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Abstract

When evaluating the properties of a set of elements in a natural environment, an increase in numerosity unavoidably corresponds
to an increase in the physical properties of the set: Five apples differ from ten apples not only in numerosity, but also in their visual
features, such as volume, density, and surface. Since nonsymbolic number processing is typically investigated through the
presentation of arrays of elements, it is mandatory to keep track of the visual features characterizing the stimuli. A plethora of
solutions have been proposed to address this complex methodological issue; yet, there is no agreed-upon standard for how to
measure and control for visual features. Here we present the “customized ultraprecise standardization-oriented multipurpose”
(CUSTOM) algorithm for generating nonsymbolic number stimuli. It is characterized by several core features: The absence of
fixed parameters or rules—apart from geometrical constraints—lets the user freely manipulate the visual features of the stimuli;
control over the visual features of the stimuli is extremely accurate; no modification is required in order to perform different types
of manipulation; and users can re-create any set of stimuli described so far in previous experiments on numerical cognition, for a
wide variety of tasks, including comparison, estimation, habituation, and match-to-sample. The CUSTOM algorithm could
represent an asset in the field of numerical cognition, as a versatile instrument for effectively generating high-precision visual
stimuli within an unbiased theoretical framework.
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One of the most important concepts in the field of numerical ~ estimation task (Fig. 1A), participants are asked to judge the

cognition is the “number sense,” an innate and evolutionary
grounded ability that allows humans and other species to un-
derstand and manipulate numerical quantities (Dehaene,
1997). This unique ability is thought to be rooted in the ap-
proximate number system (ANS), a nonverbal mechanism for
estimating the number of elements included in a visual stim-
ulus, which maps numerosities using compressed and partially
overlapping analog representations (Piazza, 2010). The ANS
acuity is usually assessed by using arrays of elements (often
dots with different size) as nonsymbolic number stimuli.
Three tasks are mainly used to investigate the ANS: In the
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numerosity of an array (e.g., Izard & Dehaene, 2008); in com-
parison tasks, they are presented with two arrays and have to
choose the most numerous (Fig. 1B; e.g., Gebuis & Reynvoet,
2012a); in the habituation paradigm, they look passively at a
series of briefly presented arrays (e.g., Xu & Spelke, 2000).
Additionally, the match-to-sample task, originally created for
studying short-term memory, can be adapted for studying nu-
merical cognition: in this task, participants are presented with
a sample array and they have to identify a matching stimulus
among a group of comparison arrays (e.g., Diester & Nieder,
2007).

A constitutive element of the stimuli used in these tasks is
represented by the non-numerical, continuous properties be-
longing to the visual domain. These visual features are (1)
average diameter, a measure of the dimension of the single
elements of the stimulus (directly correlated with average sur-
face and average contour; (2) fotal contour, or the sum of the
perimeters of all the elements (Fig. 2A); (3) fotal surface, or
the sum of the surfaces of all the elements (Fig. 2B); (4)
convex hull, the surface subtended by a hypothetical lace
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Fig. 1 Examples of an estimation task (A) and a comparison task (B). In the former, the participant has to estimate the number of elements in the array; in

the latter, the participant has to choose the more numerous of the two arrays

encircling all the external elements (Fig. 2C); and (5) density, a
measure of the distance between the elements, usually calcu-
lated with the formula total surface divided by convex hull
(although such a formula might be inaccurate under some
circumstances; see the Method section).

In a natural environment, numerosity typically covaries
with the visual features of the stimuli: five apples differ from
ten apples not only in numerosity, but also in amount of vol-
ume, density, surface; likewise, in an experimental setting,
equating all the visual features of stimuli with different
numerosities is geometrically impossible (Salti, Katzin,
Katzin, Leibovich, & Henik, 2017). It is therefore mandatory
to rule out the possibility that participants might use visual
features instead of numerosity as a strategic shortcut to solve
the task: The rationale is that—by controlling the stimuli in a
way that discourages participants from relying on visual fea-
tures, forcing them to judge the numerosity of stimuli—it is
possible to obtain a “pure” measure of the ANS (Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004). To this aim, stimuli are
often implemented in a way that disrupts the correlation be-
tween visual features and numerosity at a set level (Izard &
Dehaene, 2008; Libertus, Odic, & Halberda, 2012; Piazza
et al., 2004). These studies took for granted that the visual
features of the stimuli were properly controlled for, thereby
pushing the authors to interpret their results from a pure “num-
ber sense” perspective. Indeed, one distinctive trait of the
ANS resides in the normalization procedure of the visual fea-
tures, which should enable participants to process numerosity

