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Abstract
In this paper our goal is to undertake a systematic assessment of the first, most widely known, and simplest computational model
of metaphor comprehension, the predication model developed by Kintsch (Cognitive Science, 25(2), 173–202, 2000). 622
metaphors of the form “x is a y” were selected from a much larger set generated randomly. The metaphors were judged for
quality using best/worst judgments, which asks judges to pick the best and worst metaphor from among four presented meta-
phors. The metaphors and their judgments have been publicly released. We modeled the judgments by extending Kintsch’s
predication model (2000) by systematically walking through the parameter space of that model. Our model successfully differ-
entiated metaphors rated as good (> 1.5z) from metaphors rated as bad (< −1.5z; Cohen’s d = 0.72) and was able to successfully
classify good metaphors with an accuracy of 82.9%. However, it achieved a true negative rate below chance at 36.3% and had a
resultantly low kappa of 0.037. The model could not distinguish unselected randommetaphors from those selected by humans as
having metaphorical potential. In a follow-up study we showed that the model’s quality estimates reliably predict metaphor
decision times, with better metaphors being judged more quickly than worse metaphors.
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In spite of the ubiquity of metaphors, these linguistic units are
challenging to study due to the combination of their intrica-
cies, their unconstrained semantic characteristics, and their
multitude of forms (Kövecses, 2017). The need for a more
systematic approach in the study of metaphors will be fulfilled
if the stimuli used in metaphor studies are more standardized.

Recent research into metaphor processing suggests that
metaphors are processed in the same manner as literal linguis-
tic units. Sperber and Wilson (2008) believe that metaphors
are not part of a discrete and distinct category of language use,
but rather are utterances that differ in the strength of their
implicature. In other words, metaphors are considered as cases

that take place at one end of a continuum that ranges from
literally true to non-literal analogues.

Creating computational models to explain and simulate the
human interpretation of metaphorical statements has long
been a matter of interest (see reviews in Veale et al., 2016;
Reid & Katz, 2018). By modeling metaphor judgments com-
putationally, we are forced to identify abstract similarities be-
tween metaphors that may superficially appear very different.
The challenge in modeling metaphor comprehension arises
from the fact that words in the target and source positions
may not share many relevant features (Bowdle & Gentner,
2005). For example, in the metaphor life is a highway, the
limited number of features that are relevant to both the target
life and the source domain highway makes it hard to find a
simple solution to associate the target and source easily.

In this paper our goal is to undertake a systematic assess-
ment of the first, most widely known, and simplest computa-
tional model of metaphor comprehension the predication
model developed by Kintsch (2000). That model is based on
an algorithm that accounts for one of the major challenges of
metaphor modeling: the lack of an adequate number of rele-
vant features of the source that are shared by the target.
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Kintsch’s algorithm models metaphor as a subordinate of
argument-predicate type sentences and is applicable to other
types of figurative language (Kintsch, 2001). We systemati-
cally vary the parameters of the model, to optimize and quan-
tify its performance in distinguishing metaphors that are rated
good and bad by humans.

Computational modeling

Introduction

The predication algorithm envisions metaphor meaning as
flowing through a spreading activation network of seman-
tically related words (Kintsch, 2000). The stimulation of
spreading activation of meaning is done using a vector
model of language in the following steps. First, the m
nearest cosine neighbors of the source word are identified.
Kintsch (2000) used LSA (Landauer & Dumais, 1997) to
make vectors from a corpus of 11 million word tokens.
He proposed a number between 500 and 1500 as the best
value for m, the semantic neighborhood size to compute,
though without offering any empirically grounded justifi-
cation. Second, the k neighbors most similar to the target
word among the m neighbors of the source word are iden-
tified. Kintsch suggested k = 5. In the third step, those k
vectors are averaged together with the target vector to
make a new vector. The cosine distance between this
new vector and the vector of the source word was pro-
posed as a measure of metaphor comprehensibility.

Kintsch’s predication algorithm explains metaphor
comprehension in a manner that is in line with the theory
of categorization within psychology (Utsumi, 2011). The
categorization theory posits that metaphor comprehension
is explained through class inclusion. The source is con-
sidered to be a member of an ad hoc category of which
the target is a prototypical member (Glucksberg &
Keysar, 1990). For instance, when comprehending the
metaphor Life is a highway, the target of life is taken to
belong to a “long and challenging” category, a category to
which the source word highway also belongs.

Kintsch (2000) introduced the model, but that introduction
was purely conceptual and included no data except some lim-
ited simulation data from just a single metaphor, “My lawyer
is a shark.” Kintsch and Bowles (2002) assessed how the
model represents human judgments of metaphors more rigor-
ously. They asked 24 participants to rate the difficulty of
comprehending each of 30 metaphors on a 5-point scale.
The model was tested on a small set of 26 metaphors: 13
metaphors that were rated as “easy to understand” (a rating
of 2 or lower; average = 1.75) and 13 that were rated as “dif-
ficult to understand” (a rating of 3 or higher; average = 3.68).
Four intermediate metaphors were discarded. Using the cosine

distance between the vector representing the meaning of the
metaphor model and the vectors for the component words as
an estimate of difficulty, the model did not succeed in
distinguishing easy from difficult metaphors. The average co-
sine distance between the vectors of the target and source
words also did not differentiate between easy and difficult
metaphors. The model did succeed in distinguishing easy
from difficult metaphors based on the average distance of
the vectors of the closest neighbors of the source from the
vector of the target, though Kintsch and Bowles noted that
the correlation between rated difficulty and this measure
(r = −0.46) was “statistically significant but not very high”
(p. 258). These results hint at the potential of the predication
algorithm, but the results are not very strong. Other analyses
suggest that the predication algorithm appropriately selects the
relevant features of the metaphor’s meaning (Al-Azary &
Buchanan, 2017). However, research so far has neglected to
test other relevant features used by the predication algorithm
in order to build a better model of metaphor comprehension.

