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Abstract
Prior work byMichael R. Dougherty and colleagues (Yu et al., 2014) shows that when a scientist monitors the p value during data
collection and uses a critical p as the signal to stop collecting data, the resulting p is distorted due to Type I error-rate inflation.
They argued similarly that the use of a critical Bayes factor (BF(crit)) for stopping distorts the obtained Bayes factor (BF), a
position that has met with controversy. The present paper clarified that when BF(crit) is used as a stopping criterion, the sample
becomes biased in that data consistent with large effects have a greater chance to be included than do other data, thus biasing the
input to Bayesian inference.We report simulations of yoked pairs of scientists in which Scientist A usesBF(crit) to optionally stop,
while Scientist B, sampling from the same population, stops when A stops. Thus, optional stopping is compared not to a
hypothetical in which no stopping occurs, but to a situation in which B stops for reasons unrelated to the characteristics of B's
sample. The results indicated that optional stopping biased the input for Bayesian inference. We also simulated the use of effect-
size stabilization as a stopping criterion and found no bias in that case.
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Introduction

There is growing concern about p hacking (e.g., Nuijten et al.,
2016; Simmons et al., 2011) wherein a researcher perhaps-
unintentionally exploits sampling error to find spurious
though statistically significant results. In one form of p
hacking, known as optional stopping, a researcher achieves
an artifactually small p value by monitoring the sample as it
accumulates, and halting data collection when the p reaches a
critical value (such as .05). It has been suggested that this
practice contributes to what has been called a "replication
crisis" in which the attempts to replicate published findings
fail more often than they should (Pashler & Wagenmakers,
2012; also see Ioannidis, 2005). A variety of potential solu-
tions have been proposed, ranging from the abandonment of
p values and of classic null-hypothesis testing altogether
(Cumming, 2012; Kruschke, 2013; Trafimow, 2014;
Trafimow&Marks, 2015), to the adoption of the Bayes factor

or other Bayesian measures as a statistical indices (The
Psychonomic Society, 2020; Wasserstein & Lazar, 2016), to
insisting that researchers compute a priori statistical power
(Cohen, 1992) to decide on a sample size prior to starting data
collection (The Psychonomic Society, 2020).

While a priori power analysis is a way to avoid optional
stopping, its utility is limited. Unless the planned study is an
exact replication of prior studies, a power calculation requires
the researcher to assume that if the effect size for yet-to-be-
conducted study is not zero (i.e., if the null hypothesis is false),
then that effect size will have some specific non-zero value.
However, because the study has not yet been conducted, the
researcher does not know the size of the non-zero effect. The
size can be only roughly estimated from prior, similar studies.
Thus, as noted by McShane and Böckenholt (2016), a priori
power analysis can easily produce a sample-size estimate that
is too large or too small. As a response to this problem,
McShane & Böckenholt devised a method to minimize
bias in the estimate of effect size (also see Maxwell
et al., 2008). However, we believe the problem of im-
precision remains a fundamental logical and practical
problem for a priori power analysis.

In practice, researchers do sometimes engage in optional
stopping. In a study that included both behavioral and
simulation data, Yu et al. (2014) found that researchers
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adopted various stopping rules for data collection, including
deciding ahead of time on a sample size, monitoring the p
value for a critical low value, and monitoring the p value for
a critical high value (see Yu et al. for details). The study's main
purpose was to examine the impact of optional stopping on the
validity of statistical inference. A series of simulations
assessed the impact of such various stopping rules on outcome
measures such as statistical decision errors, Bayes factors, and
effect-size estimates. The results indicated a complex pattern
of influence that depended on the effect size in the simulated
population and on the particular stopping rule. The affected
indices included the p value as well as the Bayes factor, thus
demonstrating that optional stopping can indeed bias statisti-
cal decision-making, even in the context of Bayesian infer-
ence (see Bayes & Price, 1763).

Yu et al.’ (2014) findings did not settle the debate over
whether optional stopping is irrational from a Bayesian per-
spective. In Bayesian inference, decision-makers should stop,

or at least pause after taking-in each bit of new data, to update
their beliefs about the likelihoods of the relevant hypotheses.
Earlier, Wagenmakers et al. (2012) endorsed optional stop-
ping as an appropriate practice within the context of
Bayesian statistical analysis (also see Schönbrodt et al.,
2017). Later Sanborn and Hills (2014) identified circum-
stances (such as heterogeneous populations or diffuse statisti-
cal hypotheses) in which optional stopping can impact the
Bayes factor, but they nevertheless maintained that "the
Bayesian interpretation of the evidence does not depend on
the stopping rule used and, thus, is correct nomatter the reason
used to stop the experiment." (p. 284). A similar argument was
made by Rouder (2014).

Some thought experiments

Suppose there is a null statistical hypothesis that a country's
two dominant ethnic groups do not differ in their mean

Fig. 1 For population effect size (D) = 0.0: The natural log of the
obtained Bayes factor (logBF) as a function of the Bayes factor
stopping criterion (BF(crit)) and of the simulated scientist's role in the
yoked sampling procedure. Each circle is a data point indicating the
logBF that results from a particular, simulated experiment. At each
level on the vertical axis, the random horizontal displacement of the
circles indicates the density of the data at that point (see Clarke &
Sherrill-Mix, 2017). Thus, the pattern of the circles shows the
distribution of the data. The rectangles are box plots: The top of the box
indicates the 75th percentile of the data, the bottom of the box indicates

the 25th percentile, and the horizontal bar between the top and the bottom
indicates the median. The whiskers on each box extend to the most
extreme observation whose distance from the box's edge is less than or
equal to 1.5 times the interquartile range (IQR)—where the interquartile
range is the range delineated by the 25th and 75th percentiles. For each of
the four levels of the stopping criterion, there were 1000 pairs of
simulated experiments (though the criterion was often not met). In each
simulated experiment, there was a maximum of 500 simulated
participants (250 per group)
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support for a particular social policy. The alternative hypoth-
esis is that the two population means differ. A Bayes factor is
calculated and properly interpreted to be the likelihood of the
data given the alternative hypothesis, relative to the likelihood
of the data given the null. However, the researcher in this
scenario knows that the sample consists of the researcher's
close friends, and thus not likely to be representative of the
populations to which the statistical hypotheses pertain. In this
situation, the Bayesian algorithm is correct, and yet the statis-
tical inference is invalid because of a flawed input to the al-
gorithm, i.e., an inappropriate sample. The validity problem,
in this case, is due to bad data and is unrelated Bayesianism's
non-frequentist treatment of probability.