without any bias. According to this view, the ANS is supposed
to allow humans and other species to estimate the numerosity
of sets of elements, regardless of the visual features of the
stimuli (Dehaene, 1997). However, after the development of
an algorithm capable of manipulating the visual features of the
stimuli more accurately (Gebuis & Reynvoet, 2011), this core
tenet of ANS theory has been strongly criticized. Several stud-
ies have argued that visual features still bias the numerosity
judgment, even when numerosity and visual features are not
correlated across the set of stimuli: for instance, stimuli with
low average diameter, total surface and density and large con-
vex hull are consistently overestimated in an estimation task
(Gebuis & Reynvoet, 2012b). These controversial results elic-
ited the birth of two alternative theories: One theory invokes
the presence of a sensory integration system, exclusively
based on the processing of visual features, making the ANS
unnecessary (Gebuis, Cohen Kadosh, & Gevers, 2016), and
another endorses a conceptual shift from a specific sense of
number to a broader sense of magnitude (Leibovich, Katzin,
Harel, & Henik, 2017b). This increased awareness on how
visual features impact behavioral performance triggered im-
portant methodological improvements in a wide range of per-
spectives, such as the creation of more approaches for gener-
ating nonsymbolic stimuli in a more controlled way. Gebuis
and Reynvoet (2012a) modified their original algorithm
(Gebuis & Reynvoet, 2011), introducing the concept of con-
gruency in the comparison task. At the same numerical ratio of
two stimuli, accuracy is higher when the most numerous

Fig. 2 Demonstration of the nonnumerical, continuous properties (colored in red) of nonsymbolic number stimuli (visual features): total contour (A),

total surface (B), and perimeter of the convex hull (C)
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stimulus has a larger amount of visual features (congruent
condition) with respect to the opposite (incongruent condi-
tion). DeWind, Adams, Platt, and Brannon (2015) designed
an algorithm to create stimuli with specific number, size, and
spacing; using a stimulus set created with such algorithm, they
evaluated the effects of the visual features and discerned their
impact from that of numerosity, in an attempt to reestablish the
soundness of ANS theory. Salti et al. (2017) implemented an
algorithm to produce pairs of stimuli equated for the ratio of
both a target visual feature and numerosity. Using this method,
the authors demonstrated that visual features affect perfor-
mance in a comparison task even in the subitizing range, al-
though they do not always overpower numerosity: When the
ratio of numerosity and visual features across the stimuli was
equated, their impact on performance was basically the same.
It appears clear that the aforementioned algorithms are
meant to be powerful instruments for exploring numerical
cognition; nevertheless, we recognize that there is still room
for methodological improvement. First, there is no agreement
about how to measure or control the visual features of the
stimuli; in particular, the most complex visual features, such
as convex hull and density, are ill-defined, and their manipu-
lation could be improved. Furthermore, the current methods
need to be modified whenever they have to meet heteroge-
neous demands: for instance, if different sets have to be re-
constructed for comparative purposes, an exact replication of
them can be extremely challenging. Finally, although compar-
ison tasks are among the most useful paradigms for assessing
participants’ ability to perceive numerosity, we believe that
the estimation task might provide information that cannot be
gathered with comparison tasks; nevertheless, no available
algorithm is able to readily generate stimuli for both tasks.
Thus, we propose CUSTOM, a new algorithm for generat-
ing nonsymbolic number stimuli that offers several main ad-
vantages: (a) customization—the new algorithm does not in-
clude fixed parameters or rules (aside from the constraints of
geometry), thereby providing total freedom to the user in
manipulatingthe visual features of the stimuli; (b) precision—
the level of control over the visual features of the stimuli
created with the new algorithm is more stringent and precise
with respect to any other method available; (c)
standardization—our algorithm does not need to be modified
in order to accomplish different types of manipulation, and
having a unique tool capable of replicating previous sets and
implementing new ones could facilitate communication in the
field, through the use of common measurement units and pa-
rameters; and (d) a multipurpose nature—the new algorithm
is potentially capable of reproducing the characteristics of any
set of stimuli described in an experiment on numerical cogni-
tion conducted so far, and it is able to generate stimuli for
comparison, estimation, habituation and match-to-sample
tasks. In the forthcoming sections we described the core struc-
ture of the algorithm and we substantiated our assertions by
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showing the results obtained from the generation of two sets
of visual arrays with different numerosities. The CUSTOM
algorithm could represent an asset in the field of numerical
cognition, as a versatile instrument for effectively generating
high precision visual stimuli within an unbiased theoretical
framework.