In this study, we replicate Kintsch’s predication algorithm
(2000) and assess the model using human judgments of a large
number of metaphors. We also extend the model by consider-
ing the effect of using different parameter settings for the
metaphor predication algorithm and by expanding the range
of the parameters used by Kintsch (2000) and Kintsch and
Bowles (2002).

Method

Procedure

We used a set of 623 novel metaphors. This large set was
used to try to minimize human bias in their selection by
including a wide range of metaphors. We developed our
novel metaphors using random computational generation.
Nouns were drawn from lists distributed with the freeware
program “JanusNode” (JanusNode.com), a scriptable text
generation toy that includes many noun lists. We used this
program to generate many tens of thousands of metaphors
using an “x is a y” template. From these, we initially
hand-selected 1507 unique metaphors that were judged
by the selector to have a possible metaphorical interpreta-
tion, irrespective of the quality of that interpretation. We
hand-corrected these where necessary by adding appropri-
ate articles before the nouns. Examples of accepted met-
aphors include Alcohol is a leash, Togetherness is a devil,
A neurosis is a riddle, and A parent is a parachute.

Many of the selected metaphors used the same target or
source word, sometimes many times. For example, 23
metaphors were accepted that used the target word love,
21 that used the target word God, 11 that used the source
domain friend, and seven that used the source domain
magician. We selected a subset of metaphors by hand so
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that no target or source was used more than three times. A
second rater then evaluated the selected metaphors, being
asked to eliminate those that met any one of the following
criteria:

It seems stupid.
It seems literally true.
It is too obvious.
It is trite.
It makes no sense.
You don’t know what one or more of the words means.
It seems bizarre.
It is offensive.
It is not even a metaphor.
What it implies is not true.
You have heard it before.

Following this round of elimination, we ended up with 623
novel metaphors that satisfied the first and second authors as
being novel and admitting of a possible interpretation. Of
these, four used the same target three times (i.e., 4 sets × 3 =
12 metaphors), 139 used the same target two times, three used
the same source three times, and 157 used the same source two
times. Exactly 400 metaphors (64.2%) used unique words in
both positions. One low-rated metaphor (A genital is a circus)
was removed from our set after we had collected ratings, be-
cause the obscure singular word genital is not generally ac-
ceptable in English.

For collecting human-judgment ratings of goodness, we
used the best/worst scaling method (Kiritchenko &
Mohammad, 2016). On each trial, participants were presented
with four metaphors that appeared vertically on the screen and
were instructed to choose the best (first column) and the worst
(second column) metaphor from the tuple. They indicated
their choice by clicking on a radio button, which would not
allow users to choose the same metaphor for both categories.
Only after choosing both a best and worst metaphor were
participants able to click on a button to move to the next trial.
The four metaphors were random, but computationally opti-
mized (using software released by Hollis, 2018) so that all
items were compared to all other items. The stimuli were
displayed in 26-point Times New Roman font.

The use of best/worst scaling has two main advantages
over rating scales. One is that it asks raters to make two deci-
sions that are often easier than using a rating scale: to pick the
best and the worst metaphor from among a set of four. The
other is that it generates implicit rank information in a very
efficient way. Although each participant makes only two de-
cisions per trial, we obtain rank information for three of the
four pairwise items in each trial, with only the two unselected
metaphors being unranked against each other.

Stimuli were presented to the participants using
custom-designed software running under Apple’s OS

10.15 connected to 17.1′′ LCD monitors with 1280 ×
1024 pixel resolution. The data were gathered in testing
rooms constructed to reduce outside noise. Participants
were shortly briefed about the task before signing the
consent forms. They were shown written instructions on
the screen, which was followed by verbal instructions as
they finished reading the instructions.

Results from the best/worst scaling choices were scored
using value learning, as outlined in Hollis (2018). Value learn-
ing is an algorithm that learns the expected value of a given
metaphor VA (~ its probability of being chosen as best), by
updating that metaphor’s estimated probability of being cho-
sen as better or worse than another metaphor towards its given
value in each pairwise comparison (i.e., towards 1 if the met-
aphor is chosen as best; towards 0 if it is chosen as worst). In
our study, each metaphor that was chosen as best or worst
participated in three such pairwise comparisons per best/
worst trial, since there were four metaphors in each trial. The
rule for updating the value score VA of the metaphor selected
as best or worst is:

Note that this is an error-correction formula, similar to
many other learning models: a previous prediction (VA) is
corrected for prediction error (α β (ɣ −VA)). β is a self-
adjusting (consistently decreasing) learning rate parameter
intended to minimize artifacts that may be introduced from
the order of the input data. ɣ is the observed value in the
current trial (i.e., 1 if the metaphor was chosen as best or 0 if
it was chosen as worst).

