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Abstract
The study of haptic perception and cognition requires data about how humans interact with tactile surfaces in the context of
performing cognitive tasks. MIDAS is a set of three tools for the digital capture, coding, analysis, and interpretation of time-
series, multitouch, interactive behaviors on a tactile surface. The MIDAS-logger uses the current screen technology of tablet
computers to capture touches (up to ten fingers at high spatial and temporal resolution) through conventional tactile graphics that
are overlaid on the screen. The MIDAS-analyser is a software program for the qualitative and quantitative analysis of MIDAS-
logger touch data, which includes a fully interactive visualization of the data and a yoked display of a conventional simultaneous
video recording made of the interactions. MIDAS-tactile protocol analysis (TPA) provides a scheme and a method to enable the
rich coding and interpretation of tactile behaviors over multiple spatial and temporal scales. The efficacy ofMIDASwas assessed
against a set of criteria drawn from the successes and limitations of prior approaches to the study of tactile interactions. To
demonstrate the functions of MIDAS, its three components were used to capture, analyze, code, and interpret the behavior of an
experienced user and an inexperienced user of tactile graphics as they performed a shape-matching task.

Keywords Multitouch . Tactile interaction . Visual impairment . Gesture logging and analysis . Tactile protocol analysis

Tactile reading of braille, and tactile interaction more general-
ly, involves fingers and hands moving across the surface of a
display to obtain information, such as messages encoded in a
linear sequence of raised alphanumeric symbols or the spatial
configuration of other raised elements. Interest in technology
and techniques to capture, code and analyze tactile interac-
tions with (nearly flat) 2-Dmaterials, such as braille and raised
line graphics, persists for several interrelated reasons. One
may be interested in our basic perceptual abilities in touch,
such as the appropriateness of certain tactile features for dis-
crimination (Jehoel, McCallum, Rowell, & Ungar, 2006;
McCallum, Ungar, & Jehoel, 2006), the role of tactile gestalts
in perception (Gallace & Spence, 2011), or perceptual aspects
reading a tactile script (Millar, 2003). Some studies have
probed the perceptual differences between sighted participants
who are blindfolded and people with visual impairment (e.g.,
Alary et al., 2009; Heller, 2002; Jehoel et al., 2006; McCallum
et al., 2006). Beyond perception, there is interest in the

strategies that readers employ to read braille (Bertelson,
Mousty, & D’Alimonte, 1985; Breidegard et al., 2008;
Hughes, McClelland, & Henare, 2014; Millar, 2003; Mousty
& Bertelson, 1992; Symmons & Richardson, 2000) and
whether lateralization occurs in such ability (Mousty &
Bertelson, 1985). From the perspective of display technology
for people with visual impairment, research has been conduct-
ed to assess the efficacy of novel devices for delivering tactile
stimuli to fingers (Blazie & Cranmer, 1976; Bliss, Katcher,
Rogers, & Shepard, 1970; Kaczmarek, Tyler, & Bach-y-
Rita, 1997) and the back (Geldard & Russel, 1957; White,
Saunders, Scadden, Bach-y-Rita, & Collins, 1970).
Additionally, from a computer science angle, there is growing
interest in the potential of gesture-based human-computer in-
teraction (e.g., Wobbrock, Morris, & Wilson, 2009).

Our interest is in methods to capture, code, and analyze
tactile behaviors related to the cognitive science of tactile
graphics—the human information processing involved in the
reading and reasoning with tactile pictures and diagrams.
Although some investigations have been conducted with
tactile graphics, notably Jehoel et al. (2006) and McCallum
et al. (2006), as compared to studies with braille, relatively
little is known about how tactile graphics are read. One po-
tential reason for the relative rarity of studies is the greater
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complexity of behaviors involved in the interaction with tac-
tile graphics as compared to reading braille. Although braille
is a 2-D display at the level of letters and a whole text, reading
may be characterized as a “1.5-D” process with the linear
reading of lines of characters only punctuated with returns
and movements down the page (Aranyanak & Reilly, 2013;
Breidegard et al., 2008; Millar, 2003). So, many questions
remain open. How do people read 2-D graphics by touch?
How does interaction with tactile graphics vary across people
with different levels of experience? How and why do their
strategies differ? What constitutes the design of an effective
tactile graphic? These are question that are fundamentally
cognitive rather than perceptual in nature, because they in-
volve recognition, search and comprehension processes be-
yond elementary detection and discrimination. We argue such
questions demand data and analysis spanning multiple spatial
and temporal scales. Sizes range from symbols of few milli-
meters width to whole displays measured in tens of centime-
ters. Temporal durations span ≈ 100 ms, for recognizing the
presence of an object, to potentially many 100 s, for the inter-
pretation of, or problem solving with, a complex display.
Reading braille typically employs two input streams compris-
ing one finger or a conjoined pair per hand. In contrast,
interacting with tactile graphics often involves multiple fin-
gers per hand with different fingers on the same hand poten-
tially serving alternative functions. The example task in the
next subsection illustrates the complexity of behaviors in a 2-
D tactile task.

This article presents the Multi-touch Interactive Data
Analysis System (MIDAS). MIDAS comprises tools and
methods to address the challenges of capturing, coding and
analyzing complex behaviors with 2-D tactile graphics. Our
approach uses touch screen tablet computers to record the
simultaneous movement of up to ten finger contacts with a
tactile graphic laid over the screen. MIDAS provides tools and
methods for both quantitative and qualitative analysis of that
data, which span multiple spatial and temporal scales of tactile
behaviors.

Motivating example: Shape search
and matching task

Figure 1 shows a 16.6 × 26.4 cm stimulus for a task that
involves finding and naming similar pairs of shapes, which
will serve as a running example throughout this article. (The
perimeter, in red, is part of the stimulus, and its role is ex-
plained below.) To illustrate our tools and methods, we will
concentrate on the trials of just two participants. Our
Participant P1, P1 (ID code E1C2), is a 16-year-old student
with very low vision who reads using braille. She has experi-
ence in reading tactile material, including specific training,
having attended a specialist school for children with visual

impairment for 4 years. Our Participant P2, P2 (ID code
P403), is a blindfolded 22-year-old sighted adult who has little
experience in reading tactile graphics by touch. Participant P1
correctly matched all the pairs and named them correctly, tak-
ing 41 s to complete the task. In contrast, Participant P2 re-
quired 3 min 11 s to complete the task, but was only successful
in matching two of the three pairs.

The contrast between these participants reflects the range
and complexity of tactile behaviors that must be addressed in
the study of 2-D tactile interaction. (The full study focusing on
novice–expert differences in reading tactile graphics will be
published elsewhere.)

Figures 2 and 3 are sequences of displays from the
MIDAS-analyser tool for initial activity on the task of Fig. 1
by our Participants P1 and P2, respectively. Each color dot is
an instance of finger contact with stimulus, sampled at an
average rate of 60 Hz. A running sequence of dots indicates
continuous contact of a finger with the stimulus, and different
colors are separate contacts. Two distinct, disjointed runs of
the same color are two separate touches and may correspond
to successive movements of the same or different fingers sep-
arated by a gap; in other words, dot color represents the order
of occurrence of touches, not finger identity. The 16 frames of
Fig. 2 show the first 16 s of P1’s activity, with each frame
displaying 1,200 ms of data, ending at the time of the frame’s
time label. (P1 began touching the stimuli after about 51 s of
instructions). The overlap of 200 ms between frames aids our
interpretation of the flow of touches across frames. The frame
duration in Fig. 3 was chosen to suit P2’s behaviors, with a
span of 2 s including 2,400 ms of data and a 400-ms overlap.

The sequences convey an impression of the complexity of
2-D tactile behaviors. Interactions may involve just one digit
(i.e., finger or thumb), or several simultaneously, with the use
of one or both hands (e.g., Fig. 3, cf. frame 1:34 and frame
1:24, respectively). This diversity occurs locally, at the level of
individual shapes, and at the level of rows and columns, too
(Fig. 3, cf. 1:18 and 1:34). Movements between shapes some-
times follow the rows and columns of shapes but may sweep
diagonally, too (Fig. 2, 0:54, or Fig. 3, 1:18; cf. Fig. 2, 1:06).
Motions can be slow or rapid (Fig. 2, 0:58; cf. Fig. 3, 1:44),
and sometimes a dense cluster of dots suggests that digits
appear to be parked at a particular location, including in free
space between shapes (Fig. 3, 1:40). A shape may be contin-
uously traced with a single digit (Fig. 3, 1:32) or broken down
into separate strokes with different digits (Fig. 2, 1:02).
Movement trajectories are sometimes smooth but may also
be curved, or even ragged (Fig. 2, 0:52; cf. 0:56).

Individual differences between participants are also appar-
ent. P1 typically moves faster than P2: The distances covered
by long movements in each frame are similar in both figures,
but remember that P2’s frames are twice the duration of P1’s.
P2 may dwell on a shape for many seconds with just one or
two fingers, but P1 lingers much less, which suggests superior
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shape recognition. P1 sweeps over all the shapes initially,
seemingly to gain a sense of the overall layout of the display,
before dwelling on any individual shape, whereas P2 almost
immediately focuses on an individual shape. P2 appears to use
more than one approach to recognize a shape: In Fig. 3, frames
1:28 and 1:30, she appears to feel specific features of the
shape, but in frame 1:32 she traces around its perimeter. P1
often uses two hands andmultiple fingers, whereas P2 tends to

rely on a few fingers and one hand at a time—perhaps she
cannot integrate two streams of input. The differences be-
tween the participants suggest that diverse strategies may be
in operation and are manifested as complex patterns across
broad spatial and temporal scales.