Method

The CUSTOM algorithm for generating nonsymbolic
number stimuli has been implemented as a Matlab
(Matlab R2018b, The MathWorks Inc., Natick,
Massachusetts, USA) function. The code (together with
the scripts, examples and instructions) can be freely
downloaded at: https://ch.mathworks.com/matlabcentral/
fileexchange/72471-custom-algorithm. The user can
insert (as input arguments) a set of parameters
representing the following visual features: (a) diameter
of dots, (b) total surface, (c) total contour, and (d) convex
hull. In the generation of each stimulus, the algorithm
includes two core steps: (1) the sizing phase, in which
the dot sizes are calculated according to either visual fea-
ture a, b, or ¢ above; and (2) the placing phase, in which
the dots are first arranged in a random fashion inside an
area, and then their position is iteratively adjusted in order
to match the desired convex hull value. The randomness
introduced in the algorithm implicates that all the images
generated with the same input parameters will have exact-
ly the same visual features, although being visually dif-
ferent from each other. Two distinctive qualities in the
process of generating the stimuli are worth mentioning:
(1) All the visual features are calculated in absolute terms,
and (2) the only constraints embodied in the algorithm
have a purely geometrical nature. Both of these points
indicate that the algorithm is completely unbound by
any specific experimental design or theory.

The algorithm is able to discard all the stimuli that do
not respect the desired values and those flawed by imper-
fections, such as those with overlapping dots. For each
stimulus successfully created, the information about its
parameters (e.g., convex hull, total surface) is stored into
a .csv info file. The algorithm is able to generate stimuli
with at least two dots and it has been extensively tested up
to a numerosity of around 200 elements, although no spe-
cific constraints prevent it from generating even larger
numerosities (note that with particularly large
numerosities, the time needed to create the stimuli might
increase). The elements of the stimuli are circles (i.e.,
dots); both the color of dots and background can be se-
lected by the user. The size of the stimulus canvas can be
also selected by the user (the default is value is a 500500
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pixel square). The sequence of operations performed by
the algorithm is described in the following paragraphs.

Sizing phase

The Matlab function starts with three different options that
enable to keep constant (regardless of numerosity) one of the
following visual features related to the size of the dots: (a) dot
diameter, (b) total surface, or (c) total contour. An additional
option (d) releases the algorithm from any control related to
dot size. Note that, for reasons dictated by geometrical con-
strains, only one of the three sizing visual features can be
manipulated at a time (Salti et al., 2017). This has a profound
impact when generating the stimuli. If the diameter is fixed
(a), all the dots share the same size in all the images generated,
thereby causing an increase of both total surface and total
contour as numerosity increases. If total surface is held con-
stant across numerosities (b), total contour will be positively
correlated with numerosity; on the other hand, if total contour
is held constant across numerosites (c), total surface will be
negatively correlated with numerosity. In any case, a constant
total surface or total contour will cause a decrease in the av-
erage size of the elements as numerosity increases. When
selecting option b or c, the user can also choose between
having (1) a single diameter shared by all the elements (all
the dots are of equal size) or (2) a random variability of diam-
eters within a controlled range (the dots have different sizes).
The last option (d) requires selecting the range of minimum
and maximum dot size; the function will randomly choose
each dot size inside such range, excluding any control over
the values of both total surface and total contour.

Placing phase

After the sizing phase, the algorithm randomly starts arranging
dots inside an area (the user can select between a square or a
circle). If there is no control over convex hull, the coordinates
of each point of the perimeter of each dot in external position
are used as inputs for the Matlab convhulln method, ensuring
a pixel-level measure of the convex hull (see Fig. 2C). After
calculation of the convex hull of the stimulus, the procedure is
complete. Alternatively, if the user has selected the control
over the convex hull, an iterative procedure starts:

Step 1: The convex hull is calculated.

Step 2: The distance between each dot and the center of mass
(i.e., the mean of the coordinates of all the dots) is
computed.

If the current convex hull is larger/smaller than the
desired value, all the dots are moved toward/away
from the center of mass (along the segments
connecting each dot to the center).

Step 3:

Steps 1 to 3 are repeated until the value of the convex hull
reaches the expected value.