Now consider a second thought experiment that situates
optional stopping within the logic of statistical judgment.
Suppose Scientist A (call her Adams) is collecting a random
sample of data in an experiment to assess whether a particular
drug is an effective treatment. Prior to starting the experiment,
she had decided to halt data collection when the Bayes
factor reaches a critical value of either 50 (which
strongly favors the alternative hypothesis) or 1/50
(which favors the null). Suppose further that Scientist
B (call her Burns), is independently sampling from the
same population, testing the same hypothesis as Adams.
However, Burns' stopping rule is to simply stop when
Adams stops, thus guaranteeing that Burns and Adams

Table 1 For optional stopping based on BF(crit): obtained sample sizes (N), numbers of samples, proportions of simulated pairs of experiments in which
the Scientist A's obtained Bayes factor exceeded those of Scientist B, and hypothesis test for those proportions

Criterion condition (BF(crit)) Obtained sample N # of Samples Prop. of
Cases where
BFA > BFB
(and dA > dB)

a

Binomial test b for prop. (BFA > BFB ) = 0.5

Median 25th
%tile

75th
%tile

p Bayes factor b

For Pop. D = 0.0

Never met 500 c -- -- 2818 0.496 .665 0.026

3 40 34 54 999 0.413 < .001 > 1,000

10 496 72.5 498 166 0.367 < .001 34.145

50 62 21.5 151 14 1.000 < .001 > 1,000

200 20 20 93 3 1.000 .250 2.000

For Pop. D = 0.2

Never met 500 c -- -- 2349 0.421 < .001 > 1,000

3 42 34 60 1000 0.453 .003 3.291

10 238 100 356 386 0.912 < .001 > 1,000

50 320 208 429 180 0.978 < .001 > 1,000

200 340 210 434 85 1.000 < .001 > 1,000

For Pop. D = 0.5

Never met 500 c -- -- 60 0.033 < .001 > 1,000

3 44 26 68 1000 0.588 < .001 > 1,000

10 108 58 174 999 0.632 < .001 > 1,000

50 176 108 252 985 0.578 < .001 > 1,000

200 206 134 297 956 0.591 < .001 > 1,000

For Pop. D = 0.8

Never met -- -- -- 0 --

3 26 14 44 1000 0.617 < .001 > 1,000

10 46 30 72 1000 0.603 < .001 > 1,000

50 78 51.5 108 1000 0.570 < .001 730.362

200 90 62 124 1000 0.590 < .001 > 1,000

Note. For each level of population effect size (D), and for each level of the criterion, there were 1000 pairs of simulated experiments (though the stopping
criterion remained unmet in some of the experiments). In each simulated experiment, there was a maximum of 500 simulated participants (250 per
group).
a The results indicated a perfect correspondence between whether Scientist A's obtained Bayes factor (BFA) exceeded that of Scientist B (BFB), and
whether Scientist A's obtained Cohen's d (dA) exceeded that of Scientist B (dB).
b The values in these columns evaluate the simulation results and not the individual, simulated experiments.
c When BF(crit) was never met, the simulated sample necessarily reached its maximum size of 500 (250 per simulated group of participants).
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have the same sample size. The Bayes factor for
Adams' has crossed the "50" threshold, and so she
stops. The sample size happens to be about 100.

Based on past experience, Adams knows that her use of a
critical Bayes factor (BF(crit)) as a stopping-criterion has
likely made her effect size greater than the population effect
size (some would call this a statistical bias), and higher than
the effect size in Burns' sample, since Burns did not use
BF(crit) as a stopping criterion. Moreover, because the sam-
ple's effect size determines the Bayes factor (all else being
equal), Adams knows that her biased effect size has likely
caused the Bayes factor to be higher for her sample than for
Burns' sample.

Adams thinks she knows how to debias her results: Simply
throw them away and substitute Burns' obtained effect size
along with Burns's Bayes factor, calculated from a sample that
has not been biased by BF(crit) optional stopping (or equiva-
lently, simply substitute Burns' sample for her own and then
re-calculate BF). Put differently, like the researcher in

Thought Experiment 1 who sampled close friends rather than
obtaining a representative sample, Adams does not think there
is a problem related to the Bayesian algorithm or its non-
frequentist character. Rather, she believes optional stopping
has the effect of presenting a known-to-be-bad (or at least,
likely-to-be-bad) sample to a Bayesian algorithm that is valid
but that has no special ability to compensate for bad input.