Clearly, implications for the design of tools and methods to
study tactile behaviors follow from the recognition of the
range and complexity of these tactile behaviors. Such

Fig. 2 MIDAS-analyser displays of participant P1’s performance on the shape search and match task. Frame reference numbers are in minutes:seconds.
Successive frames are 1,000 ms apart and have durations of 1,200 ms (first 16 s of the trial are shown)

Fig. 1 Stimulus for the shape search and match task
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requirements will be considered in the next section, alongside
brief reviews of current methods for capturing, coding, and
analyzing interactions with 2-D tactile materials.

Three phases of tactile experiments

To systematically review previous approaches to studying tac-
tile interaction, and to identify potential requirements for fu-
ture approaches, we divide experiments into three phases.
These are (1) the capture of raw data from participants, (2)
the coding of that data for measures and patterns of interest,
and (3) the interpretation of the measures and patterns.

Phase 1: Capture data

Existing methods

To investigate tactile interactions, we first capture behavioral data
from participants as they perform a task with 2-D tactile stimuli.
In the studies of Jehoel et al. (2006) and McCallum et al. (2006)
preference responses, proportions of correct responses, and
overall scanning times were sufficient to find perceptual effects.
Symmons and Richardson (2000) video-recorded novice partic-
ipants as they read simple line drawings, with a digital timer
located in shot so that response latency about shape identification
could be measured. However, most researchers of tactile interac-
tions have chosen to collect information about finger and hand

movements by recording the locations of fingers and the time
they touch the stimulus.Wemay distinguish between natural and
invasive methods, depending on whether the fingers and hands
are unencumbered or restricted to some extent by the motion
capture equipment. Natural methods use video recordings of
the hands but use different approaches to record finger
positions over time. Mousty and Bertelson (1985) used two vid-
eo cameras to record horizontal finger movements from above
and vertical movements to one side, with a digital timer in the
view of the cameras. Overall durations on particular segments of
their task were obtained by playing back the recording. To obtain
actual motion data from these videos, Bertelson et al. (1985)
manually transcribed the position of the main reading finger of
each hand every 1/10th of a second, entering the grid coordinates
of stimuli into an actogram; in their words, this was a “very
tedious procedure.” Millar (2003), Breidegard et al. (2008), and
Morash and van der Velden (2016) also filmed, but from under-
neath, using a transparent stimulus placed on a clear plastic sheet
through which touches were made readily apparent by the whit-
ening of the finger pads as they pressed on the surface.

Common RGB video cameras have inherent resolution and
precision limitations, because of the way the data are encoded.
There are two main critical issues. Firstly, even though a stan-
dard 25 frames per second capture rate is nominally sufficient
(25 fps is equivalent to capturing one frame every 40 ms), the
common video compression algorithms render some of the
frames unusable for analysis, so substantially reducing the
effective sampling rate. One solution is to use video cameras

Fig. 3 MIDAS-analyser displays of participant P2’s performance on the shape search and match task. Frame reference numbers are in minutes:seconds.
Successive frames are 2,000 ms apart and have durations of 2,400 ms (first 32 s of the trial are shown)
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that support higher frame rates and full-frame capture, but
these are expensive. The second issue is the difficulty of reli-
ably establishing digit positions and determining precisely
when touch events genuinely occur, even when multiple cam-
eras are employed and record from different angles. When a
participant uses both hands to explore a scene, one handmight
visually obstruct the other, so hiding touch points from the
cameras’ view.

Approaches that avoid the challenges of video recordings
have been developed and provide position and timing data
directly. Noblet, Ridelaire, and Sylin (1985) attached a flashing
LED to the reading finger of each hand, whose positions were
recorded every 40 ms using a digital camera and bespoke elec-
tronic circuitry. More recently, methods to exploit the built-in
infrared technology of the Nintendo Wii video-gaming console
have been developed and used to capture finger movements of
readers of a refreshable braille display (Aranyanak & Reilly,
2013) and of (sighted) children using a graphical display
(Garcia Garcia & Cox, 2012), with temporal resolutions of 10
ms. However, these approaches required fixing LEDs to partic-
ipants’ fingers and battery packs to their wrists. Hughes,
McClelland, and Henare (2014) make a similar trade-off by
attaching the pen from a Wacom digitizing graphic tablet to the
primary reading finger of their participants. With the stimulus
placed on the tablet the approximate position of the fingertip was
automatically provided with high temporal precision, but data
capture is limited to one finger, which carries a cumbersome pen.

Requirements

We can discern various desirable data capture system require-
ments from the brief reviews and from our example task.

R1.1. Spatial and temporal resolution and accuracy This
should be high for equipment that records hand and finger
movements.With modern digital technology high temporal pre-
cision is attainable (better than 1 ms) and sampling frequencies
of about 20 ms (50 Hz) are easily achieved, which is sufficient
for the analysis of tactile behaviors. Given the size of finger pads
(≈ 10 mm) and the lower limit of perceptual thresholds of sep-
arate objects, spatial resolution of a few millimeters is sufficient
for most tactile tasks (but discrimination tests may require great-
er precision). Spatial and temporal measures at these limits can
certainly provide derived measures of sufficient precision for
studying braille reading and everyday tactile graphics activities.

R1.2. Multifinger and hand recordingAlthough some previous
approaches had the capability to track more than two fingers,
for practical purposes they were limited to one digit per hand.
Our example task shows that multiple digits must be tracked
simultaneously, and ideally all five digits on both hands should
be recorded. In contrast to Symmons and Richardson’s (2000)
observation of single-digit reading by novices, our Participant

P2 (who has little experience reading tactile graphics) used both
hands and multiple fingers, simultaneously.

R1.3. Digit identification The identity of the finger touching on
the stimulus is potentially useful information for interpreting
strategies. Invasive approaches normally maintain finger iden-
tity, which is usually obvious from context when only record-
ings of a single digit per hand are captured. Our observations
indicated that fingers are often pressed together, sometimes
overlap, and hands may be crossed, so maintaining finger
identity will be both a significant technical challenge but also
critical for the interpretation of interaction behaviors.

R1.4. Automatic recording and minimal calibration
Fortunately, digital recording methods, such as those in the
studies cited above, mean that manual transcription of posi-
tions and timings is now unnecessary. However, for general
convenience, it is also desirable that manual calibration should
be minimized. Thus, systems that must interpolate informa-
tion about touches across data samples, and that need regular
recalibration during trials or data coding, are undesirable.

R1.5. Touch and off-surface movements Most current
methods record all finger movements, but others are superior
as they differentiate motions that contact the stimulus surface
and those that do not. Such information is needed to distin-
guish between skimming over a stimulus versus jumping be-
tween locations just above the surface: The latter is visible in
video recordings but not in Figs. 2 and 3.

R1.6. Unencumbered hands Methods, such as those cited
above, that require the attachment of items to participants’
hands may negatively impact natural interaction behaviors,
as well as requiring setup time and expense.

R1.7. Practical considerations Obviously, it is desirable for a
tactile data capture system to be easy and cost effective to use.
Three aspects may be considered. (a) Recording apparatus that
allows experiments with any form of standard tactile stimuli is
desirable. For instance, methods that use transparent materials, so
that pressure-induced finger pad whitening can be observed, pre-
clude the use of opaque swell/micro-capsule paper. (b) Clearly,
approaches that exploit standard off-the-shelf technology are
preferable to those that need costly specialized equipment or
the construction of elaborate bespoke kit. (c) It is desirable that
the data capture system be quick and simple to set up and run.

Phase 2: Code data and derive measures

Existing methods

This phase involves revealing patterns in, or extracting quan-
titative measures from, raw data to provide information about
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behaviors. This will include steps to segment and classify
data, the calculation of derived quantities, and the identifica-
tion of elementary and higher-order actions. Speeds can be
derived from Euclidian distances between sampled locations
divided by the time between those samples, and trigonometry
used to find trajectories. For braille studies, speed may be
measured in words/minute or characters/second, or some
such, in addition to physical speed. Types of motion are also
important to identify, including forward tracking movement
during character access, regressions to previous words, and
returns to the next line (e.g., Millar, 2003).

Jehoel et al. (2006) simply compute correct responses and
scanning times of tactile graphic objects, which were related
to particular stimulus properties of the objects. Millar (2003)
manually coded videos of finger touches by writing times
adjacent to braille letters on photocopies of the stimulus, one
copy for each hand. Breidegard et al. (2008) developed an
automatic video analysis system that finds the finger pads,
whitened by the pressure of touch, in still images taken from
their video recordings. The method requires the initial manual
identification of digits, which their analysis program then in-
terpolates across successive stills, but further human interven-
tion is required when hands overlap or are entwined. Morash
and van der Velden (2016) demonstrate the use of ridge de-
tection algorithms for the identification of finger tips, which
has good accuracy. Obtaining data in relation to specific hands
is obviously critical if one is interested in laterality (Mousty &
Bertelson, 1985), but it is also important for the analysis of
reading strategies, because the hands may be acting in a coor-
dinated manner (Aranyanak & Reilly, 2013; Bertelson et al.,
1985; Breidegard et al., 2008).

With position data captured digitally measures can, obvious-
ly, be directly computed using spreadsheets, quantitative data
analysis packages or by writing bespoke software. It is com-
mon practice to display positions of finger touches on an image
of the stimulus to provide an overall impression of individual
task performance. This requires appropriate calibration and
scaling touch location to the image of the original stimulus.