Two expedients have been used to avoid two shortcomings.
First, in order to avoid an excessive crowding/dispersion of
dots near/from the center of mass, the amount of displacement
is weighted by the distance of dots from the center of mass.
The farthest dot from the center will have a weight of 1, the
closest dot to the center will have a weight of 0, whereas the
other dots will have intermediate values. Thus, at the two
extremes the farthest dot will undergo the farthest displace-
ment and the closest dot will remain in the same position,
whereas the other intermediate dots will move depending on
their relative distance from the center of mass. The second
issue concerns the fact that achieving a convex hull exactly
identical to the desired value would require an impractically
long waiting time; in order to speed up the process, we added a
tolerance parameter 7. For instance, if the desired value of
convex hull is X, the algorithm will accept all the convex hull
values falling within the range of X plus or minus (X*7)/2.
Even with an extremely low tolerance value (the default is
.001, but it can be modified by the user), a tangible speed-up
of the algorithm can be appreciated, without any negative
effect on its precision. The algorithm produces an equal
amount of stimuli with larger and smaller convex hull, so that
the mean convex hull of the set will be equal to the desired
value.

The high versatility of the algorithm is reflected by the
wide range of numerosities that can be handled: even the
convex hull of stimuli with only two elements can be con-
trolled (note that the convex hull of a stimulus with a single
element is not meaningful because it corresponds to its total
surface). For what concerns large numerosities, there is no
specific limit.

Generation of stimuli for different tasks

The CUSTOM algorithm is composed of three different pack-
ages: one for estimation, one for comparison and another one
for the PANAmath algorithm (Halberda, Mazzocco &
Feigenson, 2008). Each package includes the main function,
a script that draws the stimuli, and some scripts that are meant
to provide an example of how the main function can be used
iteratively for creating full sets of stimuli with specific criteria.
For instance, one of those scripts can be used to generate a set
of stimuli following the same criteria adopted by the influen-
tial study of Piazza et al. (2004). We also included other scripts
that can be used to generate a novel set of stimuli based on
precise rules: for instance, one script has been used to generate
two sets of stimuli for a hypothetical estimation task (de-
scribed in the Testing the Algorithm paragraph). Note that
these scripts are intended as mere examples: indeed, the algo-
rithm can be efficiently used to generate sets of stimuli for
estimation, habituation, comparison and match-to-sample
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tasks with novel criteria. For the estimation task, no other
parameters are required to be set besides those already de-
scribed in the previous paragraphs. Similarly, the algorithm
can generate stimuli for habituation task with no additional
specifications. In this case, the user has to pay attention to
the numerosity of the habituation stimuli in relation to that
of the deviant ones. Apart from that, no further parameters
need to be specified.

The comparison task is more complex because the stimuli
are composed by two arrays of elements. Thus, generating
stimuli for the comparison task requires additional parameters
related to the second array of elements: the numerosity, the
desired control for the sizing aspects and the desired control
for the placing aspects. Notably, it is possible to fully dissoci-
ate the control criteria applied to the two arrays composing the
stimulus. However, when creating an entire set of stimuli for
the comparison task, it is highly recommended to keep track
of the ratio of numerosity and the ratio of visual features,
which are thought to be crucial when designing the stimuli
for a comparison task paradigm. Indeed, an imbalance be-
tween the ratio of numerosity and the ratio of visual features
could cause a bias in favor of the most salient aspect of the
stimulus, that is the one with a smaller ratio (DeWind &
Brannon, 2016). The congruency between numerosity and
visual features is another parameter that needs to be con-
trolled. As a default setting, for each pair of numerosities,
the algorithm creates a congruent and an incongruent trial.
This function can be observed in the illustrative script includ-
ed in the comparison package. For what concerns the match-
to-sample task, two main aspects need to be manipulated: the
dimension that connects sample and match stimuli (e.g.,
numerosity and/or one or more visual features, depending on
the design) and the change ratio along this dimension across
the comparison stimuli. Finally, it is worth mentioning that the
PANAmath package introduces improved controls of convex
hull that are not included in the original version of the method:
it is possible to apply the control to the whole stimulus (i.e.,
both colors), but it is also possible to control separately the
convex hulls of the two arrays of different color, even if the
two arrays are fully overlapped. Obviously, it is not possible to
control at the same time the overall convex hull and the con-
vex hulls of the two array of different color.