The final parameter α is a salience weight that takes into
account the relationship of the metaphor that was selected as
either best or worst to each of the other three metaphors in a
trial. It is defined in terms of the a priori odds that the current
metaphor is expected to win the matchup, expressed as an
odds ratio. The odds ratio OA for a metaphor with current
value VA is:

OA ¼ VA= 1:0−VAð Þ

The salience parameter α puts this odds ratio in the context
of the odds ratio of the three competitor metaphors on each
trial, each of which has its own odds ratio OB. The parameter
is bounded between 0 and 1, by being defined as 1 minus OA

(the odds ratio of the current metaphor being chosen as best)
divided by the sum of the odds ratios of both metaphors in the
pairwise matchup:

α ¼ 1:0− OA= OA þ OBð Þð Þ

Unexpected wins (which are more informative than expect-
ed wins, by definition of Shannon information) are thus
weighted more strongly than expected wins. For example, a
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metaphor with an odds ratio OA of 1 (which is as likely to be
chosen as best as to be chosen as worst) that is chosen as best
against a metaphor with an odds ratio OB of 9 (9:1 odds of
being chosen as best) will be given a salience weight of 1 − 1/
9 = 0.89, a high weight because such a win was improbable
according to the a priori odds for each metaphor. If the two
metaphors were reversed, the metaphor chosen as best would
be given a salience weight of 1 − 9/10 = 0.10, a low weight
because such a win was already likely according to the a priori
odds for each metaphor.

Value learning returns scores bounded between 0 and 1,
where 1 would indicate that an item is unbeatable (always
chosen as best), 0 would indicate that it is always beatable
(always chosen as worse) and 0.5 would indicate that it is
equally likely to be chosen as best or worst.

Participants

Sixty-two students from the University of Alberta participa-
tion pool participated in this study, which was enough to have
every metaphor rated 32 times, a number suggested as optimal
(due to decreasing returns on accuracy after that) in Hollis and
Westbury (2018).

Results

The range of ratings is shown in Fig. 1. The value learning
scores cover a range between 0.25 (for the metaphor An ac-
cordion is an electrocuting, which perhaps only makes sense
if you hate accordions) and 0.76 (for the metaphor A door is a
beginning). Although our metaphors thereby spanned a wide
range of judged quality, as they were intended to, note that the
bounding limits of 0.25 and 0.76 also suggest that there is
imperfect agreement about their quality, since no metaphor
was universally recognized as best or worst.

Without knowing the variance of judgments for individual
items, it is difficult to evaluate how useful a set of judgment
norms are. Since individual items may have overlapping con-
fidence intervals, knowing only their means is not very useful.
Although value-scored best/worst judgments do not allow for
the calculation of variance, we can estimate the standard error
by treating the value scores as if they were the results of a poll
on whether or not the item was best. This is not perfectly
accurate because, as outlined above, value scoring does not
compute a simple average value of binary votes, since it
weights each vote by how surprising it is given the previous
history of observations. However, an item’s value score is
similar to the probability that the item would be voted best
against any randomly selected item. This allows us to estimate
the standard error of measurement on each item using the
standard error of proportions (pq)0.5 / N 0.5, where p is the
probability an item would be voted best (the value score), q
is the probability it would not be voted best (1 − p), and N is
the number of times an item participated in a vote (i.e., how
many times it was seen). Each item appears 32 times per
experiment. On scores that range between 0.25 and 0.76, the
estimated standard error of measurement ranges between
0.032 (for items at extremes) and 0.044 (for items in the mid-
dle). The 95% confidence interval per item is then bounded
between 0.062 and 0.086. Rounding up a little, we can con-
clude that items with a difference of at least 0.09 in their value
scores will not have overlapping 95% confidence intervals.

The ten best and worst metaphors are shown in Table 1.
The full set of metaphors and their ratings is available from
https://osf.io/ye2nm/.

Modeling human judgments

To replicate and extend Kintsch’s model, we used the
word2vec skip-gram model (Mikolov et al., 2013) run over

Fig. 1 Distribution of value learning scores for ratings of metaphor goodness
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the Google News corpus, which contains over three billion
words, consisting of three million word types. The matrix is
ava i lab le f rom: ht tps : / /d r ive .google .com/f i le /d /
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing.

Word2vec has two main advantages over the LSA
model used by Kintsch (2000). One is that it is more
psychologically plausible, since it is based on a simple
learning algorithm that attempts to predict the local con-
text, and that incrementally builds the matrix. LSA is
based on the psychologically implausible ideas that we
keep a running tally of how often words co-occur and
can perform some sort of statistical dimension reduction
of the co-occurrence matrix (see Levy & Goldberg,
2014, for how word2vec deals with this problem by
its very nature). The second is that predictive models
such as word2vec achieve “a thorough and resounding
victory against their count-based counterparts” (Baroni
et al., 2014, p. 238) when compared on a variety of
relevant performance measures such as synonym detec-
tion, semantic decision, and conceptual classification
(see also Mandera et al., 2017, but also, for a
dissenting view in the focal domain, Altszyler et al.,
2016).

For each word type, the word2vec skip-gram model gener-
ates a vector of length 300 (by convention), which encodes the
predicted context (two words on either side) of that word,
using a neural network with one hidden layer of 300 nodes.
We used a minimum occurrence count of 10, a window size of
2, and negative sampling, k = 10.