Although parallels may be drawn between eye movements
and tactile interactions (Breidegard et al., 2008), we consider
such an analogy too potentially misleading to be useful. Eye
movements are typically decomposed into fixations (relatively
stationary dwells of eyes at particular locations, during which
the recognition of symbols in the stimuli occur) and saccades
(ballistic movements between those dwells, during which no
recognition takes place). However, for tactile movements, a
two-level analysis is too coarse-grained and ill-conceived. In
our examples, we see actions over at least three different spa-
tial scales: feature perception within an object; whole-object
shape recognition; and interpretation of the layout of the
whole display. Furthermore, movement is fundamental to hap-
tic perception of tactile stimuli: the dynamic pattern of dots
passing under the finger pads provides the signal for braille

letters. Our participant with experience in reading tactile ma-
terial (P1), in the example, appears able to recognize some
shapes just during sweeping motions across the display with-
out ever dwelling upon them.

Requirements

Various system requirements for behavior coding and derived
measures are suggested by the existing methods and our
example.

R2.1. Coding across broad spatial and temporal scales Our
observations of interactive tactile phenomena reveal: fast lo-
calized actions (e.g., a tap on an object); fast distributed ac-
tions (sweeps across a display); long localized activities (close
inspection of details of an object); and long diffuse activities
(searching for an object).

R2.2. Diverse measures The cited studies show that many
properties of tactile interaction are potentially of theoretical
interest, so a system should be capable of systematically iden-
tifying them. Obvious spatial and kinematic measures include
locations, velocities (speed and direction) and accelerations of
touches by digits, hands, or hand parts, such as the palms
(occurring, e.g., during initial quick whole hand familiariza-
tion sweeps over stimuli). Touch pressure, finger, and hand
overlaps, and hovering just above the stimulus surface are
other measures or behaviors that may be of interest.

R2.3. Coding of diverse behavioral patterns The examples
suggest that methods are required for the systematic identifi-
cation of different behaviors that serve different functions in
the interactions with tactile materials. Such methods should
identify both elementary actions and meaningful sequences
composed of those actions.

R2.4. Multitouch coding Although current approaches do not
provide means to deal flexibly with coding the simultaneous
use of multiple fingers, our example clearly demonstrates the
need for such a capability. Methods should deal with interac-
tion strategies whose component functions are distributed
over the fingers of a single hand and between two hands.

R2.5. Integration of multiple streams of touch data Although
direct digital capture of touch data is preferable to coding from
videos, video recordings are quick and economical to obtain
and can provide useful supplementary information. Thus, we
can expect that methods should support the close integration
of both direct digital and supplementary streams of data.

R2.6. Automatic coding of behavior patterns and the compu-
tation of measures (i.e., R2.1–R2.4) This is desirable not just
for saving the labor of manual coding, but also to increase the
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reliability and objectivity of coding by requiring the formal
specification of properties and constraints that define classes
of actions. Furthermore, automatic coding permits sensitivity
analysis to show that the specific definitions of measures are
not overfitting the data or producing putative effects through
fine tuning the measures.

Phase 3: Analysis and interpretation

Existing methods

To develop process-orientated explanations about tactile interac-
tions, or simply to explore the richness of tactile reading strate-
gies, the third phase aims to support the interpretation of derived
measures and behavioral patterns in relation to the content of the
stimuli and the nature of the tactile task. Naturally, standard sta-
tistical tests are used to examine relations among measures, but a
particular feature of research on tactile materials is the variety of
graphical presentations of data that have been devised to support
its interpretation. These may be grouped according to whether
patterns of movements are overlaid on an image of the stimuli, or
whether measures of behaviors are interrelated abstractly apart
from the stimuli.

Millar (2003) added lines to show regressions in time-
stamped images of braille stimuli and plotted separate data curves
of each hand in graphs showing cumulative time on task across
different types of actions. Others use vertical time series displays
to show braille reading strategies, by plotting horizontal hand
positions on the abscissa and time as the ordinate running down-
ward (Bertelson et al., 1985; Breidegard et al., 2008). The rela-
tion between hands is shown by the shape and extent of
interleaving of the zigzag lines down the graph. Aranyanak and
Reilly (2013) augmented such time-series plots with circles
whose size encodes the transit time through each braille cell.
Breidegard et al. (2008) went further, with color-coded lines of
touch traces to identify the hands and to show reading, regres-
sions, and returns. With appropriate scaling, lines of stimuli text
may be overlaid on the graphs. Breidegard’s (2007) system ad-
ditionally highlights vocalized words, by stepping each line so
that each word aligns with points in a vertically oriented ampli-
tude plot of speech intensity from an audio recording.

Hughes, McClelland, and Henare (2014) plotted graphs of
velocity (y-axis) against position (x-axis) of braille readers, in
which regressions are points below a zero-velocity contour.
Their graphs are shaded to reveal particular phases of reading,
something that can in general be done in any graph. To explore
the relation between reading speed and velocity intermittency,
they also plotted acceleration zero-crossings against mean finger
velocities.

Bertelson et al. (1985) showed the impact of different types
of braille text reading strategy using shaded segmented bars to
reveal the extent to which hands are reading alone or simulta-
neously along individual lines of stimuli. To examine laterality

in braille readingMousty and Bertelson (1985) plotted speed–
speed Cartesian graphs with different hand combinations on
each axis and overlaid the plot with contours radiating from
the origin to degree of superiority of, for example, one versus
two handed reading.

Breidegard (2007) augmented his finger-tracking system
(Breidegard et al., 2008) with tools to support the semi-
automatic alignment of participant verbalization with the stim-
uli text at the syllable level. Rather than using speech recog-
nition, which was not reliable (especially for Swedish), points
of high-amplitude speech in the audio recording were identi-
fied by computer, and a markup tool was provided for users to
tag positions in the stimulus text where the vocalization of
syllables was likely to be loud. So, when the audio was
replayed, the computer would highlight on a screen image of
the stimulus what words were being spoken. After any mis-
matches between the audio recording and display were
corrected, by the user editing the tags, the system was then
able to simultaneously show the words being read by finger
and the words being spoken aloud.

Requirements

The types of analysis appropriate to a study will naturally
depend on the theoretical perspective held. However, for our
purposes it was nevertheless useful to identify classes of anal-
ysis in terms of alternative or general perspectives.

R3.1. Finger and hand focus This perspective simply interre-
lates measures associated with the digits or hands, without
particular concern for the structure of the stimuli. For instance,
how does the number of digits used, or how does the speed of
movement, vary with experience? Standard statistical tests
across groups of participants, on measures of central tendency
and dispersion of the variables mentioned in Phase 2, will be
typical here.

R3.2. Stimulus focus This analysis focuses on the patterns,
types, and amounts of activity in different areas of interest of
the stimuli, without particular concern for the sources of the
contacts. For instance, what is the distribution of touches
across different areas of interest in the stimuli? The focus
could be, for example, on individual shapes or on the rows
versus columns in Fig. 1.

R3.3. Measures in context By combining the previous two
perspectives, this requirement recognizes the importance of
relating patterns and measures of finger activity to the detailed
structure of the stimulus. For instance, the value of under-
standing finger movements in relation to stimuli is apparent
from the number of approaches that overlay trajectories onto
images of stimuli or that relate measures to areas of interest
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within stimuli, as can be seen in several of the methods cited
above.

R3.4. Integrating nontouch data Breidegard’s (2007) combi-
nation of users’ verbalizations with touch data suggests the
wider possibility of triangulating touch data with other behav-
ioral or physiological data. For example, one might wish to
capture eye movements of people with partial sight as they
read tactile graphics, or assess sighted users on a touch screen
device that has rich localized haptic feedback.

Summary

From our review of previous approaches and our example in
Figs. 1, 2, and 3, we identified 17 requirements for systems for
the experimental study of tactile interaction. The requirements
provide a basis for comparing alternative approaches. Together,
they may serve as a guide to those who are designing systems
for the investigation of tactile behaviors and also, more widely,
as guidance for researchers who are conducting such studies.

The remainder of this article presents the MIDAS tools and
methods for the capture, coding, and analysis of interactions
with 2-D tactile materials. MIDAS-logger (https://github.com/
rrgrau/midasLogger) is an Android software app for recording
interactions with tactile graphics overlaid on a tablet computer
screen. MIDAS-analyser (https://github.com/rrgrau/
midasAnalyser) is a desktop program for the interactive
visualization and analysis of MIDAS-logger data (Figs. 2 and
3 provide examples of its output). MIDAS-TPA (for “tactile
protocol analysis”) is a method for coding tactile interactions
at multiple levels of spatial and temporal granularity. A running
case study is provided by comparing the performance of two
participants (one experienced and one inexperienced in the use
of tactile materials) on the shape search and matching task.

MIDAS-logger

A key innovation ofMIDAS-logger was to exploit the built-in
capacitance-based touch detection capabilities of tablet com-
puters to record touches, by placing tactile stimuli directly
onto the screen of a tablet computer. This section describes
the MIDAS-logger software and illustrates its use in the ex-
perimental trials with our participants.

Tablet software

MIDAS-logger is an Android application for the recording and
processing of multi-touch inputs of up to ten digits simulta-
neously, but not the identity of the fingers. The device used in
our initial experiments was a Samsung Galaxy Note PRO tab-
let. This has a 12.2-in. (296 × 204 mm) WQXGA LCD touch
screen with a resolution of 2,560 × 1,600 pixels. The size
proved sufficient for use with tactile graphics paper of standard

A4 size. Later, a Samsung Galaxy View tablet computer was
adopted that provided a larger screen size of 18.4-in. (452 × 276
mm) at full-HD pixel resolution, increasing the touch-sensitive
area by about a half horizontally and a third vertically. Due to
their standard screen refresh rate, both devices achieve an aver-
age sampling rate of 60 Hz, which allowed the capture of indi-
vidual touch events that were on average less than 17 ms apart.
Both devices used the Android operating system, version 5.1.
The adoption of tablet technology addresses many of the data
capture requirements given above: spatial and temporal resolu-
tion and accuracy (R1.1); multidigit recording (R1.2); unen-
cumbered hands (R1.6); and standard technology (R1.7b).
However, unique finger identification is not supported (R1.3).