Overview of the present studies

The present paper addresses the aforementioned issues
by means of simulations of yoked-pairs of scientists.
Each of the two scientists randomly samples from the
same population, but only one—Scientist A—engages in
optional stopping based on the sample characteristics.
The other Scientist, B, simply stops when A stops.
Consequently, Scientist B's random samples are repre-
sentative of the population. If the characteristics of A's
same-sized samples were to deviate systematically from

Fig. 2 For population effect size (D) = 0.0: The obtained effect size,
Cohen's d, as a function of the Bayes factor stopping criterion (BF(crit))
and of the simulated scientist's role in the yoked sampling procedure.
Each circle is a data point indicating the logBF that results from a
particular, simulated experiment. At each level on the vertical axis, the
random horizontal displacement of the circles indicates the density of the
data at that point (see Clarke & Sherrill-Mix, 2017). Thus, the pattern of
the circles shows the distribution of the data. The rectangles are box plots:
The top of the box indicates the 75th percentile of the data, the bottom of

the box indicates the 25th percentile, and the horizontal bar between the
top and the bottom indicates the median. The whiskers on each box
extend to the most extreme observation whose distance from the box's
edge is less than or equal to 1.5 times the interquartile range (IQR)—
where the interquartile range is the range delineated by the 25th and 75th
percentiles. For each of the four levels of the stopping criterion, there
were 1000 pairs of simulated experiments (though the criterion was
often not met). In each simulated experiment, there was a maximum of
500 simulated participants (250 per group)
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B's (note that the yoking guarantees that A's and B's
samples are the same size), such deviation would indi-
cate that Scientist A's optional stopping has produced
non-representative samples that capitalize on chance
and are thus ill-suited to the task of drawing inferences
about populations.

Study 1: Simulations of Bayes-factor hacking

The present study employed a simulation methodology in an
attempt to clarify the nature of the distorting effect of optional
stopping. We employ what we call a yoked-scientist design.
Scientist A collects data incrementally, monitors the Bayes
factor while the data accumulate, and stops when the Bayes
factor reaches some pre-established criterion (BF(crit))—for
example, when the Bayes factor reaches 3 or 1/3. Scientist B
is yoked to Scientist A in that B randomly samples data from

the same population (and at the same rate) as does A.
However, whereas A monitors the Bayes factor calculated
from A's own sample, and uses BF(crit) as a stopping criterion,
B's stopping rule is simply to stop when A stops. Moreover, A
has no knowledge of the characteristics of B's sample (other
than the size). Thus, the two scientists obtain identical sample
sizes (though the other aspects of their samples are non-iden-
tical), but only Scientist A uses the characteristics of a sample
(A's own sample) to decide when to stop. Thus, the method-
ological contrast is not one of optional stopping versus a hy-
pothetical situation in which data collection continues further.
Instead, the contrast is that of Scientist A using a sample-
derived statistic (A's Bayes factor) to apply a stopping
rule, versus Scientist B using a different stopping rule
("stop when A stops") that does not depend on the
characteristics of B's sample.

We reasoned that optional stopping would often allow ini-
tial, extreme data to trigger the shutting-out of subsequent,

Fig. 3 For population effect size (D) = 0.2: The natural log of the
obtained Bayes factor (logBF) as a function of the Bayes factor
stopping criterion (BF(crit)) and of the simulated scientist's role in the
yoked sampling procedure. Each circle is a data point indicating the
logBF that results from a particular, simulated experiment. At each
level on the vertical axis, the random horizontal displacement of the
circles indicates the density of the data at that point (see Clarke &
Sherrill-Mix, 2017). Thus, the pattern of the circles shows the
distribution of the data. The rectangles are box plots: The top of the box
indicates the 75th percentile of the data, the bottom of the box indicates

the 25th percentile, and the horizontal bar between the top and the bottom
indicates the median. The whiskers on each box extend to the most
extreme observation whose distance from the box's edge is less than or
equal to 1.5 times the interquartile range (IQR)—where the interquartile
range is the range delineated by the 25th and 75th percentiles. For each of
the four levels of the stopping criterion, there were 1000 pairs of
simulated experiments (though the criterion was often not met). In each
simulated experiment, there was a maximum of 500 simulated
participants (250 per group)
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less-extreme data. A consequence would be that some sam-
ples of size n—specifically, those consistent with an extreme
Bayes factor—are more likely to have been obtained than are
other samples of size n. Thus, Scientist A's sample (arrived at
via optional stopping) would end up being a non-
representative sample, and would therefore differ systemati-
cally from the unbiased though same-sized sample obtained
by Scientist B, to whom Scientist A is yoked.

Method

The simulations were conducted as follows. On each of many
occasions, Scientist A collected data in a two-group experi-
ment, sampling from two normally distributed populations.
For each simulated experiment, there was a maximum of
250 subjects per group (N = 500).

Scientist A stopped collecting data at pre-established, crit-
ical values of the Bayes factor. Each stopping criterion was

two-sided: Data collection could stop when the Bayes factor
reached 3 or 1/3, 10 or 1/10, 50 or 1/50, or 200 or 1/200. The
scientist conducted 1000 experiments under each of the four
stopping-criterion conditions. For each experiment Scientist A
conducted, there was another, concurrent experiment conduct-
ed by Scientist B. Scientist B's experiment was always iden-
tical to A's, sampling from the same populations as A, but
Scientist B was yoked to Scientist A in that B stopped
collecting data when A did. Thus, A and B always ended up
with samples of the same size. If an experiment's sample size
reached 500 without the criterion having ever been met, data
collection stopped anyway.

The entire procedure was repeated four times, once for each
of the four population effect sizes (Cohen's d = 0.0, 0.2, 0.5,
and 0.8). Thus, with the stopping-criterion variable also hav-
ing four levels, and with 1000 pairs of experiments per
level, there were a total of 32,000 simulated experi-
ments (4 × 4 × 1000 × 2).