Additional functionalities

The algorithm is enriched with two other functionalities that
can be very useful, albeit not being mandatory for the gener-
ation of stimuli. One concerns density, which cannot be di-
rectly manipulated, because it is the result of total surface
divided by convex hull. In our algorithm, density can be (al-
beit indirectly) manipulated with high precision (up to the
fourth decimal), by simultaneously controlling the values of
both these parameters. Furthermore, as an alternative to the
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classical formula to calculate density, we defined a new mea-
sure that might be closer to the concept of “interitem spacing,”
which is often referred to when describing density (e.g.,
Gebuis & Reynvoet, 2011; Piazza et al., 2004). This new
measure, called average distance between dots (included in
the info file of each stimulus generated by the algorithm),
corresponds to the length of the shortest open path connecting
all the dots of the stimulus, divided by the number of dots
minus one.

The other functionality that is worth mentioning is aimed at
providing a user-friendly experience. The algorithm is
equipped with an error system capable of detecting input pa-
rameters that violate the geometrical constraints. Starting from
the input parameters, the function attempts to generate a stim-
ulus with the desired characteristics but, if the number of at-
tempts is exceeded (default: 1,000 attempts), an error message
will show up indicating which part of the generation process
was impossible to accomplish and suggesting which parame-
ters should be modified. For instance, when attempting to
generate a stimulus with 50 large dots in a small convex hull,
after 1,000 failed attempts, the function will return the mes-
sage “Number of iterations exceeded trying to place too many
or too big dots in a small area while generating numerosity
50.” Also in this case, the number of attempts can be selected
by the user; if an extreme set of input parameters is inserted
(e.g., a large number of large dots enclosed in the smallest
convex hull possible), a high number of attempts (and conse-
quently, a longer waiting time per stimulus) is needed in order
to generate stimuli with such features. This error system might
facilitate the use of the algorithm, providing a valuable feed-
back that helps the user to avoid configurations of visual fea-
tures that are geometrically impossible.

Testing the algorithm

The performance of the CUSTOM algorithm was tested by
generating two sets of stimuli for a hypothetical estimation
task, including five numerosities: 18, 23, 30, 40, and 52.
The Matlab function was run on a MacBook Pro from early
2015: 2.7-GHz CPU and 8 GB DDR3 RAM. The original
dimensions of all the stimuli of both sets were 500x500 pixels;
100 were generated for each numerosity, for a total of 500
stimuli per set. The objective was to create stimuli with a
constant convex hull of 90,000 pixels across numerosities
and across sets, by using the same manipulation in the placing
phase for each one. On the other hand, the sizing manipula-
tions were radically different in the two sets: We aimed at
creating stimuli with a constant total contour of 3,000 pixels
across numerosities in the first set (SET 1), and stimuli with a
constant total surface of 30,000 pixels across numerosities in
the second set (SET 2). The choice of such values for total
contour (SET 1) and total surface (SET 2) was guided by
comparative purposes, since they allowed to obtain a
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comparable average size of the dots a across the two sets. Such
similarity, together with the equivalent convex hull, allows
both the difference in the manipulation of sizing and the con-
sistency in the manipulation of placing to emerge more evi-
dently in the comparison. Finally, we manipulated the toler-
ance parameter of the convex hull for testing purposes: The
first set had a tolerance of .005, and the second had a tolerance
of .001.

Generating full sets of stimuli required the use of a simple
script that runs the function iteratively, progressively changing
the parameters (including numerosity) that are manipulated
across stimuli. The resulting stimuli, their visual features,
and the time needed to generate them are shown in the next
section.

Results

The two sets of stimuli, generated for comparative purposes
(see the Method section), served as a framework, to show (1)
how the meticulous control embodied in the algorithm could
yield a remarkable level of precision in manipulating visual
features (in our example convex hull, total contour and total
surface), and (2) how these manipulations dramatically affect
the internumerosity variation of the nonmanipulated features
(i.e., average diameter, density and average distance between
dots) while simultaneously preserving low intranumerosity
variability.

Sizing phase: Dot size manipulation

The target values for total contour (3,000 pixels in the first set,
SET 1) and total surface (30,000 pixels in the second set, SET
2) were achieved with a high level of precision: The standard
deviation was 0 for each numerosity in both sets (note, indeed,
that in Fig. 3, SET 1.B and SET 2.C have no error bars).
Manipulating one of the two features induced only a negligi-
ble intranumerosity variability in the other one (e.g., for N =
30; SET 1: total surface M = 26,287 pixels, SD = 525 pixels;
SET 2: total contour M = 3,266 pixels, SD = 16 pixels). It
should be noted that the two manipulations produce opposite
tendencies: When total contour is constant, total surface de-
creases as numerosity increases (Fig. 3, SET 1.B and SET
1.C); when total surface is constant, total contour increases
as numerosity increases (Fig. 3, SET 2.B and SET 2.C).
Instead, average diameter decreases in both sets as numerosity
increases; this is an obvious geometrical consequence that
always applies if either total contour or total surface is held
constant across numerosities. As we stated in the Method sec-
tion, the values for total contour (SET 1) and total surface
(SET 2) were selected so as to have comparable average dot
diameters across the two sets (SET 1 = 34 pixels; SET 2 = 35
pixels), although the two manipulations caused different