At the heart of the implementation is an extendedSurfaceView
class that serves three main functions: First, the detection and
processing of different touch events to be recorded; second, the
output of touch visualizations if enabled in the program settings;
and third, ensuring reliable data collection by detecting and alle-
viating any situations in which the touch sensor might stop re-
cording data temporarily. This can happen with the kinds of de-
vices used whenever a large portion of the capacitive screen is
touched simultaneously, so, for instance, if the palm of a hand is
laid flat on top of the screen surface and then moved across.

MIDAS-logger supports multitrial experiments that store in-
dividual sessions in appropriately named files. After an experi-
ment is finished, the data can be exported via e-mail. The inter-
face is simple to use as any multistep processes involved are laid
out in a wizard-like sequence. Upon startup, the basic view re-
quires just three buttons for these operations: set up and run an
experiment; export the data afterwards; and close the application.
A user may enable additional features on the home screen—for
instance, to inspect recorded data logs directly on the device, or to
access additional archiving and data export options (Fig. 4a).

The application configuration settings (Fig. 4b) allow the
specification of diverse default entries to be used in the exper-
iment setup. Other options relate to local data and archiving
directories, calibration and visualization settings, and auto-
matic saving and archiving of the recorded data, as well as
to data compression and compilation settings, for those exper-
iments that involve multiple trials recorded in sequence.

MIDAS-logger works on tablet computers with different
resolutions and screen sizes. A calibration method is provided,
for precise alignment of touch coordinates on the device to the
features in the tactile stimulus, because in practice there may
be small deviations (1–2 mm) from the target location when
affixing the paper onto the active surface of the device.
Calibration also informs the coordinate system translation that
is carried out before analysis, which is needed to scale the
resolution of the tablet screen to the resolution of the visuali-
zation application window and make sure data points are vi-
sualized in the correct location.

Setting up an experiment with MIDAS-logger is straightfor-
ward (satisfying R1.4, minimal calibration), so only a few steps,
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each simple, are needed to run the software (R1.7c, simple to
operate). First, the experimenter enters identifiers for the partici-
pant and the tactile stimulus used during the session (Fig. 5a).
When the “Perform Calibration Prior to Experiment” option is

enabled in the settings, the screen will turn blue, signaling the
experimenter that the device is ready for calibration (Fig. 5b).
The tactile paper with the stimulus is placed over the screen at
this point. The blue light emitted by the screen, which can be

Fig. 4 (a) MIDAS-logger home screen with advanced options enabled (left); (b) MIDAS-logger application settings (right)

Fig. 5 (a) Experiment setup (left); (b) calibration (middle); and (c) touch visualization (right)
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seen through the tactile paper, signals to the experimenter initia-
tion of the calibration procedure. This involves touching four
marks in the far corners of the stimulus, in sequence and a spe-
cific order. MIDAS-logger emits audio feedback at key steps to
ensure correct completion of the calibration process—short beeps
indicate corner calibrations points have been registered success-
fully and a longer low-frequency tone signals that the calibration
process is finished. The calibration data are stored at the begin-
ning of the log file in a clearly distinguishable format.

Following the calibration procedure, multitouch input can
begin. The screen remains black and no audio feedback is pro-
vided during normal data capture. A useful feature for testing
and training, when the tablet processor load is not of particular
concern, is the dynamic display of touched points as distinct
colored circles (Fig. 5c) (“Enable Touch Visualisation” option).
Furthermore, MIDAS-logger issues a short audio warning in

the event that the tablet screen touch sensor gets overloaded.
This may happen if the area touched is so large that individual
touch points cannot be differentiated and properly localized,
such as when participants rest their palms on the screen or if
several digits of the same hand are gathered together. To un-
block the sensor, participants are trained to lift their hands brief-
ly, as will be described in the Method section.

To end an experiment, the experimenter removes the stim-
ulus and clicks the “Back” button on the device and a long
audio tone confirms the end of the trial.

Raw data format

The data captured are stored in a plain-text file and comprise a
list of comma-separated quintuples, each describing a single
touch event/state:

The first element is the InputID that is associated with a
particular digit touching the surface, and its value can be an
integer between 0 and 9. The IDs are assigned automatically
and in sequence by the software, whenever any number of digits
are touching the tactile stimulus. An input ID for a digit is
maintained as long as the digit remains in continuous contact
with the surface. The position of each touch event is recorded in
screen pixel coordinates (locationX, locationY) along with a
system timeStamp (in milliseconds). The last code indicates
the type of touchAction recorded (Digit UP = 0, Digit DOWN
= 1, Digit MOVE = 2, SENSOR OVERLOAD = – 1,
CALIBRATION = *).

Given the achievable sampling rate (ca. 60 Hz), a typical 5-
min experiment could theoretically generate a data set of just
under 18,000 recorded touch states per digit (180,000 in total
for ten digits used simultaneously). The actual amount tends
to be about half this, as not all digits are used at the same time
and to the same extent. Furthermore, there are natural short
periods of inactivity between different touch actions and also
longer pauses during an experiment (when the participant is
listening to instructions, for example).

Method

To illustrate the use of MIDAS-logger, we describe the meth-
od used in our shape-matching task.

Equipment The stimulus in Fig. 1 was printed on Zychem
swell paper using a high-speed laser printer, so that the
smooth, low-resistance (friction) feel of the paper was

retained. The paper was run through a Zyfuse Heater (www.
zychem-ltd.co.uk/zyfuse-heater/4578411322) on a medium
setting two or three times to obtain a uniform raised line
height. The lines were 1 mm (3 points) wide and were raised
by approximately 0.5 mm.

For the Galaxy Note Pro tablet, we made a two-piece
painted wooden frame that holds the tablet and stimulus
(Fig. 6a). The tablet sits snugly in a hole in the bottom frame,
with the tablet screen flush with the frame’s top surface (Fig.
6b). The stimulus is fixed to the bottom side of the upper
frame (with small blobs of reusable self-adhesive putty, Blu-
Tack), so that the red perimeter of the stimulus aligns with the
inner edge of the opening (Fig. 6c). The size of the opening
slightly overlaps the active area of the tablet screen so that the
tablet pull-down/up menus cannot be activated accidentally.
The frame is placed in front of the seated participant, on a table
of suitable height, and is held in place to prevent sliding (with
Blu-Tack again). Figure 6d shows the arrangement, with ad-
ditional video recorders capturing front, side, or elevated
views, as desired. Participants were asked to push up their
sleeves and remove bracelets. (For the Galaxy View tablet, a
single-piece, wood-and-cardboard frame was made as a sim-
ple overlay.) These basic components and simple procedures
satisfy requirements R1.7a and R1.7c: Other types of tactile
material can be used provided that they are thin and the ele-
vation of the surface is limited, and only rudimentary work-
shop skills are needed to make the frames.

Procedure Each participant was familiarized with the setup.
Participants were specifically trained to generate touch sensor
overloads (see above) and practiced lifting their hands from
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the stimulus in response to the audible signal. Participants
quickly learned to stop contact with the surface briefly and to
resume where they had left off, so that before the experimental
trials they were responding rapidly without prompting from the
experimenter. The frequency of occurrence of such overload
events depends upon the particular user and the specific tablet
model used, but they are generally quite rare throughout.

The experimenter performed the calibration procedure pri-
or to each trial. The task instructions to the participants were:

The display that I put in front of you has 9 shapes. For this
task, I would like you to go through each shape and see if
you can find an exact match. There are 3 matching pairs
in this display only. That means that for each pair there is
an additional shape, which is similar, but it is not the same
as the pair. So, once you have found the 3 pairs then that
means that you have finished. You will have 5 minutes to
do this task—are you ready? Remember to speak aloud
whatever is on your mind. You can start now.

For the full shape-matching task (calibration, task, and de-
brief), the session with Participant P1, who had experience
using tactile materials, generated 9,696 lines of touch data in
2 min 55 s; the data from Participant P2, who did not have
experience using tactile materials, generated 13,760 lines of
touch data in 4 min 49 s.

MIDAS-analyser

MIDAS-analyser supports the coding and derivation of tactile
behaviors from the raw data collected by MIDAS-logger and
integrates those data with supplementary video recordings
made of a trail. The images in Figs. 2 and 3 are screen snap-
shots from the touch visualizer of MIDAS-analyser.

Data processing and alignment

The primary functions of MIDAS-analyser are (1) the auto-
matic processing and transformation of touch data into various
formats; (2) combining different data sources with the cap-
tured touch data; and (3) visual reproduction, controlled

replay, and segmentation of all data collected. (The require-
ments, in the second and third sets, that particular design fea-
tures satisfy are noted in parentheses.)

The data processing creates a time-ordered, synchronized rep-
resentation of the tablet touch data and the video recordings. A
key technical challenge is the coordination of the data streams
(R2.5). First is the requirement to align the data streams from
capture devices with different native sampling rates: for instance,
a common video camera would sample at up to 25–30 Hz, or a
SAMSUNG tablet computer, at 60 Hz. Second, the tactile stim-
ulus dimensions and location are scaled to match the coordinate
systems of the recording devices. Third, control of the audio/
video and digit visualization replay featuremust be synchronized.

Synchronization is required because the video stream is
continuous, whereas the touch data are captured only when
touch events actually occur (no event, no data), so routines
have been developed to coordinate each separate sequence of
touch events with its own offset with video frames, taking into
account the differing touch sampling and video frame rates.