Method

We slightly modified Kintsch’s (2000) algorithm for meta-
phor comprehension, using word2vec vectors instead of his
LSA vectors, and focusing only on neighbors that were shared
between m1 and m2. The model works as follows:

1. Compute the cosine distances between the vectors for the
target and source word and every other word in the
word2vec matrix.

2. Extract the common neighbors among the m closest
neighbors of each word. We will discuss the value of m
below.

3. Extract the k words among the m common neighbors that
are closest to the source word (or fewer, if there are less
than k). Kintsch set k = 5, but we will consider other
values below.

4. Average together the k vectors with the vector of the target
word. We will also consider averaging them with the vec-
tor of the source word, though Kintsch did not (but see
Utsumi, 2011).

5. Compute the cosine between the vector for the source
word, and the new averaged vector computed in Step 4
(or between the two averaged vectors, if the common
neighbors were averaged with the vectors of both the
source and target word).

The basic idea behind this model is that we are able to get
an idea of the strength of the relationship between the vectors
of the source and target words used in a metaphor, by “nudg-
ing” them in the direction of their common meaning in that
metaphor, as estimated by the vectors of their overlapping
neighbors. The nudging occurs when we average the common
neighbors with the vectors of one or both words from the
metaphors. It is similar to explaining to someone that when
you said that a third person was funny, you meant “funny
haha,” not “funny peculiar.” The predication of the ambiguous
word funny by the word haha pushes the interpretation of that
word towards the desired interpretation of humor.

In his original theoretical paper on the model, Kintsch
(2000) proposed a common neighborhood size of 500 < m
<1500. Kintsch and Bowles (2002) averaged together the
closest five of 500 neighbors of the source with the target
vector, using the LSA model (Landauer & Dumais, 1997).

Table 1 The ten metaphors rated best (left) and worst (right) by participants. Higher value learning scores indicate metaphors estimated to be better

Metaphor Value learning score Metaphor Value learning score

A door is a beginning. 0.76 An accordion is an electrocuting. 0.25

Art is a reflection. 0.75 A mommy is a devastation. 0.25

A parent is a parachute. 0.74 A penis is a chameleon. 0.26

A past is a guide. 0.73 A schoolgirl is an ocean. 0.28

Hope is a battle. 0.73 A cuddle is a telescope. 0.30

Cruelty is a virus. 0.73 A chicken is a theory. 0.30

Greed is an illness. 0.72 Gravity is a monkey. 0.30

Language is a tool. 0.71 Womanliness is a policeman. 0.30

An election is a zoo. 0.71 A television is a yoke. 0.31

Poetry is a garden. 0.71 A job is a urinal. 0.31
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In the current study, we refer to this parameter set as the “5-0-
500.” This label indicates that Kintsch’s model averaged the
target vector with the five closest neighbors of the source
(k1 = 5), did not average the source vector with any common
neighbors (k2 = 0), and looked at the 500 closest neighbors of
the source word to identify the five neighbors (m = 500).
Kintsch suggested that this is the best parameter set for his
algorithm, as the semantic neighborhood of the target has to be
a large number because the target and the source may be quite
unrelated, but it should not be too large, as the model may pick
up terms that are irrelevant to the intended meaning (Kintsch,
2000).

Kintsch’s claim about the size of the computed common
neighborhood of the target is only briefly referred to in his
paper. There is no systematic explanation for exclusion of
neighborhood sizes out of the initially proposed range (i.e.,
500 < m < 1500). In this study, we systematically varied the
k1-k2-m parameter sets for Kintsch’s (2000) algorithm, where
k1 is the number of common neighbors averaged with the
target vector, k2 is the number of common neighbors averaged
with the source vector, and m is the number of neighbors of
each word that were searched to find common neighbors.

We initially varied the k1 and k2 parameters in steps of 5
from 0 to 20, while varying the m parameter in steps of 500
from 1500 to 3000. We decided on an initial value of m as
1500 since values lower than this often result in there being no
shared neighbors between the target and source words.

Results

To adjudicate between the models, we initially focused on
maximizing the effect size (Cohen’s d) by contrasting the
estimates for metaphors that humans had rated as clearly good
(> 1.5 SDs above average, N = 41, the top 6.6%) against those
rated as clearly bad (< −1.5 SDs below average, N = 37, the
bottom 5.9%). The results are shown in Table 2.

There are three clear results visible in this table. The first
result is shown using bold text in Table 2. For all values ofm,
the model with the largest effect size was always the model
that averaged the common neighbors with the vectors of both
the source and target word. The second result is that the effect
size increases as m increases. Searching larger neighborhoods
for shared neighbors results in better prediction of metaphor
quality. The third result is that the models are relatively insen-
sitive to changing values of k1 and k2. With m = 3000 and
limiting ourselves to only the models in which k1=k2, the
average effect size (Cohen’s d) across all values of k1 and
k2 is 0.546, with a standard deviation of just 0.0047. For the
two values of m > 1500, the (marginally) largest effect size
was seen when both k1 and k2 were equal to 5.

