramoto oscillators to signals consisting of short 
bursts or peaks of activity in an otherwise flat progression 
(such as the movement data we extracted from the ELEA 
corpus). Recall that, when describing the empirical case 
study on the ELEA movement data, the test on the Kuramoto 
order parameter may have provided misleading results on the 
data because it was characterized by short bursts of activity. 
To confirm that this is the case, we generated synthetic data 
with the relevant characteristics, and compared this to results 
from data generated by a Kuramoto model, where the same 
problem was not expected to occur.

First, we considered the unproblematic case using data 
from a Kuramoto model. Synthetic data generated by a 
Kuramoto model is moderated by the coupling strength, 
which is provided as a parameter. If the coupling strength 
is specified to be zero, then the components do not interact 
with each other and there is no mechanism by which they 
can coordinate and synchronize. In this situation, there is 
no synchrony expected. We generated a sample of 100 time 
series of five variables and 1000 time steps each from Kura-
moto models where the coupling strength is 0. Performing 
the test of the Kuramoto order parameter, we find that, as 
expected, the result is not significant, t(99) = 0.25, p > .05. 
By contrast, we would expect significant levels of synchroni-
zation when using a higher value of coupling. To verify this, 

we generated a sample of 100 time series of five variables 
and 1000 time steps each where the coupling strength is 
0.5. The result of the test in this instance is significant, t(99) 
= 7.35, p < .001. This gives some reassurance that the test 
works as expected when using signals that follow essentially 
sinusoidal progressions.

Next, we considered what happens when applying the test 
to data characterized by short bursts. False identification of 
significance might occur with such data in situations where 
no synchrony is present. We constructed relevant synthetic 
data by generating variables which exhibit short bursts of 
activity, but where the bursts have random location, ampli-
tude, and duration. Each variable takes the form of a signal 
with a duration of 1000 time steps in which five bursts occur. 
Each burst is constructed from a Gaussian curve. The stand-
ard deviation of the curve is selected from an exponential 
probability distribution, and the amplitude of the curve is 
modified by multiplying by a number which is also randomly 
chosen from an exponential distribution. Finally, the curve is 
given a location which is selected from a uniform distribu-
tion over the 1000 time steps of the signal. As stated, five 
curves (or ‘bursts’) are added to a signal which has a value 
of 0 at all other time steps. Gathering multiple such vari-
ables together leads to time series in which no synchrony is 
expected. The parameters for the exponential distributions 
were chosen using manual inspection, so that the bursts in 
different synthetic signals would be narrow enough in dura-
tion to have limited coincidental overlap. Examples of the 
data generated using this method are shown in Fig. 12.

We generated a sample of 100 time series containing 
five variables each and applied the test on the Kuramoto 
order parameter. We found that although above chance-
level synchrony was not expected, the results did suggest a 
significant degree of synchronization, t(99) = 62.6, p < .001. 
This confirms, using synthetic data generated especially 
for the purpose, that data characterized by short bursts is 

Fig. 12   Example of synthetic data characterized by short bursts
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inappropriate for analysis with the Kuramoto test. This 
conclusion supports the remarks made in the “Empirical Data 
Results” subsection when interpreting the ELEA movement 
data, which are also characterized by short bursts. The 
explanation we propose is that the test assumes a uniform 
distribution of phase values, whereas there is no progression 
in phase during lengthy periods of inactivity, leading to a 
skewed distribution in data where activity occurs in short 
bursts. If the variables in a multivariate time series have 
skewed distributions of phase values, then the distribution 
of the average phase value at each instant (averaged across 
variables, not time) could be quite different from what is 
assumed by the test of the Kuramoto order parameter.

If the distribution of phase values is the source of the 
problem, it may be interesting to consider alternative phase 
extraction methods to the Hilbert transform used throughout 
this paper. Therefore, we tried again using two alternative 
methods. First, we used the continuous wavelet transform 
with the Morlet wavelet to extract the phase. Second, we 
took an approach similar to Gouhier and Guichard’s (2014) 
approach, in which we first find peaks (in our case using 
a method based on wavelet analysis) which are considered 
moments of maximal phase and then interpolate the phase 
linearly between these points.

The approach based on the Morlet wavelet brings about 
results which do not indicate significance, as is desired for 
the synthetic data, t(99) = 0.47, p > .05. However, further 
investigation shows that the problem is not entirely solved. 
When the synthetic data consists of bursts with longer duration, 
such that they can overlap more, then the test of the Kuramoto 
order parameter indicates significance, t(99) = 3.9, p < .001. 
Moreover, the test also indicates significance when applied to 
a surrogate baseline constructed from shuffling the variables 
between time series within the ELEA movement data. Using a 

surrogate baseline constructed from ELEA meetings with four 
participants, t(19) = 8.2, p < .001. This suggests that there are 
still issues when extracting phase using the continuous wavelet 
transform with the Morlet wavelet.

The approach based on peak-finding gives more reason-
able values for the t-statistic compared to the results when 
the Hilbert transform is used, although significance is still 
concluded in the synthetic data, t(99) = 2.3, p < .05. Inter-
estingly, when using the peak-picking approach, significance 
is not concluded from ELEA surrogate data, t(19) = 1.3, 
p > .05. One thing to note is that the outputs seem to be 
highly sensitive to changes in the parameters used by the 
peak-picking algorithm. We used visual inspection to iden-
tify reasonable values for the parameters. An example of a 
synthetic time series and its corresponding phase time series, 
as extracted through the peak-picking method, is displayed 
in Fig. 13.
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