MIDAS-analyser is implemented as a Java program, to
enable cross-platform use. On startup, the home screen
prompts the user for basic configuration settings and the files
required for analysis (Fig. 7). Currently, MIDAS-analyser
(version 0.9.5.4) takes three inputs: (a) a digital image of the
tactile stimulus; (b) a touch data file output from MIDAS-
logger; and (c) an MPEG4-encoded RGB video file. In the
settings menu, the screen resolution of the touch data capture
device, as well as that of the visualization window, can be
entered before processing any input data. The original image
file, from which the physical stimulus was produced, is used
byMIDAS-analyser. These stimulus images are prepared with
a predefined touch capture area, indicated by a red frame (see,
e.g., Fig. 1), which the system uses to automatically map the
actual position of the stimulus paper on the tablet surface to
the logged touch data by calculating the offsets and necessary
scaling using the calibration positions registered by the exper-
imenter, which are recorded at the beginning of the MIDAS-
logger files. The experimenter must manually trim the video
using a video editing application, so that the start and end of
the recording corresponds to the touch data in the log. The
audio signals given by MIDAS-logger at the beginning and

Fig. 6 Equipment and experimental setup: (a) base and cover of wooden frame; (b) tablet computer and tactile stimulus in place; (c) attachment of
stimulus to underside of cover; and (d) participant with tablet and arrangement of video cameras
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completion of each experimental trial are used like a kind of
digital clapper board and so, help facilitate this task.

On clicking “PROCESS & SHOW” MIDAS-analyser
parses the touch data file and performs the necessary conver-
sion and scaling processes required for the correct visualiza-
tion of the data points and their synchronization with the video
recording. This creates a data timeline with a millisecond-
precision temporal resolution against which all touch events
and video frames are cross referenced. Then the touch visual-
ization window appears.

Touch visualization

MIDAS-analyser’s visualization window is shown in Fig. 8a
(R3.1, R3.2, and R3.3). The touch data visualization is
superimposed on the stimulus image for best orientation.
Each distinct touch (input ID) is shown in a different color,
which is not specifically associated with a particular finger
(MIDAS-logger does not identify fingers): Two successive
trails with the same ID (color) separated by a gap may repre-
sent different fingers. The millisecond data log, Fig. 8b, pro-
vides a time-ordered list of individual touch events at highest
temporal resolution (each data row represents 1 ms on the
timeline), with labels as described above (e.g., UP, DOWN,

MOVE), and additionally IDLE for absence of touch events.
Figure 9 shows the video display window (R3.4 for audio and
video).

The control panel, Fig. 10, supports navigation and replay
of the data visualizations across all windows displayed. The
play “>” button starts automatic replay of the touch data visu-
alization in synchronization with the video recording, which
would typically run at 25 frames per second. Since the video
has a lower sampling rate (40 Hz) than that used for recording
touch inputs (60 Hz), it is important to point out that it is the
data log that is driving the visualization and not the video
recording. The position in the video timeline will be interpo-
lated relative to the data log timestamp, which is more than
sufficient for visual inspection at this high level of temporal
precision. The speed of replay is set by the “Key/Play
Stepping” value, with a default of 100 ms/s (10% of real time).
This value is also the step size for manual advances/rewinds,
when the keyboard arrow keys are used to control the replay.
The “Time Trail” value sets the offset (in milliseconds) of
historic touch events displayed. The step value and trail length
can be judiciously selected to aid visual analysis: For instance,
a longer time in Fig. 3 suits Participant P2’s data better than
the shorter time for Participant P1 in Fig. 2.

A user may start and stop the replay at any time, enter a
specific time (in milliseconds) to jump directly to that posi-
tion, or just use a slider bar for the same effect. Manually
dragging the slider bar allows easy scrolling back and forth
through a trail at different rates, enabling close inspections at a
fine scale. Each data point can also be displayed with time
stamp annotations shown, if needed. The row of checkboxes
underneath the slider bar allows full control over which input
IDs appear in the visualization. The yellow box indicates the
current time stamp displayed in minutes and seconds, for
convenience.

Data by digit positions

MIDAS-analyser provides data export in a format that is par-
ticularly suited for analysis using spreadsheets or analysis
packages (“Digit positions file” in the home screen). The
raw touch data are parsed and reformatted to create a file that
contains information about the state of all ten (potential) touch
inputs ordered by timeStamp, in this format:

where <event-Digit <x>> is an integer indicating the
event recorded at the indicated time for the respective digit.
The event types are: 0:UP, 1:DOWN, 2:MOVE, 3:STAT, –

1:ERROR. STAT stands for stationary. Errors correspond to
the sensor overload condition. No entry between semicolons
indicates no event for that input at the time. The <posX/Y-

Fig. 7 Data analysis tool startup window
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Digit <x>> are the screen coordinates where the event took
place. The advantage of representing the original data in this
format is that the state of all inputs is made explicit for every
time stamp (including digits not touching the surface) at each
recorded time.

Task results from log data

To illustrate the use of MIDAS-analyser, we describe the re-
sults obtained from the shape identification trial with our two
participants (illustrating requirements R2.1, R2.2, and R2.4).
The first 16 s of Participant P1’s (P1) touch behaviors are
shown in Fig. 2, and the first 32 s of Participant P2’s (P2)
are shown in Fig. 3. The extracts shown above are quite rep-
resentative of the rest of the two participants’ overall perfor-
mance over the following 41 s or 3 min 11 s of their respective
trials. Overall, by inspection, P1 appears to be making more
simultaneous touches and moving faster.

To quantify these apparent differences, the digit positions
data from MIDAS-analyser were examined in a spreadsheet.
To assess the extent of simultaneous touches, the proportions

of time when one to ten digits were in use (stationary or mov-
ing) were computed from the logs. Figure 11 shows the dis-
tribution. The modal number of digits in use simultaneously is
four for P1 and one for P2. P1 typically uses between three
and five digits relatively equally, and occasionally six and
seven. In contrast, P2 is heavily reliant on just one digit, some-
times uses two to four digits, and less frequently five to seven.
Use of eight or more digits is rare for both participants.

To evaluate the differences in speed of touches, the distri-
butions of the mean and maximum speeds were computed. To
calculate speed of a touch movement at a given time, the
Euclidian distance between a touch in a record and the imme-
diately preceding record was divided by the time between the
two records. The mean speed is the mean of the speeds of all
the touches in one record and the maximum speed is the
greatest speed in the record: For example, when there is just
one digit, the measures are equal, and when one digit is sta-
tionary and another moving, the mean is half the maximum
speed. Figure 12 shows the distributions of the mean and
maximum speeds for the two participants, as overall propor-
tions of the numbers of records. Although the shape of the
participants’ distributions are visually similar, note that the
bin size of P1’s histograms are 50% greater than those of P2
so P1’s moves are clearly faster. The shapes of P2’s two dis-
tributions are similar, whereas the positive skew of P1’s mean
speed distribution is greater than that of maximum speed. This
might be explained by P1 normally using two hands and P2
one, which is consistent with the distributions of numbers of
simultaneous digits in use (Fig. 11); obviously, a single touch
is one hand, whereas three or more touches are likely to in-
volve two hands. Furthermore, patterns are obvious from the
visualizations and from watching the videos. For example,
P2’s trails in Fig. 3 between 1:28 and 1:34 show single-hand
use, with occasional stationary touches of the other hand. P1’s
two-handed interaction is clear from the two sets of multiple

Fig. 8 (a) Visualization window showing touch trails (left); (b) millisecond data log (right)

Fig. 9 Video display window
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coordinate touches in Fig. 2, 0:52–0:58. This serves to dem-
onstrate how MIDAS-analyser not only satisfies many of the
data-coding and measurement requirements (Phase 2), includ-
ing R2.1, R2.2, R2.3, R2.4, and R2.5, but shows how together
the different aspects of the data provide comprehensive
sources of triangulated evidence to formulate rich explana-
tions of tactile behaviors.

Beyond overall participant performance characteristics, the
digit-position data fromMIDAS-analyser can be used to inves-
tigate each participant’s interaction strategies. Areas of interest
in the stimulus can be defined in a similar manner to how they
are defined in eye movement research. In the case of the shape
stimulus, let us simply consider all nine shapes by splitting the
stimulus area into a uniform 3×3 grid. The nine areas are then
used to associate each touchwith a shape so counts or durations
of touches for each shape can be computed.

Figure 13 shows the proportions of time that the two par-
ticipants spent in the areas associated with each object. The
positions of the bars in the graph match the locations of the
objects in Fig. 1. Examining the two figures, we observe that
P2 spends more time on the five polygons than on the ellipses,
which might suggest that the polygons are more challenging
for her to perceive. For P1, the long durations are observed for
the top row, which might suggest that that row is being used

strategically as a datum fromwhich to coordinate the search of
the rest of the stimulus. Given the nature of the task, which
involves both search and recognition activities, these interpre-
tations are likely to be too crude, but they serve as illustrations
of the types of analysis that may be conducted with the data
from MIDAS.

The interpretation of Fig. 13 also highlights the need for
methods that go beyond aggregated data in order to investi-
gate the underlying processes and strategies of complex tactile
interactions. We introduce MIDAS-TPA as such a method.

MIDAS-TPA

MIDAS-TPA is a method to probe the complexities of tactile
interaction strategies. TPA is a manual method conducted by
human analysts with the support of dedicated tools. MIDAS-
TPA is presented using examples from our shape-matching task.