These three results simplify the modeling problem because
they suggest that we can fix the values of both k1 and k2 to 5
and vary only m. We increased m from 3000 to 6000 in steps

of 500. The results are shown in Fig. 2. The maximum
Cohen’s d was obtained when m = 4500, which showed a
large effect size of d = 0.78. Across all 622 metaphors, the
correlation of this model’s estimates with all the human judg-
ments was also the maximum seen among the models, r =
0.18 (p = 3.12e−0.6, one-tailed, but we note that this is a

Table 2 Effect sizes in contrasting model estimates for metaphors rated
high (> 1.5z) or low (< −1.5z) by humans

Parameters m=1500 m=2500 m=3000

0-5-m 0.402 0.420 0.439

5-0-m 0.389 0.476 0.518

5-5-m 0.422 0.518 0.552

0-10-m 0.414 0.383 0.422

10-0-m 0.410 0.451 0.500

10-10-m 0.433 0.496 0.548

0-15-m 0.429 0.391 0.500

15-0-m 0.435 0.472 0.413

15-15-m 0.460 0.509 0.543

0-20-m 0.428 0.390 0.494

20-0-m 0.435 0.475 0.409

20-20-m 0.460 0.508 0.542

The first parameter is the number of common neighbors averagedwith the
vector for the source word. The second parameter is the number of com-
mon neighbors averaged with the vector for the target word. The third
parameter, m, is the number of neighbors that were examined in looking
for common neighbors between the source and target word. The best
result for each value of k1 and k2 is shown in bold

Fig. 2 Effect sizes (Cohen’s d) for model estimates of metaphors judged
good (> 1.5z) contrasted with metaphors judged bad (< −1.5z), by the size
tom, the neighborhood searched for common neighbors of the source and
target, with k1 and k2 set to 5
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dubious measure since the model’s estimates are not normally
distributed). This evidence in support of the model is closely
analogous to Kintsch and Bowles’ (2002) evidence in favor of
their model, inasmuch as they also pitted known good meta-
phors against known badmetaphors and showed that the mod-
el could distinguish the two to some extent. In the remainder
of the paper, we will present other measures that show why
this is weak evidence by which to judge a model of metaphor
quality.

The distribution of 5.5.4500 values with respect to the best/
worst human judgment data is shown in Fig. 3. Using cutoff
values of 1.5z (= a value score of 0.64) on the 5.5.4500 esti-
mates and a cutoff of > 0.5z (more likely good than bad) on
the human judgments, the model achieves a true positive rate
(sensitivity) of 82.9% (exact binomial p = 2.4e−06) but a true
negative rate (specificity) below chance at 36.3% (exact bino-
mial p = 8.5e−07, in the wrong direction). The model’s preci-
sion (ratio of true positives to all positives) is only 8.42 %,
reflecting the high false positive rate. It is more successful at
correctly rejecting metaphors judged not-good by humans,
with a 96.7% negative predictive value. The high negative
predictive value displays the model estimates are good indi-
cators of metaphors low quality. In other words, when a met-
aphor is bad it will have a low model estimate. Cohen’s kappa
(κ, a measure of inter-judge agreement) is just 0.037, indicat-
ing only slight overall agreement between the human judges
and the computational model. The F-score (a global measure
of model accuracy bounded between 0 and 1) was low, at
0.15. All in all, the model performs poorly, especially at the
most important task of identifying good metaphors.

The distribution of 5.5.4500 values by good, middle, and
bad metaphors is shown in Fig. 4 (which also includes the
distribution of 622 randomly generated “x is a y” phrases that
are discussed below). Figure 4 clearly shows that the difficult
problem of differentiating middle-range metaphors from good
or bad metaphors using the 5.5.4500 estimates would not be
possible, because there is a total overlap of middle-range met-
aphors at both extremes.

Metaphors that were judged good by humans but estimated
bad by the model include A parent is a parachute, Pessimism
is a spear, Imagination is a tornado, and An election is a zoo.
Metaphors judged bad by humans but estimated good by the
model include A bed is a bus, A bird is a flower, A penis is a
chameleon, and A mother is a devastation.

Discussion

This study extended the model of metaphor difficulty devel-
oped by Kintsch (2000). Both our study and Kintsch and
Bowles (2002) examined the “is-a” form of metaphors (e.g.,
Fascination is a lantern.). Kintsch and Bowles (2002) tested
their model superficially, without examining their parameter
settings, using a weak five-point rating scale for just 26 met-
aphors, applying vectors made from a small corpus of 11
million words, and without considering classification accura-
cy. In our study we considered over 620 metaphors ordered by
judged quality, used vectors from a corpus of over three bil-
lion tokens, and have confronted (though certainly not solved)
the problem of classification accuracy.

In this study we also systematically explored the parameter
settings and expanded the range for the parameters to optimize
our developed model. The systematic exploration of parame-
ters gives us an objective view of how to optimize parameter
settings and what parameters may influence the model
development.

This study differs from other computational studies of met-
aphor quality in terms of method of item development, as we
used computer-generated novel metaphors as our experimen-
tal metaphoric items, in order to minimize human bias intro-
duced to studies by human-created experimental items.