Fig. 4 For population effect size (D) = 0.2: The obtained effect size,
Cohen's d, as a function of the Bayes factor stopping criterion (BF(crit))
and of the simulated scientist's role in the yoked sampling procedure.
Each circle is a data point indicating the logBF that results from a
particular, simulated experiment. At each level on the vertical axis, the
random horizontal displacement of the circles indicates the density of the
data at that point (see Clarke & Sherrill-Mix, 2017). Thus, the pattern of
the circles shows the distribution of the data. The rectangles are box plots:
The top of the box indicates the 75th percentile of the data, the bottom of

the box indicates the 25th percentile, and the horizontal bar between the
top and the bottom indicates the median. The whiskers on each box
extend to the most extreme observation whose distance from the box's
edge is less than or equal to 1.5 times the interquartile range (IQR)—
where the interquartile range is the range delineated by the 25th and 75th
percentiles. For each of the four levels of the stopping criterion, there
were 1000 pairs of simulated experiments (though the criterion was
often not met). In each simulated experiment, there was a maximum of
500 simulated participants (250 per group)
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We used the R package, BayesFactor (Morey & Rouder,
2018) to compute the Bayes factors. See Anderson et al.
(2021) for the R code for the simulations.

Results

Throughout, we use the terms "Bayes factor" (BF) and "log
Bayes factor" (logBF) to refer to the strength of the evidence
for the alternative hypothesis relative to the null hypothesis.
BF(crit) refers to the critical value of BF that Scientist A uses to
determine when to stop collecting data. We plot logBF rather
than simply BF because, for the former, a given magnitude of
evidence—either favoring the alternative hypothesis or
against the alternative hypothesis—extends the same distance
above as below the neutral point. For example, if BF = 3, then
the strength of the evidence favoring the alternative hypothe-
sis is three times the strength of the evidence favoring the null
hypothesis (and indeed, if the prior probabilities are equal, the
likelihood of the alternative hypothesis is three times the

likelihood of the null hypothesis). However, if the reverse is
true, if the strength of the evidence favoring the null hypoth-
esis is three times the strength of the evidence favoring the
alternative hypothesis, then BF is only 1/3. Thus, in BF units,
the deviations from the neutral point (1.0) are unequal (3.0
versus 0.333) , but with logBF, the values are 1.099 and –
1.099, respectively, constituting equal absolute deviations
(1.099 and 1.099) from the neutral point of 0.0.

Figure 1 shows that optional stopping distorted the distri-
bution of the logBF. Specifically, with the criteria "3 or 1/3" or
"10 or 1/10," optional stopping produced bimodality (the data
points within a condition are clustered into two subsets on the
vertical axis), whereas with more extreme criteria, logBF was
higher with optional stopping than without. The inflation was
further analyzed by computing the proportions of times the
obtained logBF was greater for Scientist A than for Scientist
B, and then performing binomial tests to assess the signifi-
cance of each proportion's deviation from 0.5. Table 1 shows
that when BF(crit) was met, the deviation was significant, and

Fig. 5 For population effect size (D) = 0.5: The natural log of the
obtained Bayes factor (logBF) obtained in 1000 pairs of simulated
experiments as a function of the Bayes factor stopping criterion
(BF(crit)) and of the simulated scientist's role in the yoked sampling
procedure. Each circle is a data point indicating the logBF that results
from a particular, simulated experiment. At each level on the vertical axis,
the random horizontal displacement of the circles indicates the density of
the data at that point (see Clarke & Sherrill-Mix, 2017). Thus, the pattern
of the circles shows the distribution of the data. The rectangles are box
plots: The top of the box indicates the 75th percentile of the data, the

bottom of the box indicates the 25th percentile, and the horizontal bar
between the top and the bottom indicates the median. The whiskers on
each box extend to the most extreme observation whose distance from the
box's edge is less than or equal to 1.5 times the interquartile range
(IQR)—where the interquartile range is the range delineated by the 25th
and 75th percentiles. For each of the four levels of the stopping criterion,
there were 1000 pairs of simulated experiments. In each simulated
experiment, there was a maximum of 500 simulated participants (250
per group)
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the Bayes factor was substantial (the Bayes factor for the anal-
ysis of the simulation results—not for a particular, simulated
experiment) in all conditions except the "200 (or 1/200)" con-
dition. For the latter condition, the lack of significance is not
surprising since that condition contained only three data
points, that is, only three pairs of experiments that met the
"200 (or 1/200)" stopping criterion.

To examine the results further, Fig. 2 plots not logBF but
the effect sizes (Cohen's d), revealing a distortion similar to
that already described for logBF: For cases in which the stop-
ping criterion was met, the distribution of the effect sizes was
bimodal when the stopping criterion was "3 (or 1/3)" or "10
(or 1/10)," and was inflated (i.e., the effect sizes tended to be
greater for Scientist A than for Scientist B) when the stopping
criterion was more stringent. Notably, if Scientist A's obtained
Bayes factor (or log Bayes factor) exceeded that of Scientist B,
then without exception Scientist A's effect size also exceeded
Scientist B's. Consequently, the distorting impact of optional

stopping on the simulated scientists' obtained Bayes factors is
explainable by the distortion of the scientists' obtained effect
sizes.

Thus far, we have focused on conditions in which the null
hypothesis was true—that is, in which the effect size in the
population was 0.0. Figures 3, 4, 5, 6, 7, and 8 show the sim-
ulation results when the null hypothesis was false—in particu-
lar, when the population effect size was 0.2, 0.5, or 0.8. Those
figures show a pattern of results similar to that shown in the
previous figures. Less stringent levels of the stopping criterion
BF(crit) yielded bimodal distributions of the Bayes factors and of
the effect sizes, whereas more stringent levels produced infla-
tion of the Bayes factors and of the effect size estimates (see
Table 1 for accompanying descriptive statistics and for the
binomial test results).