The challenges for MIDAS-TPA are substantial for many
reasons—in particular: coding of data spanning broad spatial
and temporal scales (R2.1); coverage of diverse behavior pat-
terns (R2.3); coding of the parallel streams of multi-touch data
(R2.4); and coding from separate and integrated perspectives
of finger/hands and stimulus (R3.1–R3.4). Furthermore, un-
like coding schemes for verbalizations, where words serve as

Fig. 11 Distributions of the numbers of digits in use simultaneously

Fig. 10 Control panel
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well-defined elementary units of meaning, in TPA there are no
such independently meaningful units. Elementary TPA

actions can be defined, but these are akin to letters
rather than words.
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Fig. 12 Distributions of the mean and maximum speeds of touch movements for the two participants. Histogram bin size: Participant P2 = 200 pixel/s;
Participant P1 = 300 pixel/s. The y-axis is the number of records

(a) Participant P2 (b) Participant P1

Fig. 13 Proportions of time spent in each area of interest by the participants
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Table 1 Description of action labels for TPA. Time scales are short = s (<< 0.5 s), medium = m (≥ 0.5 s & ≤ 2 s), or long = l (>> 2 s)

Action Time Scale Definition

Actions within an object Trace s, m, l Touch on part or whole of a line or perimeter of the object. Single direction of motion,
no backtrack.

Glance s Touch a point of an object without stopping, but perhaps slowing.

Fix m, l Hold stationary touching surface. The surface could be a moving touch in before, after,
or both, for this action.

Brush m, l Back and forth (≥ 2 traces/glances in opposite directions) touches continuously on part
or whole of a line or object. Varying direction of motion.

Scan-Within s One movement in any direction while touching the surface.

Tap s Momentary point touch(es), but no horizontal movement. A lift off of the digit(s) and
return to the same location.

Hover m, l A prolonged lift off of the hand or digit(s) and return to the same object, with no
intervening translation of finger.

Action across objects Scan m, l Move across a distinct sequence of objects in order; e.g., row, column. A scan follows
object order and may pause at intermediate objects.

Comb m, l Set of successive actions occurring in a meaningful area—for example, 3×2 adjacent
objects, following the axis. Systematic actions performed at some spatially organized
objects. It may consist of multiple scans.

Skim s, m Movement in contact with surface without single definite end object or location. It does
not follow a particular sequence of objects. It does not pause at particular objects. It
may involve palms.

SlideTo s Move of digit(s) between a start and end object/location. There is contact with the surface
throughout. It does not pause at any intermediate objects. It is for the coder to decide
whether to code “glances.”

JumpTo s Move of digit(s) between specific start and end object/location, breaking contact with
surface.

Actions across and
within objects

Span s Stretch digits of one hand between original and new location keeping some contact with
original location.

Actions above or
away from the display

Park m, l Hand stationary directly above the reading surface, not on the surface.

Break m, l Hand moves away from the surface.

The following subsections introduce the TPA coding
scheme for elementary actions and its four-step coding meth-
od. Insights obtained from the MIDAS-TPA for the shape-
matching task are presented afterwards.

Action coding scheme

In MIDAS-TPA, a code for each elementary action or gesture
has this format:

Time is the time when the start of gesture is observed. The
ID hand is recorded as the left or right hand (LH or RH,
respectively). Finger is recorded as RN(M), with N indicating
which fingers of the RH are touching the named object, andM
indicating the fingers that are touching the display but not the
object; “T” and the digits 1 to 4 are the thumb, index, middle,
ring, and little fingers, respectively. The same format applies
to the LH fingers: LN(M). (In MIDAS-analyser, figure and
hand IDs can be obtained from the video.) The ID of the
action or list of actions observed is described in Table 1.

Note that some actions are within an object, whereas others
occur between objects. The duration and location of an action
are how long the action lasts and the position(s) of the action.
Locations are specified in terms of a coordinate system that is
appropriate to the stimulus and task. For the search task, we
used the 3×3 rectangular grid that defined the areas of interest,
where the top left is (1, 1) and the bottom right is (3, 3).
Object-name is a label for the object on which the action is
conducted. A commentmay be attached to the code to provide
additional details, as required. The items in parentheses are
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optional, because some actions may be momentary, somemay
not be associated with any specific location or object, and
some may not need commenting upon.

To identify elementary actions, we reviewed video and
MIDAS logs for a broad range of tasks. Thirteen actions were
found that are classified in terms of their relation to tactile
objects, and may be at an object, across multiple objects, both
of these, or none of them. The actions are described in Table 1,
and a demo video has been produced to show actual examples
of each action (https://bit.ly/2xFFEDn). No claim is made that
all possible elementary actions have been identified.

Coding method

To cope with the complexities of coding tactile interactions,
we adopted a systematic approach consisting of four stages:
(1) specification of analysis levels and stimuli structure; (2)
first-pass coding of a trial into main sequences of events; (3)
detailed coding of selected sub-tasks or sequences within the
trial; and (4) quantification of behaviors using measures that
aggregate the lines of code in various ways. The splitting of
coding into first-pass and detailed coding, Stages 2 and 3, is a
pragmatic way to manage the complexity of coding over
broad spatial and temporal scales (R2.1). For the coding ac-
tivities we exploit the functionality of a spreadsheet to orga-
nize the disparate information within the codes and across
multiple nested levels of codes.

Specification lays the foundation for the analysis by setting
the overall parameters of the analyses. (1a) A positional ref-
erence system for task relevant features or objects in the stim-
ulus is defined. For the shape-matching task (Fig. 1), the ob-
jects are given unique names and their locations given by the
3×3 grid—Fig. 14a is a table from the spreadsheet that defines
the shape names and locations. For more complex tasks and
stimuli, hierarchical feature-naming and coordinate schemes
may be appropriate. (1b) The target of tactile actions may
focus on different sections (levels) of stimuli, so stimulus
levels are defined at different levels of granularity and depend
on the types of interaction that are of theoretical interest

(R2.1). For our shape-matching task, we defined a top Level
1 as actions on whole individual shapes (e.g., hexagon), an
intermediate Level 2 for actions on some features of a shape
(e.g., top half of the hexagon only), and a bottom Level 3 for
actions on individual sides and corners of shapes (e.g., top
edge of the hexagon only). These levels are identified in the
spreadsheet table in Fig. 14b. In general, the number and grain
size at each level will depend on the types of phenomena of
interest. (1c) Given the levels set in (1b), the settings of
MIDAS-analyser “stepping” and “trail” values can be speci-
fied, so that replays reveal touch patterns at an appropriate
level of detail. For example, for the shape-matching task,
100-ms stepping values were initially chosen to decompose
P2’s traces around the perimeter of objects (Fig. 14c).

For ease of coding, all the TPA action codes, the object
names, and their locations are listed in the spreadsheet (Fig.
14d), so that they can be referred to by the spreadsheet’s built-
in functions that automatically generate pull-down lists for
entering cell values (see below). To distinguish objects that
are target pairs in the shape-matching task, their names are
entirely capitalized, whereas the single distractor items are in
upper and lower case (column “Object” in Fig. 14d).

The purpose of a first-pass coding is to generate an initial
segmentation of the task, to reveal the overall pattern of be-
haviors, and thus to identify subtasks that are likely targets for
coding at the most detailed levels. Figure 15 shows a section
of the first-pass coding for P2, spanning 31 s. The
“Timestamp” is the time (in milliseconds) obtained from read-
ing the MIDAS-analyser “current time” in the control panel
(Fig. 10); the column “Mins:Secs” is time in a human-friendly
format computed by the spreadsheet. The middle columns of
the table give the names and locations of the objects being
touched by each hand; these are filled out manually using
MIDAS-analyser. Each line codes the ongoing actions in par-
ticular areas of interest. For example, at time 1:18, the left
hand is reading SQUARE-A, at location [1, 1], and the right
hand is reading PENTAGON-A, at location [3, 1]. New lines
are generated whenever actions begin or cease by one or both
hands. For example, when the right hand is briefly raised from

Fig. 14 Example of the spreadsheet tables used for the specification step in the coding method
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PENTAGON-A we have a new line at 1:21 just for the left
hand, and at 1:49 a new line begins, because both hands are
briefly lifted from the stimulus. To code an action that runs
over more than one location, a range of locations may be
added on that line.

The “Time” column on the right of Fig. 15 uses the built-in
functionality of the spreadsheet to graphically show the dura-
tion of each first-pass action: This is relatively uneven, with
P2 spending a long time comparing a square and a pentagon
simultaneously, for instance. P2’s right hand remains on one
of the pentagons for most of the time, whereas the left hand
makes returns to previously read objects.

Figure 16 shows a section of the first-pass coding for P1 for
a period spanning 15 s. The time spent reviewing objects is
relatively constant across the different events. Unlike for P2,

both hands are typically in action and touch a variety of ob-
jects, with some objects being touched successively by the
two hands (e.g., PENTAGON-B at 0:58).

From the first-pass codings presented in Figs. 15 and 16,
we observe that P1 had touched several shapes within a few
seconds of starting the task, whereas P2 moved across only
two shapes during the same time frame. Furthermore, P1 ex-
plored objects across all three rows in that time, suggesting
that right from the outset P1’s strategy was to gain an over-
view of the distribution of objects, whereas P2 seemed to
compare or identify objects as they were found in the stimulus
area. Thus, the first-pass coding not only allows us to keep a
record of the overall sequence of actions, but it provides an
overview of the potential strategies that participants seem to
be taking when solving the task. This goes some way to

Fig. 15 Snapshot of the first-pass coding from 1:18 to 1:49 for Participant P2

Fig. 16 Snapshot of the first-pass coding from 0:51 to 1:07 for Participant P1
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MIDAS-TPA fulfilling requirements R2.1 and R2.3, which
consider the range and diversity of behavioral patterns. The
next stage contributes further.