trends in the change of average diameter across numerosities:
SET 1 included a wider range of diameters and a more notice-
able change of average diameter across numerosities than did
SET 2 (Fig. 3D and Fig. 4 for visual examples). This differ-
ence emerged because the addition or subtraction of dots af-
fects total contour (SET 1) way more than total surface (SET
2). The wider range of dot diameters in SET 1 in turn caused a
larger variability of total surface in SET 1 with respect to total
contour in SET 2.

Placing phase: Convex hull manipulation

The target value for convex hull (90,000 pixels) was achieved
in both sets (Fig. 3A). The only difference in the manipula-
tions of convex hull between the two sets resided in the toler-
ance parameter applied to the two sets: SET 1 was generated
with a tolerance parameter of .005, whereas SET 2 was gen-
erated with a tolerance parameter of .001. This difference af-
fected the precision of the convex hull manipulation at the
single-stimulus level, as well as the time needed for generating
the stimuli. As is shown in Fig. 3A, the overall precision was
unaffected by the different tolerance parameters (SET 1, M =
89,998 pixels; SET 2, M = 90,000 pixels); the precision at the
single-stimulus level increased in SET 2, in which the toler-
ance parameter was more stringent (SET 1, SD = 129 pixels;
SET 2, SD = 26 pixels), although this difference was too small
to be shown graphically with error bars in the SET 1 graph
(Fig. 3, SET 1.A).

The 500 stimuli of SET 1 were generated on a MacBook
Pro from early 2015, 2.7-GHz CPU and 8 GB DDR3 RAM, in
22 min and 57 s (2.75 s per stimulus), and the 500 stimuli of
SET 2 were generated on the same machine in 26 min 40 s
(3.2 s per stimulus). It is worth mentioning that if the two sets
had undergone the same sizing manipulation, the difference in
the times needed would have been even more noticeable.

The issue of density

The results show that the CUSTOM algorithm can provide
precise control over density (classically defined as total sur-
face divided by convex hull); in SET 1, density decreased as
numerosity increased, because total surface also decreased as
numerosity increased (Fig. 3, SET 1.E), whereas in SET 2
(Fig. 3, SET 2.E), the mean density of the set was constant
across numerosities (0.333, resulting from 30,000 pixels of
total surface divided by 90,000 pixels of convex hull).
Notably, the intranumerosity variability was once again close
to nil (e.g., for N=30: SET 1, convex hull SD = 0.0058; SET
2, convex hull SD = 0.0001).

We also implemented an alternative method, encompassing
interitem spacing as a pivotal concept to be taken into account,
that led to the calculation of the average distance between dots
(see the Method section), a measure that can often diverge
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Fig.3 Series of graphs showing the effects of changes in numerosity over
specific visual features. The first column corresponds to SET 1, and the
second column corresponds to SET 2. The letters correspond to the visual
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from the “classical” density, as is shown in the following ex-
amples. In SET 1, the classical measure of density is not con-
stant across numerosities, but it does not show
intranumerosity variability; conversely, average distance be-
tween dots reaches a plateau at N = 30, and shows a sizable
intranumerosity variability, which decreases as numerosity in-
creases (Fig. 3, SET 1.F). In SET 2, the different patterns
between the two measures are even more noticeable: While
the classical density is constant across numerosities (with no
intranumerosity variability), the average distance between
dots, aside from showing intranumerosity variability, de-
creases as numerosity increases. Intuitively, the increase in
numerosity induces the dots to be closer to each other, thereby
causing a more crowded stimulus (see Fig. 3, SET 2.F, and
Fig. 4 for visual examples). A typical arrangement of the two
sets for the different numerosities can be observed in Fig. 4.

Discussion

The purpose of the present work was to present an algorithm
that can provide scientists in the field of nonsymbolic numer-
ical cognition with a versatile instrument to generate visual
stimuli in an unbiased theoretical framework. The core
strengths of the algorithm (standardization, precision, univer-
sality, and customization) are explained and discussed below.