As we have noted above, the full set of metaphors and their
best/worst ratings developed and used in this study are avail-
able to the public. This will contribute to having a more stan-
dard and homogeneous set of stimuli that can be used in the
future by metaphor researchers. Such stimuli allow for more
comparative research on metaphors between different studies.
The model developed in this study does well at identifying
metaphors that are rated highly (> 1.5z) by humans (82.9%
true positive rate), but does poorly at identifying metaphors
rated lower than that (36.3% true negative rate). It has a low
precision of 8.41% and a low Cohen’s kappa of 0.037.
Contrary to previous observation for low model estimates
(discussed above), this low precision indicates that the high

Fig. 3 Distribution of 5-5-4500 model estimates (x-axis) graphed against
human best/worst value scores (y-axis). Vertical is the mean for human
judgments; horizontal is the 1.5z cutoff for model estimates. TP/FP =
true/false positive rate; TN/FN = true/false negative rate
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model estimates are not suggestive of high quality in meta-
phors. These poor results suggest that the predication algo-
rithm fails to account for some relevant characteristics of met-
aphors other than just their abstracted semantic relationship. It
has been pointed out by several studies (Reid & Katz, 2018;
Terai & Nakagawa, 2012; Utsumi, 2011) that the categoriza-
tion view of metaphor comprehension cannot completely ac-
count for human metaphor comprehension.

One problem with such models is that they cannot
distinguish true semantic relatedness from metaphorical
relatedness. Although we did not include them in our
metaphor set, we assume that phrases like A cat is a
dog or A robin is a bird would necessarily be judged
by humans as very poor metaphors, since one is a lit-
erally untrue statement and the other is a literally true
statement. However, these relationships are both given
an estimate above 0.98 by the 5-5-4500 model, which is
a higher score than the highest-rated metaphor (A bless-
ing is a smile, rated 0.96). The model’s classification
performance is overestimated because our stimuli set
did not include any literal and/or metaphorically unin-
terpretable statements (i.e., statements for which it
would be impossible to think of a metaphorical
interpretation).

We assessed whether we could improve our model
by giving it information about such “shallow” semantic
relationships, by computing the 5-5-m scores of all of
the metaphors in our set, with m stepped from 50 to
250 in steps of 50. We used linear regression across
those five estimates and the 5-5-4500 estimates to pre-
dict the human goodness ratings. Only the 5-5-4500
estimates entered into the model. This may be because
very few metaphors have high estimates with such small
values of m. For example, only five metaphors (0.8%)
had a 5-5-50 estimate above 0.5.

It is possible that there may be a “sweet spot” of se-
mantic relatedness for metaphors. Strings of the “x is a y”
form that have little or no apparent metaphoric potential
(e.g., [according to our own intuitions] Devotion is nut-
meg, Seriousness is a sapphire, A critique is a weaver)
may show k1-k2-m values that distinguish them from
strings that do have some metaphoric potential. To ex-
plore this possibility, we randomly generated 622 new
“Noun1 is a Noun2” strings without any human selection.
Although it is possible that some of those strings might be
good metaphors, we know from the human effort of
selecting our original set that the vast majority of random-
ly generated strings do not admit of any apparent meta-
phoric interpretation. The 5.5.4500 estimates of these new
phrases are graphed against the estimates for the good,
middle, and bad metaphors in Fig. 4. There is a near
complete overlap of the distribution of 5.5.4500 estimates
among these random metaphors with the distribution
among the metaphors, demonstrating that it would not
be possible to use these estimates to distinguish accept-
able metaphors from non-metaphors. This in turn suggests
that the literature on computational models of metaphor
has oversimplified the problem (as we did above) by fo-
cusing on strings that have first been preselected as ac-
ceptable metaphors by humans. The harder problem is
going to be to distinguish strings that form acceptable
metaphors from strings that do not form acceptable
metaphors.

One implication of the model developed here is that it
suggests that humans are sensitive to very subtle semantic
relationships. Models for predicting human judgments that
search fewer than 4500 neighbors of the source and target
words perform worse than the model that searches that large
neighborhood. In Kintsch’s original terms, activation must
spread widely for metaphors.

Fig. 4 5.5.4500 estimates for the good (> 1.5z), middle, and bad (< −1.5z) metaphors judged by humans and for random noun-noun pairs
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Behavioral study

The 5.5.4500 model we developed predicts human best/worst
judgments to a significant extent, at least when good and bad
metaphors are directly contrasted (our original criterion for
assessing the parameter sets). We conducted an experiment
that was intended to cross-validate the model by examining
whether its estimates were predictive of human behaviors oth-
er than judgment: in particular, whether it could predict deci-
sion choices and times in deciding which of two metaphors
was better.

Method

Stimuli

The stimuli were the 622 metaphors introduced above.

Procedure

The experiments were conducted in three small testing rooms
using custom-written software running on three identical
Apple G4MacintoshMinis running Apple OS 10.15, attached
to identical 17.1-in. monitors. The screen resolutions were set
to 1280 × 1024 pixels.

After explaining what a metaphor is, participants were
shown these instructions, which were also explained by an
RA:

We are interested in your intuitions about what makes a
metaphor good.
We will show you two metaphors, one above and one
below. We ask you to let us know which one seems
better to you. If you think the one on the top is better,
please press the “k” key. If you think the one below is
better, press the “m” key. Note that the “k” key is above
the “m” key on the keyboard, so you will press the top
key when the phrase on top is better, and the bottom key
when the phrase on the bottom is better.
Sometimes you may feel that both metaphors are equal-
ly acceptable. In that case, you can press either key
randomly.
Please use the first and second fingers of your right hand
to press the keys and make your decision as quickly as
you can, without sacrificing accuracy.