Detailed coding follows a first-pass coding. Figure 17
shows a section of the detailed coding for P2, which pro-
gresses by selecting a line of the first-pass coding and then
adding new lines with details of actions at a finer granularity
under it. Lines added during the first-pass coding are in red
and lines added during the detailed coding have a white back-
ground only (see the “Type” column in Fig. 17). The spread-
sheet’s built-in functionality for hierarchically defining and
selectively displaying groups of lines has been used to manage
display of the protocol (Fig. 17, far left, plus and minus signs).
In Fig. 17, just the detailed coding for the segments between
1:18 to 1:20 and 1:23 to 1:35 are shown; the rest of the data are
hidden. The shown data are bracketed (left) and indicated by
the red cells at the first-pass level. The spreadsheet also in-
cludes extra columns for completing the full specification of
each elementary action, which include details of the finger
identity, gestures, and comments. In the “level” column, the
level of the gesture is specified; for example, at line 66 this is
Level 2, since the hand is tracing part of the square, but in line
67 the level is 3, since the left-hand index finger is fixed on an

edge of the square only. Due to the amount of data presented
in the spreadsheet, the digit for the level has been augmented
with a visual cue to aid perception of the levels.

P2 reviews a square with the left hand for an extended time
from 1:18 to 1:35. The column “action” shows the gestures
recorded during this time. The symbol “//” indicates that “the
gesture continues as above.” For example, there is a “fix”
gesture on the top edge of a square at 1:24 (line 74) with
LH2, and this persists for a few seconds, until the participant
changes the digits used at 1:29 (line 84).

Figure 18 shows the codings for both hands for P1. It can
be appreciated that gestures (actions) differ from one hand to
the other. As in Fig. 17, Fig. 18 shows segments of detailed
coding with a white background (see the rows under the
“Type” column), whereas rows in red are the first-pass coding
rows.

P1 moves more quickly across shapes than does P2 and
shows a more varied set of gestures too. A quick look at
P2’s detailed coding (Fig. 17) reveals that the most frequent
gestures seem to be “trace,” “brush,” “fix,” and “scan-within”;
however, P1 also shows gestures such as “slideTo,” “glance,”
“skim,” and “jumpTo.”A key difference between these sets of
behaviors is that P2’s gestures are aimed at reviewing or

Fig. 17 Snapshot of the detailed coding for Participant P2—both hands
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identifying a shape, whereas P1’s gestures include both ges-
tures that indicate indexing of objects (e.g., fix, slideTo,
jumpTo) and gestures that indicate recognition of objects
(e.g., brush, trace).

A detailed analysis of the protocol segments has been pro-
vided so that readers can judge how MIDAS-TPA provides
data to address many of the requirements. In particular,
multitouch coding (R2.4, R1.2) and diverse behavior coding
(R2.3) are integrated across broad spatial and temporal scales
(R2.1).

Examples of interesting behaviors observed from the detailed
coding

To give a sense of the richness of tactile behaviors and strat-
egies that may be discovered using MIDAS-TPA, we outline
some differences between P1 and P2 that we have found.

Figure 18 presents some of the detailed coding for P1. As
can be observed, both hands are used to solve the task; there is
no dominant hand in that respect. However, some gestures
seem to be conducted with one hand more often than with
the other. An example of this is “trace”: P1 seems to use the

right hand to trace objects slightly more often than the left
hand. A fuller review of this is in the next section.

Observe how the durations of a gesture differ between par-
ticipants, with P1 performing gestures in very short time
spans. An interesting example is the case of “fix” (Fig. 19).
An extract from the detailed coding for P1 shows that the “fix”
gestures last one second or less (Fig. 19a), whereas the “fix”
gestures for P2 can last several seconds (Fig. 19b).
Furthermore, this gesture works as an index to a full object
for P2, whereas for P1 it works as an index of an object feature
(e.g., a corner), too.

Other differences can be spotted in relation to the granular-
ity (“level”) of the gestures used by both participants. For
example, records of Level 3 gestures, which have the lowest
granularity, were not only found slightly more frequently in
the detailed coding for P2 than for P1, but they were associ-
ated with different gestures too. Figure 20a shows an extract
of P1’s detailed coding, showing that gestures with Level 3 are
“fix” gestures only, whereas P2’s Level 3 gestures (Fig. 20b)
are “span,” “brush,” and “fix.” It seems P2 was trying to
identify individual parts of the objects (e.g., an edge, a corner),
but P1, who has more experience reading tactile materials,

Fig. 18 Snapshot of the first pass coding for Participant P1—both hands
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takes another approach and may focus on, perhaps, a more
abstract view of the objects, fixing on specific features only
to use them as reference points.

TPA also allowed us to observe simultaneous gestures per-
formed with one hand. Figure 21, shows a three-line snapshot
of the detailed coding for P1. It shows that the LH was sliding
to Pentagon-Awhile the RH was already scanning Pentagon-
A. However, at 65709, before the LH reached the object, P1
fixed the RH middle finger at the top right corner of the
pentagon and traced the object (counterclockwise) with the
RH index, simultaneously. Other similar examples of simul-
taneous gestures seemed more frequent with P1 than with P2,
too. In this example, the reader can appreciate the granularity
at which the gesture is observed and recorded.

Generally, creating a first-pass coding for our matching
task took between 15 and 30 min. However, the detailed cod-
ing took considerably longer when the settings specified
above were used (Fig. 14c, 100-ms stepping): between 2 and
3 h of detailed coding per minute, per hand. Thus, it is relevant
to be selective regarding what parts of the first-pass coding
that need to be coded in detail and to specify the coding set-
tings thoughtfully. The first-pass coding and detailed coding
of P1 generated just under 200 lines of code, whereas for P2,
the coding generated over 600 lines of code.

Although we do not present an example here, the reliability
of the coding should be evaluated. Given the complexity of
the data, the interrater comparison for tactile protocols will be
more challenging than that for simpler, verbal protocols. It is
recommended that multiple assessments be conducted on dif-
ferent aspects that underpin findings that will provide evi-
dence for theoretical claims. Coding for the position and
timing of touches is relatively unproblematic, given the
MIDAS log data, but assigning codes to actions requires more
judgment on the part of the analyst. If reliability cannot be
achieved at the level of the named actions in Table 1, we have
the option to conduct a coarse-grained analysis based on the
categorization of actions as within or between objects, and
their duration, which might still be sufficient to differentiate
strategic differences between groups.

Quantifying participants’ gestures: Time spent over the first
41 s

Deriving quantitative measures is the final stage of MIDAS-
TPA, which aggregates various aspects of the gestures coded.
An example with our sample task follows, as an exemplar of
how data from a MIDAS-TPA may be quantified, and thus
reveal overall differences between participants (or

(a) Participant P1 (b) Participant P2

Fig. 19 Snapshots of the “fix” gestures from the detailed codings for (a) Participant P1 and (b) Participant P2

   

(a) Participant P1 (b) Participant P2

Fig. 20 Extract of the Level 3 gestures for (a) Participant P1 and (b) Participant P2
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populations) that go beyond the descriptive level of the pro-
tocols themselves.

The graphs in Figs. 22 and 23 plot the time spent on each
coded gesture for P2 and P1, respectively, during the first 41 s,
which is the length of time that P1 took to finish the task.

In P2’s chart (Fig. 22), large bilateral differences are promi-
nent in the “park” and “fix” gestures, which register the absence
of touch interactions. In contrast, the gestures associated with
detailed inspection of shapes, “trace” and “brush,” are much
more equal, despite the participant being right-handed. This sug-
gests that P2 tended to engage one hand at a time, which is
consistent with her use of a small number of digits (Fig. 11). It
also suggests that she used each hand equally, and independently,
to inspect the shapes closely, while the other hand tended to be at
rest. The difference in the mode of resting, right hand off the
surface (“park”) and the left hand on (“fix”), appears arbitrary.
The traces in frames 1:26 to 1:32 appear to be an example of this
behavior. This is consistent with the trace patterns in Fig. 3.

In contrast, the chart in Fig. 23 shows that the right hand of
our right-handed P1 dominated in the “brush” and “trace”
shape recognition gestures, whereas the left hand dominated
“slide to” gestures between shapes. The near-continuous
movement of both hands is clear from the small percentage
of “fix” and the tiny percentage of “park” gestures, which
contrasts with the one-hand-at-a-time performance of P2.

MIDAS-TPA results

MIDAS-TPA is a versatile approach to studying and closely
analyzing the gestures of tactile graphic readers. All the codes
specified in our coding scheme (Table 1) were used in this

study. Furthermore, the codes allowed the observation of dis-
tinctive behaviors and strategies carried out by both partici-
pants. Although we do not claim that the codes cover all pos-
sible tactile actions, they were sufficient to express all the
gestures used by participants with different tactile reading ex-
pertise while performing our shape-matching task.

Both hands can be coded in fine detail, as well as the ac-
tions of individual fingers. Furthermore, some codes may al-
low the matching of behaviors to specific cognitive tasks—
and this can be pinpointed in the protocol by using the corre-
sponding timestamp too. For instance, a “fixation” on an ob-
ject or “jumping to” a previously visited object could be asso-
ciated with indexing of that object; “trace” and “brush” of an
object could be associated with object recognition; or tracing
different objects with both hands could be associated with
coordination of features for comparison of objects.

The four phases of the coding method proved to be struc-
tured and flexible for the analysis of tactile behaviors. The
structured process allows the coder to start the analysis by
recording and obtaining an overview of the overall tactile
behavior first, and then it permits an in-depth selective coding
to explore aspects of interest. The method can be used with
other complex diagrammatic representations by carefully de-
fining the areas of interest during the specification step.
MIDAS-TPA can be used with participants with different ex-
pertise too, as was shown in previous sections.