The currently available methods are supposed to provide a
reasonable performance for what concerns the precision in
controlling the visual features, but a straightforward compar-
ative evaluation across methods is challenging because of the
lack of a proper standardization. In previous methods, the
visual features are often precisely defined from a conceptual
point of view, but their operational implementation does not
always fully adhere to the corresponding theoretical frame-
work (see Salti et al., 2017). Furthermore, studies using
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modified versions of a previous algorithm are not uncommon
(e.g., Gebuis & Reynvoet, 2012a; Sziics, Nobes, Devine,
Gabriel, & Gebuis, 2013); unfortunately, if detailed informa-
tion about the specific modifications is not provided, replicat-
ing the exact manipulations performed could be very difficult.
This aspect is of crucial importance if we consider that perfor-
mance in a dot comparison task can be noticeably influenced
by the visual controls (Clayton, Gilmore, & Inglis, 2015). In
this regard, our new algorithm offers a major advantage in
terms of standardization. The Matlab function does not need
to be modified in order to accomplish different types of ma-
nipulation; indeed, the script running iteratively the function is
the only part that needs to be modified, according to the user’s
need. Having a unique algorithm capable of replicating previ-
ous sets and implementing new ones could enhance the com-
munication in the field, because researchers might benefit
from a common ground of measurement units, customizable
parameters and unavoidable geometrical constraints.

Beside the standardization potential, the CUSTOM algo-
rithm offers a remarkable precision: The chosen sizing visual
feature (diameter, total surface or total contour) can be con-
trolled at the pixel level, as shown in the results: The algorithm
successfully created a set of images with total surface or total
contour tied to a specific number of pixels, with no variability
across stimuli. The manipulation of convex hull implemented
in our algorithm also represents a significant step forward in
terms of precision. Most of the previous algorithms manipu-
lated the area in which the elements could be placed, introduc-
ing the interchangeable concepts of “total occupied area”
(Izard & Dehaene, 2008; Piazza et al., 2004), “stimulus area”
(Gebuis & Reynvoet, 2011), and “field area” (DeWind et al.,
2015). Unfortunately, this type of procedure can have two
drawbacks: First, it might not provide a stringent control of
the convex hull, and also, in order to break the correlation
between convex hull and numerosity, it forces to rely on a

Fig. 4 Examples of one stimulus for each numerosity, extracted from both SET 1 (top row) and SET 2 (bottom row). The same numerosities from

different sets can be compared across columns
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broad intra- and internumerosity variability (e.g., Gebuis &
Reynvoet, 2012b). Instead, our algorithm achieves an ex-
tremely high precision in controlling the value of the convex
hull—while narrowing down its variability across stimuli to
negligible values—by incorporating a conceptually opposite
approach based on the iterative procedure described in the
Method section. Note that input parameters and output values
of each stimulus are stored in a .csv file: Including this file in
the supplementary material would ensure a higher level of
transparency and replicability in this research field.

Another core strength of the CUSTOM algorithm resides in
its multipurpose nature. As far as we know, all the currently
available algorithms have a very specific use: Most of them
are built for comparison tasks (e.g., Gebuis & Reynvoet,
2012a; Halberda et al., 2008), few of them are built for esti-
mation tasks (e.g., Gebuis & Reynvoet, 2012b), and some of
them embody a theory-driven approach (e.g., DeWind et al.,
2015; Piazza et al., 2004). Unlike those methods, our algo-
rithm is virtually able to reproduce the characteristics of any
set of stimuli described in any experiment on numerical cog-
nition conducted so far: It can generate stimuli for estimation,
comparison, habituation, and match-to-sample tasks, provid-
ing at the same time full freedom of choice to the user for what
concerns the selection of the visual features. A wider
customizability of the stimuli should be regarded as an essen-
tial aspect, because it might constitute a driving force to start
addressing not only if, but also how a continuous magnitude
contributes to numerical perception (see Salti et al., 2017).