Following this, an example trial was shown, with the RA
still in the testing room. If the participant had no further ques-
tions, they were left alone to complete the experiment.

Each participant saw 200 trials, with a self-timed break
after half of them had been viewed. On each trial, two ran-
domly selected metaphors were shown in black 24-point
Times font, centered on the screen 30% and 50% down from

the top, against a white background. No metaphor was shown
more than once to any participant.

Participants

Participants were 50 self-reported native English speakers (35
[70%] female; 43 [86%] self-reported right-handers) who par-
ticipated after giving written informed consent in return for
partial course credit. They had an average [SD] age of 19.7
[2.7] years and an average [SD] of 14.0 [1.2] years of educa-
tion. Although all reported to have learned English before the
age of 5 years, 19 [38%] also reported speaking at least one
other language.

Results: RT

The data were analyzed using R (R Core Team, 2020). We
removed two participants whose responses were at chance
with respect to the best/worst ratings (p > 0.06 by exact bino-
mial probability), on the presumption that they may have been
responding randomly. To identify outliers, we normalized the
RTs to the length of the metaphors by dividing by the sum of
the lengths of the source and target words in both metaphors.
No participants had an average RT more than three standard
deviations from the participant average. We removed 363 tri-
als (3.6% of all data) with RTs that were less than 50 ms per
char and 171 trials (1.7%) with RTs that were over 500 ms per
char. We also removed 1090 trials (10.9%) that contained a
word whose frequency did not appear in our frequency dictio-
nary (Shaoul & Westbury, 2006).

We analyzed the remaining data using linear mixed-effects
models.

The model development is summarized in Table 3. The
final model is shown in Table 4. Adding the 5.5.4500 esti-
mates to a model that included length and frequency of the
target and source words reduced the Akaike information cri-
terion (AIC) values by 24, suggesting that the model with the
estimates is much more likely to minimize information loss
than the same model without those estimates. The model es-
timates for each word did not interact. We used the MuMIn R
library (Bartón, 2019) to estimate the total variance accounted
for by the model. The conditional R2 (which includes fixed
and random effects) was 0.31. Themarginal R2 (attributable to
fixed effects only) was 0.031. As shown in Fig. 5, participants
are faster to make a goodness decision when the 5.5.4500
estimates for either metaphor were higher (i.e., when those
estimates suggested that a metaphor was estimated to be a
better metaphor) than when those estimates were lower.

To put this model into context against the “gold standard,”
we also predicted RT using the human best/worst judgments
(Table 4). This model is not intended to add to our understand-
ing of metaphor processing (since it merely correlates two
unknowns; see discussion in Westbury, 2016) but rather to
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help assess the quality of the 5.5.4500 model. The 5.5.4500
estimates did not perform as well as the human goodness
judgments themselves. The human judgments of both meta-
phors entered the model in interaction, reducing the AIC value
by 70, making the model with the human goodness judgments
a much better model than the model with the estimates. The
conditional R2 was 0.32. The marginal R2 (attributable to
fixed effects only) was 0.035.

To see whether the estimates and the human judgments
accounted for different portions of the variance, we added
the human judgments to the final model that included the
5.5.4500 model estimates. The model estimates dropped out
of the model, suggesting that those estimates account for no
additional variance beyond that accounted for by the
judgments.

Results: Agreement with human judgments

We used binomial linear mixed-effects models to assess
agreement with the human judgments (i.e., by defining “cor-
rect” as choosing the metaphor that was rated more highly by

the best/worst judgments). Neither the 5.5.4500 estimates nor
the human best/worst judgments entered the model. We also
modeled the effect of both the difference and the absolute
difference between the estimates for the first and second met-
aphor, with the same null results.

These null results reflect the fairly poor agreement between
the best/worst judgments and the pairwise decisions. The
pairwise decisions agreed with the best/worst judgments just
65.3% of the time. This reflects the fact that most metaphors
have a middle-range rating, so many metaphors are randomly
paired with metaphors that are very close in their judged good-
ness. We modeled only the subset of 1049 pairs with an ab-
solute difference in best/worst rating of 0.3. In this subset, the
agreement between pairwise decision and best/worst judg-
ment was 83.7%. The 5.5.4500 estimates did not enter the
model for this subset of data either.

Discussion

The most important finding from this experiment is the find-
ing that faster decisions are made for metaphors that have a
higher 5.5.4500 estimate. A high 5.5.4500 estimate suggests
that source and target in metaphors have a strong semantic
relationship, and therefore need only shallow processing to
determine relatedness.

General discussion

Metaphor comprehension has generally been modeled with
two classes of model, comparison and categorization models
(Gentner & Bowdle, 2001). The comparison model suggests
that metaphor comprehension is achieved by finding common
properties between conceptual representations of the source
and target. Under the categorization model (Glucksberg,

Table 3 LME model development for predicting pairwise metaphor
goodness judgment RTs. All frequencies were logged and all predictors
were normalized. Numbers following a dash at the end of predictors refer

to metaphor 1 or metaphor 2. The main effects of interest (for human
goodness ratings and their 5.5.4500 model estimates) are below the black
line

Name Model specification AIC AIC difference Note

M1 (1 | SubjectID) 146515 N/A Base model

M2 M1 + (1 | ORDER) 146381 −134 Accepted

M3 M2 + FREQ-SOURCE-1 + FREQ-TARGET-1 +
FREQ-SOURCE-2 + FREQ-TARGET-2

146124 −257 Accepted

M4 M3 + LENGTH-SOURCE-1 146089 −35 Accepted; FREQ-SOURCE-1 dropped out

M5 M4 + LENGTH-TARGET-1 146036 −53 Accepted

M6 M4 + LENGTH-SOURCE-2 146026 −10 Rejected; no convergence.