Thus, it has been demonstrated how MIDAS-TPA may be
used to quantify and qualify participants’ behaviors. For ex-
ample, differences between P2 and P1 were reflected in the
granularity (level) at which they reviewed objects for the
matching task, and in the frequency of conducting several

Fig. 22 Proportions of time spent on each gesture for Participant P2 during the first 41 s. The graph plots the proportions of time for the left hand (LH)
and the right hand (RH)

Fig. 21 Extract of the code for Participant P1. The right hand performs two different gestures simultaneously
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actions simultaneously with both hands. Gestures of partici-
pants were quantified and this provided an insight into the
main role of each hand, as well as characteristic behaviors of
P2 and P1.

Discussion

In this final section, we consider the potential and limitations
of MIDAS in two ways. First, MIDAS will be judged against
the set of requirements for each of the three stages of tactile
interaction experiments. Second, the implications of prelimi-
nary findings about the system demonstration will highlight
how novel aspects of tactile interaction may be investigated.

Assessment of MIDAS against the system
requirements

Capturing data is the first stage of tactile interaction experi-
ments. MIDAS-logger satisfies most of the requirements.
Because it exploits current touch screen technology, good
spatial and temporal accuracy and resolution are achieved at
a level that meets the first requirement of cognitively oriented
tactile interaction studies (R1.1). This technology also under-
pins the system’s ability to capture data for up to ten fingers
(R1.2) and the automatic digital recording of position and
timing data for touches (R1.4). However, tablets have no ca-
pability to determine the identity of the digits in contact with
the touch surface (R1.3) and some tablets may occasionally
suffer from an input overload. Although participants can be
easily trained to cease touching briefly in response to an over-
load signal, this disturbs the flow of the task. Fortunately, on
certain models of tablets this problem is rare (see above).
MIDAS-logger does require an initial calibration procedure
in order to record the stimulus position for MIDAS-analyser
to align the screen and stimulus coordinate systems, but

otherwise no further calibration is required either during the
running of a trial or during analysis (R1.4). Data about off-
surface movements of fingers and hands is not captured
(R1.5), nor is information about the force of touches. The
approach is not invasive, even in a minimal form (R1.6).
MIDAS-logger meets the main practical requirements
(R1.7). Its use of everyday technology means that it is eco-
nomical. It is compatible with common forms of tactile mate-
rials, such as swell paper, plastic embossing (“German”) film,
and thermoform stimuli, with the provision that features are
not so wide and tall that the finger pad is completely elevated
from the surface. Although the wooden frame speeds up the
switching of stimuli, its main purpose is to mask the small area
at the periphery of the screen that activates the generic tablet
menus. In summary, the MIDAS-logger satisfies more of the
data capture requirements than the previous systems described
above.

The second stage of tactile experiments is the coding and
derivation of measures. The requirements of this stage relate
both to MIDAS-analyser and toMIDAS-TPA. The interactive
visualization of touch traces in MIDAS-analyser supports the
analyst’s examination of tactile behaviors over broad spatial
and temporal scales (R2.1) through flexible selection of di-
verse playback display parameters, and even direct instanta-
neous manual control of the playback and rewind at whatever
the speed an analyst wishes. MIDAS-analyser’s output of
structured data allows investigators to use standard data anal-
ysis packages to filter, aggregate and test the touch data at will.
A specific aim in the development of MIDAS-TPA was to
support the detailed coding of touch actions across broad spa-
tial and temporal scales (R2.1), which is realized as flexible
temporal and spatial code schemes. Obviously, diverse mea-
sures of behaviors can be derived from the structured data
(R2.2), but MIDAS-TPA in addition enables tactile interaction
strategies to be identified from the rich patterns of the mean-
ingful action codes (R2.3). MIDAS-analyser and MIDAS-

Fig. 23 Proportions of time spent on each gesture for Participant P1 during the first 41 s. The graph plots the proportions of time for the left hand (LH)
and the right hand (RH)
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TPA both support multi-touch coding (R2.4). It is particularly
worth noting that the integration of the video data with the
touch trace data enables the analysis of actions in relation to
specific hands and individual fingers, which compensates for
the absence of finger identity in the raw touch data (R2.5). The
combination of the touch and video data provides sufficient
information to identify subtle behaviors, such as when a finger
follows the outline of a shape whilst accompanying other
digits but does not itself touch the shape, or when there is a
brief slowing of the fingers as they “glance” at a shape, per-
haps indicating that the participant recognized the shape even
though the overt action just appears to be a “skim.” Although
automatic coding of behavior patterns and the computation of
measures (R2.6) would be desirable, such features are yet to
be developed within MIDAS. As compared to the previous
approaches described above, MIDAS-analyser and MIDAS-
TPA appear to satisfy more of the data coding and measure
derivation requirements.

The last stage of tactile interaction experiments encom-
passes interpretation and analysis activities, which may take
three different perspectives: a finger or hand focus (R3.1), a
stimulus focus (R3.2), and both combined (R3.3). MIDAS-
analyser and MIDAS-TPA support interpretations separately
about participants’ use of fingers and hands (e.g., Figs. 11 and
12), about the locations and durations of touches associated
with particular objects in the stimuli (e.g., Fig. 13), and about
all of these combined (e.g., Figs. 17, 18, 19, 20, 21, 22 and
23). Combining both perspectives used in the analysis of
braille reading, MIDAS goes further by extending the state
of the art to the complexity of strategies for full 2-D stimuli.
Unlike Breidegard (2007), we have not yet attempted to inte-
grate touch analysis with participants’ verbalizations, al-
though it is quite feasible to augment MIDAS-TPAwith tran-
scriptions of utterances that participants make concurrently
with their touch interactions (R3.4).

In summary, the three parts of MIDAS satisfy most of the
desirable requirements of an approach to the study of tactile
interactions, which were derived from considering the capa-
bilities and limitations of existing methods in the literature.

System demonstration

The comparison of the performance of our two selected tactile
graphic readers primarily served to illustrate the capabilities of
the MIDAS system. However, as we believe that this is the
first detailed systematic analysis of the differences between
participants with and without experience in reading tactile
graphics, certain implications should be highlighted to guide
future work in this area, even thoughwemake no claims about
the representativeness of each participant’s performance to
some wider sub-population.

The most striking observation is that readers of tactile
graphics cannot be treated as a homogeneous group. Many

substantial differences in performance manifested between
our two participants, just on the simple shape-matching task
presented here. Participant P1 (P1) was not only substantially
quicker and more accurate on the task, but differences were
apparent in other performancemeasures and in terms of higher
level strategic behaviors. One key difference is P1’s constant
use of both hands and, at some points, each hand was seem-
ingly performing a different function, such as marking a loca-
tion versus perceiving a shape. This resonates with the re-
search by Lorimer (2002), who suggests that the most efficient
method for reading braille is when hands work independently
and take different roles (e.g., one hand reads, the other is
positioned elsewhere along the line). Furthermore, Lorimer
states that a poor reader would tend to use both hands for
the same purpose (p. 77), which parallels Participant P2’s
use of both hands to recognize an object more often than P1.

P1 used more fingers more of the time than P2, but this
cannot merely be attributed to the former’s deployment of
two hands, as she displayed sophisticated behaviors with just
one hand, such as marking (remembering) a location with the
thumb whilst feeling a shape with the other digits of the same
hand. The speed of movements of the hands over the tactile
graphic was substantially faster for P1 than for P2. In part this
may be explained by P2 focusing laboriously on an object’s
details (e.g., a corner, an edge), often in order to work out its
shape. In contrast, P1 was able to recognize the shape of an
object even during a skim over the object, without any overt
sign of having attended to its form. We are certain of this inter-
pretation, because P1 correctly declared that the bottom right
square in the stimulus matched the top left square after only
having touched the square once earlier in the trial in a continu-
ous skim action. Although P2 seemed to construct the shape of
objects by deliberately integrating features of objects across
successive trace, brush or scan-within actions, P1 appears to
be able to perceive shapes directly in the form of dynamic
patterns under her moving fingers. This raises the issue of
whether variations in the strategies of tactile graphic readers
might reflect differences in the strategies of proficient and poor
readers of braille. Proficient braillists make continuous sweeps
across multiple cells when perceiving individual words, rather
than recognizing words by assembling them letter by letter.

Comparison of our participants reveals a rich range of in-
teresting but unexplored behaviors and strategies for
interacting with tactile graphics and interfaces. We have illus-
trated the potential of MIDAS-logger, MIDAS-analyser and
MIDAS-TPA as a set of tools for studying such phenomena.

Applications of MIDAS

To conclude this article, we briefly consider the types of studies
that MIDAS now makes feasible. Our sample experiment con-
trasts individual differences between users with low and high
levels of experience in the use of tactile graphics. Obviously, we
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can study how users with the same level of experience fare with
alternative graphics, for example to test the efficacy of alterna-
tive designs of tables, graphs, and charts. MIDAS permits such
studies to probe beneath the overall efficacy of particular for-
mats of representations (based on speed and accuracy mea-
sures) and allows the evaluation of specific design features
within representations by exploiting high spatial and temporal
resolution data provided by MIDAS.

The many studies of braille reading phenomena cited in the
introduction could be repeated, but now fully taking into ac-
count the role of multiple simultaneous touches. Additionally,
the richness of MIDAS data could be used to derive measures
of braille competence that are more nuanced than whole task
performance measures. For example, what are the relative
merits of different micro-reading strategies that might occur
below the level of regressions to earlier words in a line and
returns to the beginning of new lines (cf. Millar, 2003)?

Of course, MIDAS will function without a tactile stimulus
pinned to the surface of the tablet, so the system may be used
as a generic approach to the study of multitouch interaction on
touch screens. Furthermore, and in contrast to current modes
of interaction on mobile device touch screens that are limited
to two digits (e.g., pinches), our observations, such as those in
Figs. 2 and 3, provide evidence that humans are capable of far
more sophisticated multitouch gestures, in which digits on the
same hand might even perform different operations, for in-
stance. We shall use MIDAS to study such interactions.
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