Note, however, that when the population effect size was 0.5
and when the stopping criterion was never met (Figs. 5 and 6),
Scientist A's Bayes factors and effect sizes were lower than those

Fig. 6 For population effect size (D) = 0.5: The obtained effect size,
Cohen's d, as a function of the Bayes factor stopping criterion (BF(crit))
and of the simulated scientist's role in the yoked sampling procedure.
Each circle is a data point indicating the logBF that results from a
particular, simulated experiment. At each level on the vertical axis, the
random horizontal displacement of the circles indicates the density of the
data at that point (see Clarke & Sherrill-Mix, 2017). Thus, the pattern of
the circles shows the distribution of the data. The rectangles are box plots:
The top of the box indicates the 75th percentile of the data, the bottom of

the box indicates the 25th percentile, and the horizontal bar between the
top and the bottom indicates the median. The whiskers on each box
extend to the most extreme observation whose distance from the box's
edge is less than or equal to 1.5 times the interquartile range (IQR)—
where the interquartile range is the range delineated by the 25th and 75th
percentiles. For each of the four levels of the stopping criterion, there
were 1000 pairs of simulated experiments (though the criterion was
often not met). In each simulated experiment, there was a maximum of
500 simulated participants (250 per group)
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of Scientist B—not higher. This is perhaps explainable as a con-
sequence of a relationship between random sampling error and
failure to reach the stopping criterion. When Scientist A fails to
reach the stopping criterion, it may be because the effect size in
the sample is small relative to the population effect size. Indeed,
in Fig. 6, for experiments in which the criterion was not reached,
Scientist A's median effect size was below 0.25, whereas B's was
close to the population value of 0.5. Of course, the potential for
random sampling error to produce a too-small estimate of the
population effect size must decrease as the population effect size
decreases, and that pattern is evident in Figs. 2, 4, and 6 (Note
that in Fig. 8, the population effect size is quite large [D = 0.8]
and the stopping criterion was always met, regardless of the
stringency of that criterion Fig. 7.

Also of note is that, when the population effect size (D)
exceeded 0.0, and especially when it was 0.5 or 0.8, the median
logBF for the yoked scientist, B, appeared to increase with the
stringency of A's stopping criterion. A likely explanation is that
in these conditions, there was a trend in which the median

sample size, and therefore the strength of the evidence favoring
the true, alternative hypothesis (that D does not equal 0.0),
increased with the stringency of the stopping criterion
(Table 1). Consistent with this interpretation, the Cohen's d
effect sizes for Scientist B, in conditions where the population
effect size exceeded 0.0, showed no trend clear trend of rising
with the stringency of the stopping criterion (Figs. 4, 6, and 8).

Note that overall, regardless of optional stopping, the dis-
tributions of logBF were highly skewed, creating much great-
er potential to find strong evidence favoring the alternative
hypothesis than to find strong evidence favoring the null.

See Anderson et al. (2021) for files containing the simula-
tions' raw output.

Discussion

The present simulations employed a yoked scientist procedure
that experimentally controlled for the size of the sample, thus
establishing a standard for assessing the proposition that

Fig. 7 For population effect size (D) = 0.8: The natural log of the
obtained Bayes factor (logBF) as a function of the Bayes factor
stopping criterion (BF(crit)) and of the simulated scientist's role in the
yoked sampling procedure. Each circle is a data point indicating the
logBF that results from a particular, simulated experiment. At each
level on the vertical axis, the random horizontal displacement of the
circles indicates the density of the data at that point (see Clarke &
Sherrill-Mix, 2017). Thus, the pattern of the circles shows the
distribution of the data. The rectangles are box plots: The top of the box

indicates the 75th percentile of the data, the bottom of the box indicates
the 25th percentile, and the horizontal bar between the top and the bottom
indicates the median. The whiskers on each box extend to the most
extreme observation whose distance from the box's edge is less than or
equal to 1.5 times the interquartile range (IQR)—where the interquartile
range is the range delineated by the 25th and 75th percentiles. For each of
the four levels of the stopping criterion, there were 1000 pairs of
simulated experiments, with a maximum N, per experiment, of 500
(250 simulated participants per group)
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optional stopping produces non-representative samples, and
thus, biased inferences. The results showed that optional stop-
ping can indeed inflate the obtained Bayes factor (due to
distorted input to the Bayes-factor calculation)—as well pro-
duce bimodality, depending on the value of BF(crit) and the
value of the population effect size—relative to a yoked stan-
dard. The simulations also implicate effect-size distortion as a
principal contributor to distorting the obtained Bayes factor.

Prior to the present work, there was controversy (e.g.,
Sanborn & Hills, 2014; Yu et al., 2014) concerning whether
establishing a critical value of the Bayes factor (BF(crit)) as the
criterion for stopping data collection renders the subsequently
obtained Bayes factor an incorrect description of the likeli-
hood of the data given the statistical hypotheses. The present
findings indicate that the interpretation of the Bayes factor
remains correct under optional stopping, but that the validity
of the Bayes factor is compromised by bad input: Optional

stopping distorts the input-sample causing it to be non-repre-
sentative, thereby impacting the output.

The present findings are also relevant to the issue of repli-
cation. We have described our yoking procedure as involving
concurrent data collection (in two simulated experiments).
However, time, per se, plays no computational role in the
simulations. Without changing any aspect of the simulation
or the situation results, one can conceptualize the two scien-
tists as being yoked across time, with Scientist B conducting
an exact replication of Scientist A's experiment (i.e., using the
same methods, and gathering the same sized sample from the
same population). Therefore, the simulations demonstrate that
optional stopping distorts effect sizes and Bayes factors not
only with respect to a concurrent yoked experiment but also
with respect to a subsequent attempt at exact replication.