M7 M6 + LENGTH-TARGET-2 146011 −15 Accepted; FREQ-TARGET-2 dropped out

M8 M7 + GOODNESS-1 * GOODNESS-2 145941 −70 Accepted

M9 M7 + 5.5.4500-1 + 5.5.4500-2 145987 −24 Accepted; Interaction did not enter.

M10 M8 + 5.5.4500-1 + 5.5.4500-2 N/A N/A Model reduced to M8.

Table 4 Final model for predicting pairwise metaphor judgment RTs

Predictor Estimate SE t

(Intercept) 4464.68 179.65 24.85

M1.5.5.4500 −56.52 22.65 −2.5
M2.5.5.4500 −51.96 22.75 −2.28
M1.TARGET-LENGTH 194.23 28.81 6.74

M2.TARGET-LENGTH 178.17 22.72 7.84

M1.SOURCE-LENGTH 173.93 22.75 7.65

M2.SOURCE-FREQ −160.82 22.85 −7.04
M1.TARGET-FREQ −108.06 28.82 −3.75
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2001, 2003) the target is treated as subordinate to the source,
in the sense that the target belongs to an abstract category that
is defined by the source. Kintsch’s (2000) predication algo-
rithm was noted by Glucksberg (2003) to be consistent with
the categorization model. In enhancing Kintsch’s model, our
best-parameterized model emphasizes the target as well as the
source. This makes it a hybrid model of metaphor comprehen-
sion, consistent with both the categorization and the compar-
ison models. Our model finds common semantic features
through the shared neighbors of the target and source but uses
those features to measure the goodness of fit between an ab-
stract category that is defined by adjusting the vectors of both
the target and source word vectors.

We have made two main contributions.
One is the development and public release of a set of 622

novel “x is a y” metaphors that have been ranked ordered for
metaphoric quality using human best/worst judgments. The
rank ordering that comes out of best/worst judgments is supe-
rior to human scale ratings that have been released for smaller
sets of metaphors (e.g., Campbell & Raney, 2016; Katz et al.,
1988; Roncero & deAlmeida, 2015) because they allow quan-
tified differentiation of the judged quality any two metaphors,
rather than putting the metaphors into a small number of bins
of goodness, often with large variance, as rating scales do.
Because we had many more items that were not preselected
to be good metaphors, because best/worst rating naturally
forces the human judges to directly contrast individual items
as they make each decision, and because the procedure con-
trasts every item against every other item, we were able to get
a clearer measure of which metaphors are judged by humans
to be better than which.

Our second contribution has been to undertake a systematic
analysis of the co-occurrence model implementation of the
predication algorithm originally proposed by Kintsch (2000)

as a measure of metaphor comprehension difficulty. Such an
analysis has not been undertaken before. The original model
was randomly parameterized, and there was little discussion
of how the parameter values were chosen, making it hard for
researchers to assess its utility. One finding from the current
study was that the original developer of the model was correct
both in guessing that k2 = 5, and in not worrying too much
about that guess. We have demonstrated that the model is
insensitive to the values of k1 or k2 (although it performs
better at estimating human judgments of metaphor quality
when they are both > 0). Although our use of a different co-
occurrence model and a much larger corpus than Kintsch
means that direct comparisons are not very meaningful, we
did find that searching a large set of m = 4500 neighbors for
overlapping neighbors was superior to his suggested values
for m between 500 and 1500 for estimating metaphor good-
ness. However, even the best-parameterized model performed
poorly at distinguishing metaphors judged good by humans
from other metaphors.

We have also considered whether the best-parameterized
model was able to perform well at a more difficult problem
than the problem of ranking human-selected metaphors, the
problem of distinguishing a metaphor from a non-metaphor.
Unfortunately, it was not. Research on modeling metaphor
comprehension has oversimplified the problem by focusing
only on preselected metaphors, ignoring the difficult problem
of how to pre-select them. Further work will be required to
solve this problem.

The models we considered here are the simplest vector
models (see Reid & Katz, 2018), focusing on a simple ab-
stracted representation of the semantics of the target and
source words by considering how the number of overlapping
neighbors moves the relevant vector representations close to
each other. They do not consider the semantics of those words

Fig. 5 Human decision time about pairwise metaphor goodness, as a
function of the 5.5.4500 model estimates for the first metaphor (darker
95% confidence intervals) or the second metaphor (lighter 95%

confidence intervals). Decisions are faster when either metaphor is
estimated by the model to be better
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themselves. Future work may find it fruitful to consider: What
is it about the semantics of source and target words that makes
them suitable for use in a metaphorical comparison?

Research involving semantic space can be varied in differ-
ent ways that adds to the metaphor research. The results of the
models developed in this study are only restricted to a single
specific semantic space. Future research may consider incor-
porating this detail into modeling metaphor quality to make it
more applicable and account for more complexity by consid-
ering other semantic spaces.
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