Besides these main advantages, other topics need to be
discussed because of their theoretical repercussions. A more
subtle—albeit not less critical—point concerns the implicit
connection between the algorithms and theories on numerical
cognition: although in some instances this might represent an
unavoidable consequence, it should be noted that some algo-
rithms might potentially create a bias in favor of a specific
theory. For instance, a quite popular approach in comparison
tasks requires a classification of the trials on the basis of the
congruency between numerosity and visual features, thereby
guiding users toward a Stroop-like interpretation of the results
(see Gebuis & Reynvoet, 2012a; Salti et al., 2017). Our algo-
rithm minimizes this risk by having an “unbiased,” atheoreti-
cal nature, that does not force the user to adopt a specific
theoretical framework. It is the job of the user to find the
proper set of parameters needed to create stimuli suited for
testing a specific hypothesis. For instance, we recently created
a set of stimuli with constant convex hull, composed by three
numerosities (25, 30, 36) and three levels of dot size (small,
medium, large) manipulated through total contour. This set of
stimuli was used in an estimation task that included a calibra-
tion phase based on the visual features of the calibration stim-
uli (Abalo-Rodriguez, De Marco & Cutini, under review). The
algorithm was able to produce stimuli with no correlation
between numerosity and average distance between dots within
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each dot size subset. Notably, this manipulation is sophisticat-
ed, but it does not embrace in aprioristic fashion any theory.

Even though we underlined the flexibility of the algorithm
in generating stimuli for different tasks, we think it is neces-
sary to strike a blow for the estimation task over the compar-
ison task. Despite being the most used task in the field, com-
parison tasks are limited by the dichotomous nature of its
response code (Leibovich, Khadim, & Ansari, 2017a), and
they have been criticized because they call into play inhibitory
resources to resolve the conflict induced by the incongruency
between numerosity and the amount of visual features across
the to-be-compared stimuli (Clayton & Gilmore, 2014; Sziics
et al., 2013). On the other hand, the estimation task could
provide a measure of numerical perception uncontaminated
by inhibitory resources, thanks to the analog response code
required to perform the task and the presence of a single stim-
ulus to be evaluated. Puzzlingly enough, estimation tasks have
been underused in the recent years, even though they provided
insightful results about specific (Gebuis & Reynvoet, 2012b)
and/or contextual (Leibovich, Khadim, & Ansari, 2017a) ef-
fects of visual features on numerical perception. The
CUSTOM algorithm might hopefully lead to an increasing
interest toward the estimation task, since it can readily create
sets of stimuli ideally suited for such paradigm.

Another important consideration concerns the control of
density: since both total surface and convex hull can be simul-
taneously manipulated with high accuracy, the algorithm en-
sures a stringent control over the “classical” density parameter
(i.e., total surface divided by convex hull). Moreover, we cre-
ated another metric—called average distance between dots—
which uses interitem spacing as a pivotal element for measur-
ing density. The rationale stems from the limitations imposed
by the classical measure of density, which does not take into
account some aspects of the stimuli such as numerosity, dots’
arrangement and clustering. As is shown in the results, stimuli
with equal total surface and convex hull but different
numerosities share an identical “classical density,” while hav-
ing a different average distance between dots. It is conceivable
to argue that, at least in some circumstances, the classical
density measure might not adequately capture all the physical
aspects of the stimuli that might be potentially relevant.
Besides total surface and convex hull, this perspective calls
for a deeper investigation about the impact of other factors
(such as numerosity), on the perception of density.

One last point concerns the use of “sizing” and “placing” as
concepts that have been introduced in the method. Despite
their similarity with the terms used by DeWind et al. (2015;
i.e., sizing and spacing), there is a fundamental difference.
According to DeWind and colleagues, the independence (or
orthogonality) of sizing, spacing, and numerosity is preserved
at any stage (from the creation of the stimuli to the interpreta-
tion of the results). Our method suggests that such indepen-
dence is restricted to the manipulation phase: sizing and
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placing can be manipulated separately and independently, but
manipulating one feature will unavoidably influence the other
ones. According to our algorithm, even the smallest variation
of the diameter of a single dot in a stimulus will slightly in-
fluence all the other visual features of the stimulus; if the
modified dot is in external position, even convex hull will be
affected.

In conclusion, we believe that the field of nonsymbolic
numerical cognition is currently afflicted by issues in both
replicability and comparability across studies. We suspect that
this might be a direct consequence of the vast amount of
different ideas, points of view and theories discussed in the
field. For instance, a recent review suggesting a novel inter-
pretation of the number sense theory (Leibovich, Katzin, et al.,
2017b) triggered a large number of responses in the open peer
commentary section. It is of paramount importance to note
that all these different approaches are always being tested with
different paradigms, different sets of stimuli, different manip-
ulations and different measures of the visual features. A com-
mon methodological framework, based on shared standard-
ized procedures, is currently lacking: in this regard, the
CUSTOM algorithm could represent an asset in the field of
numerical cognition, as a versatile instrument for effectively
generating high precision visual stimuli within an unbiased
theoretical framework.
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