Replication is often assessed within a meta-analytic frame-
work focused on the estimation of effect-size. The present

Fig. 8 For population effect size (D) = 0.8: the obtained effect size,
Cohen's d, as a function of the Bayes factor stopping criterion (BF(crit))
and of the simulated scientist's role in the yoked sampling procedure.
Each circle is a data point indicating the logBF that results from a
particular, simulated experiment. At each level on the vertical axis, the
random horizontal displacement of the circles indicates the density of the
data at that point (see Clarke & Sherrill-Mix, 2017). Thus, the pattern of
the circles shows the distribution of the data. The rectangles are box plots:
The top of the box indicates the 75th percentile of the data, the bottom of

the box indicates the 25th percentile, and the horizontal bar between the
top and the bottom indicates the median. The whiskers on each box
extend to the most extreme observation whose distance from the box's
edge is less than or equal to 1.5 times the interquartile range (IQR)—
where the interquartile range is the range delineated by the 25th and 75th
percentiles. For each of the four levels of the stopping criterion, there
were 1000 pairs of simulated experiments, with a maximum N, per
experiment, of 500 (250 simulated participants per group)
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findings show that such effect-sizes can be distorted by op-
tional stopping, even in the context of Bayesian analysis.
Thus, the problem optional stopping poses for replicability
(see Yu et al., 2014) is not solved by the use of Bayesian
methods.

Study 2: Effect-size stabilization monitoring

Given Study 1's demonstration that the use of BF(crit) for op-
tional stopping distorts the inputs to the Bayes-factor calcula-
tions, we performed a second set of simulations to assess
whether a different kind of stopping criterion, effect-size stabi-
lization, would avert the distortion caused by BF(crit). Some
prior research has addressed the question of how much data
are required for effect-size stabilization. In particular,
Schönbrodt and Perugini (2013) investigated this question with
respect to the stabilization of correlation coefficients. They

found that there is no simple answer: Stabilization depends on
how one defines stabilization as well as on the effect size in the
population. In the present set of simulations, we defined stabi-
lization as q consecutive minimal changes (plus or minus 0.05)
in the value of Cohen's d. We reasoned that, whereas the use of
BF(crit) biased the samples (in Study 1) to favor inclusion of
extreme data points, thereby distorting the sample effect-sizes
and thus the inputs to the Bayes-factor calculations, stabiliza-
tion should not favor extremeness since extremity would run
counter to stability. We therefore hypothesized that a stopping
criterion defined as the observed stabilization of the effect size
would lead to unbiased effect-size estimates and thus unbiased
inputs to the Bayes-factor calculations.

Method

The method differed from that of Study 1 only insofar as there
were three levels of the stopping criterion rather than four, and

Fig. 9 For population effect size (D) = 0.0: the natural log of the obtained
Bayes factor (logBF) as a function of the effect-size stabilization criterion
for stopping and of the simulated scientist's role in the yoked sampling
procedure. Each circle is a data point indicating the logBF that results
from a particular, simulated experiment. At each level on the vertical axis,
the random horizontal displacement of the circles indicates the density of
the data at that point (see Clarke & Sherrill-Mix, 2017). Thus, the pattern
of the circles shows the distribution of the data. The rectangles are box
plots: The top of the box indicates the 75th percentile of the data, the
bottom of the box indicates the 25th percentile, and the horizontal bar
between the top and the bottom indicates the median. The whiskers on

each box extend to the most extreme observation whose distance from the
box's edge is less than or equal to 1.5 times the interquartile range
(IQR)—where the interquartile range is the range delineated by the 25th
and 75th percentiles. For each of the three levels of the stabilization
criterion for stopping, there were 1000 pairs of simulated experiments,
with a maximum N, per experiment, of 500 (250 simulated participants
per group). Note that for the stopping criterion, the effect size (signed
Cohen's d) was considered stabilized when there were 5, 10, or 15 con-
secutive instances in which adding a new data pair produced a minimal (<
0.05) absolute change in signed Cohen's d
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insofar as those three levels were effect-size stabilization
criteria rather than values of BF(crit). For each simulated ex-
periment, the effect size was computed each time a new data
pair was added to the sample. That effect size was calculated
as Cohen's d, but with a positive or negative arithmetic sign,
depending on whether the mean of the simulated Group 1 was
higher or lower than the mean of the simulated Group 2. The
sign was necessary in order to accurately index the change in
effect size. For example, if signed Cohen's d were to change
from 0.1 to – 0.1, that would indeed be a change, whereas it
would be no change if the effect size were sign-less. With the
addition of each new data pair, the simulation computed a
change score equal to the absolute value of the change in
signed Cohen's d. (Note that mathematically, Cohen's d can
only be calculated when the number of data pairs is at least 2.)
The absolute-value transform was necessary since stabiliza-
tion is characterized by a sustained, minimal change in effect
size—whether that change constitutes an increase or a

decrease. The change score counted as minimal if it was less
than 0.05. The stopping criterion was met when the number of
consecutive minimal changes reached a critical value. Across
conditions of the simulation, that critical number was 5, 10, or
15 consecutive minimal changes.

There were 1000 yoked pairs of experiments at each of the
three criterion levels, and four levels of the population effect
size, D (D = 0.0, 0.2, 0.5, and 0.8), yielding a total of 24,000
simulated experiments. See Anderson et al. (2021) for the R
code for the simulations.

Results

The use of effect-size stabilization as a criterion for optional
stopping had no discernable, distortive effect on the obtained
Bayes factors: The distributions shown in Figs. 9, 10, 11, and
12 are nearly identical for the simulates scientist who

Fig. 10 For population effect size (D) = 0.2: the natural log of the
obtained Bayes factor (logBF) as a function of the effect-size stabilization
criterion for stopping and of the simulated scientist's role in the yoked
sampling procedure. Each circle is a data point indicating the logBF that
results from a particular, simulated experiment. At each level on the
vertical axis, the random horizontal displacement of the circles indicates
the density of the data at that point (see Clarke & Sherrill-Mix, 2017).
Thus, the pattern of the circles shows the distribution of the data. The
rectangles are box plots: The top of the box indicates the 75th percentile
of the data, the bottom of the box indicates the 25th percentile, and the
horizontal bar between the top and the bottom indicates the median. The

whiskers on each box extend to the most extreme observation whose
distance from the box's edge is less than or equal to 1.5 times the inter-
quartile range (IQR)—where the interquartile range is the range delineat-
ed by the 25th and 75th percentiles. For each of the three levels of the
stabilization criterion for stopping, there were 1000 pairs of simulated
experiments, with a maximum N, per experiment, of 500 (250 simulated
participants per group). Note that for the stopping criterion, the effect size
(signed Cohen's d) was considered stabilized when there were 5, 10, or 15
consecutive instances in which adding a new data pair produced a mini-
mal (< 0.05) absolute change in signed Cohen's d
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optionally stopped (Scientist A), and for the yoked scientist.
The binomial tests in Table 2 are consistent with the data
patterns shown in the figures. Moreover, and as in Study 1,
the results indicated a perfect correspondence between wheth-
er Scientist A's obtained Bayes factor (BFA) exceeded that of
Scientist B (BFB), and whether Scientist A's obtained Cohen's
d (dA) exceeded that of Scientist B (dB) Figs. 10, 11 and 12.

When the sampling stopped, the median sample size
ranged from 68 (34 per group) to 122 (61 per group), de-
pending on the stringency of the stopping criterion
(Table 2). Notably, regardless of whether it was Scientist
A or the yoked Scientist B, the median obtained effect size
(upon stopping) was very close to the population effect size
(Table 3). Additionally, the 25th and 75th percentiles of the
effect-size distributions were similar across the two

scientists (Table 3). See Anderson et al. (2021) for files
containing the raw output for the simulations.

Discussion

The results of Study 2 showed that when optional stopping
was defined as monitoring the sample effect size as the data
accumulate, and stopping data collection once the effect size
has stabilized, the distributions of obtained Bayes factors were
unaffected by such stopping. Moreover, when the population
effect size was medium-to-large (D = 0.5 or 0.8), the most
stringent degree of stabilization produced the largest Bayes
factors and therefore the strongest statistical evidence for the
alternative relative to the null hypothesis.

In contrast to the type of optional stopping examined in
Study 1 (stopping based on BF(crit)), optional stopping based

Fig. 11 For population effect size (D) = 0.5: the natural log of the
obtained Bayes factor (logBF) as a function of the effect-size stabilization
criterion for stopping and of the simulated scientist's role in the yoked
sampling procedure. Each circle is a data point indicating the logBF that
results from a particular, simulated experiment. At each level on the
vertical axis, the random horizontal displacement of the circles indicates
the density of the data at that point (see Clarke & Sherrill-Mix, 2017).
Thus, the pattern of the circles shows the distribution of the data. The
rectangles are box plots: The top of the box indicates the 75th percentile
of the data, the bottom of the box indicates the 25th percentile, and the
horizontal bar between the top and the bottom indicates the median. The

whiskers on each box extend to the most extreme observation whose
distance from the box's edge is less than or equal to 1.5 times the inter-
quartile range (IQR)—where the interquartile range is the range delineat-
ed by the 25th and 75th percentiles. For each of the three levels of the
stabilization criterion for stopping, there were 1000 pairs of simulated
experiments, with a maximum N, per experiment, of 500 (250 simulated
participants per group). Note that for the stopping criterion, the effect size
(signed Cohen's d) was considered stabilized when there were 5, 10, or 15
consecutive instances in which adding a new data pair produced a mini-
mal (< 0.05) absolute change in signed Cohen's d
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on effect-size stabilization had no apparent impact on the rep-
resentativeness of the samples, since there was no impact on
the distribution of Bayes factors. A plausible explanation is
that, in contrast to optional stopping based on BF(crit) in which
the samples were distorted, the principal impact of
stabilization-based stopping may be on the ultimate size of
the obtained sample, with larger samples tending to be more
stabilized than smaller ones. Thus, given that Scientist A and
the yoked Scientist B necessarily obtain the same sample size,
and given that stabilization-based stopping produces no ap-
parent distortion of samples (Table 3 indicates no distortion of
the obtained effect sizes), the distributions of obtained Bayes
factors tend to be similar for the two scientists.

In summary, the present results demonstrate that optional
stopping based on effect-size stabilization lacks the shortcom-
ings of optional stopping based on BF(crit), and that therefore
the former is to be preferred over the latter.

General discussion

The present studies employed a yoked-scientist simulation proce-
dure to demonstrate that if a researcher monitors Bayes factor as
the sample grows, and stops collecting data when the Bayes factor
reaches a critical value, the result is a non-representative sample in
which the effect size—and consequently the input to the Bayes-
factor calculation—is distorted. It is perhaps instructive to consider
a logical implication of such non-representativeness within the
yoked-scientist paradigm: Imagine that Scientist A has stopped
collecting data in an experiment—based on a critical value of the
Bayes factor—and is asked, "Now that both you and the yoked
scientist, B, have finished your experiments, whose Bayes factor
should the public trust more: Yours, or Scientist B's?"The rational
answerwould be that B's ismore trustworthy, sinceB's is based on
a representative sample whereas A's is based on a sample that was
made unrepresentative by optional stopping.

Fig. 12 For population effect size (D) = 0.8: the natural log of the
obtained Bayes factor (logBF) as a function of the effect-size stabilization
criterion for stopping and of the simulated scientist's role in the yoked
sampling procedure. Each circle is a data point indicating the logBF that
results from a particular, simulated experiment. At each level on the
vertical axis, the random horizontal displacement of the circles indicates
the density of the data at that point (see Clarke & Sherrill-Mix, 2017).
Thus, the pattern of the circles shows the distribution of the data. The
rectangles are box plots: The top of the box indicates the 75th percentile
of the data, the bottom of the box indicates the 25th percentile, and the
horizontal bar between the top and the bottom indicates the median. The

whiskers on each box extend to the most extreme observation whose
distance from the box's edge is less than or equal to 1.5 times the inter-
quartile range (IQR)—where the interquartile range is the range delineat-
ed by the 25th and 75th percentiles. For each of the three levels of the
stabilization criterion for stopping, there were 1000 pairs of simulated
experiments, with a maximum N, per experiment, of 500 (250 simulated
participants per group). Note that for the stopping criterion, the effect size
(signed Cohen's d) was considered stabilized when there were 5, 10, or 15
consecutive instances in which adding a new data pair produced a mini-
mal (< 0.05) absolute change in signed Cohen's d

1144 Behav Res (2022) 54:1131–1147



Table 2 For optional stopping based on effect-size stabilization:
Obtained sample sizes (N), numbers of samples, standard deviations
(SD) of BFA and of BFB , proportions of simulated pairs of experiments

in which the Scientist A's obtained Bayes factor exceeded those of
Scientist B, and hypothesis tests for those proportions

Stabilization criterion stringency a Obtained sample N Prop. of cases where BFA > BFB
(and dA > dB)

b
Binomial test c for prop. (BFA > BFB) = 0.5

Median 25th
%tile

75th
%tile

p Bayes factor c

For Pop. D = 0.0
5 68 56 78 0.48 0.217 0.088
10 98 86 112 0.49 0.591 0.047
15 122 108 136 0.49 0.393 0.059
For Pop. D = 0.2
5 68 54 78 0.49 0.359 0.062
10 100 88 114 0.52 0.195 0.096
15 122 106 134 0.52 0.359 0.062
For Pop. D = 0.5
5 68 56 78 0.51 0.591 0.047
10 100 88 112 0.50 0.975 0.040
15 122 108 136 0.48 0.268 0.076
For Pop. D = 0.8
5 70 60 78 0.51 0.548 0.048
10 98 88 112 0.50 0.924 0.040
15 120 106 136 0.49 0.728 0.043

Note. For each level of population effect size (D), and for each level of stringency of the criterion, there were 1000 pairs of simulated experiments. In each
simulated experiment, there was a maximum of 500 simulated participants (250 per group).
a For the stopping criterion, the effect size, signed Cohen's d, was considered stabilized when there were 5, 10, or 15 consecutive instances in which
adding a new data pair produced a minimal (< 0.05) absolute change in signed Cohen's d.
b The results indicated a perfect correspondence between whether Scientist A's obtained Bayes factor (BFA) exceeded that of Scientist B (BFB), and
whether Scientist A's obtained Cohen's d (dA) exceeded that of Scientist B (dB).
c The values in these columns evaluate the simulation results and not the individual, simulated experiments.

Table 3 For optional stopping based on effect-size stabilization: Distributions of Signed Cohen's d

Stabilization criterion stringency* Signed Cohen's d

Scientist A Scientist B

Median 25th
%tile

75th
%tile

Median 25th
%tile

75th
%tile

For Pop. D = 0.0
5 0.00 – 0.18 0.16 0.01 – 0.17 0.17
10 0.01 – 0.13 0.14 – 0.01 – 0.15 0.14
15 0.00 – 0.12 0.11 0.00 – 0.12 0.11
For Pop. D = 0.2
5 0.20 0.03 0.36 0.20 0.03 0.38
10 0.21 0.08 0.34 0.20 0.07 0.35
15 0.19 0.08 0.32 0.20 0.07 0.34
For Pop. D = 0.5
5 0.50 0.33 0.66 0.50 0.32 0.67
10 0.49 0.37 0.62 0.49 0.36 0.64
15 0.49 0.37 0.61 0.49 0.37 0.61
For Pop. D = 0.8
5 0.80 0.63 0.98 0.80 0.63 0.95
10 0.80 0.66 0.94 0.79 0.66 0.93
15 0.79 0.67 0.92 0.80 0.68 0.93

Note. For each level of population effect size (D), and for each level of stringency of the criterion, there were 1000 pairs of simulated experiments. In each
simulated experiment, there was a maximum of 500 simulated participants (250 per group).

* For the stopping criterion, the effect size, signed Cohen's d, was considered stabilized when there were 5, 10, or 15 consecutive instances in which
adding a new data pair produced a minimal (< 0.05) absolute change in signed Cohen's d.
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As discussed in the thought experiment in this paper's
introduction, the problem with optional stopping is not
within the algorithm for Bayesian updating of beliefs in
hypotheses. Bayes theorem prescribes what data are most
consistent with which hypotheses, and which hypotheses
are more likely given the data, but does not prescribe rules
for the stopping of data collection. Thus, in light of the
present findings, the problem with using a critical Bayes
factor for optional stopping lies in the biasing of the input
to Bayesian inference, not in the inference algorithm
itself.

In summary, the present findings argue against the rec-
ommendation that scientists monitor the Bayes factor and
use a critical value of the Bayes factor for optional stop-
ping, and argue in favor of the recommendation to avoid
such a practice.

However, the present findings also indicate that a different
alternative form of optional stopping, one based on effect size
stabilization, lacks the shortcomings of optional stopping
based on monitoring either the p value (see Nuijten et al.,
2016; Simmons et al., 2011; Yu et al., 2014) or the Bayes
factor. We recommend that effect-size stabilization, for op-
tional stopping, be employed in conjunction with—rather than
instead of—the calculation of a priori power. As discussed
earlier in the paper, a priori power estimates have limited
precision given that researchers have only limited knowledge
of the true effect size for the phenomena being studied.
Nevertheless, an a priori power estimate can provide a rough
plan for the size of the research sample, with optional stopping
based on effect size stabilization serving as a means to fine-
tune the study's efficiency by averting the collection of too
little or too much data. We think the approach outlined here
has the potential to improve the replicability of research find-
ings by avoiding situations (i.e., optional stopping based on
critical p values or critical Bayes factors) that give rise to non-
representative samples, and by promoting adequate and finely
tuned statistical power (via effect size stabilization) for repli-
cating effects.

Author Note We thank Michael E. Doherty for his critical reading of the
manuscript.
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