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Abstract
The actor–partner interdependence (APIM) and common-fate (CFM) models for dyadic data are well understood and widely
applied. The actor and partner coefficients estimated in the APIM reflect the associations between individual-level variance
components, whereas the CFM coefficient describes the association between dyad-level variance components. Additionally, both
models assume that the theoretically relevant and/or empirically dominant component of variability resides at the same level
(individual or dyad) across the predictor and outcome variables. The present work recasts the APIM and CFM in terms of dyadic
nonindependence, or the extent to which a given variable reflects dyad- versus individual-level processes, and describes a pair of
hybrid actor–partner and common-fate models that connect variance components residing at different levels. A series of didactic
examples illustrate how the traditional APIM and CFM can be combined with the hybrid models to describe mediational
processes that span the individual and dyad levels.
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A number of procedures for analyzing dyadic data have been
developed over the past decades (see Kenny, Kashy, & Cook,
2006, for a review). The most widely applied method, known
as the actor–partner interdependence model (APIM;
Campbell & Kashy, 2002; Kenny, 1996), focuses on the
individual-level relationships between one dyad member’s
predictor(s) and the partner’s outcome (i.e., partner effects),
as well as the member’s own outcome (i.e., actor effects). In
contrast, the common-fate model (CFM; Kenny, 1996; Kenny
& La Voie, 1985) focuses on dyad-level associations between
the predictor and outcome variables by treating individual-
level responses as indicators of dyad-level latent variables.
Both models are essentiallymono-level, to the extent that they
assume that the theoretically relevant and/or empirically dom-
inant component of variability resides at the same level of
analysis (i.e., individual, dyad) across the predictor and out-
come variables. These assumptions may be problematic, be-
cause the array of theories describing dyadic interaction and
interdependence often postulate both top-down and bottom-

up processes (e.g., models of dyadic stress and coping;
Karney, Story, & Bradbury, 2005; Neff & Karney, 2004) that
cannot be effectively captured by the inherently mono-level
perspective of either the APIM or the CFM. The present work
seeks to recast these models in terms of dyadic nonindepen-
dence, or the extent to which a given variable reflects dyad-
versus individual-level processes, in order to set the stage for a
pair of hybrid actor–partner (AP) and common-fate (CF)
models, which connect variance components residing at dif-
ferent levels.

The idea that variables measured at different levels of anal-
ysis may influence one another is obvious to researchers fa-
miliar with the traditional nested designs commonly found in
educational and organizational research (Snijders & Bosker,
2011), as well as in longitudinal studies examining individual
change (Singer & Willett, 2003; West, Ryu, Kwok, & Cham,
2011). However, a cursory review of published research sug-
gests that, with a few notable exceptions (Conger, Rueter, &
Elder, 1999; Galovan, Holmes, & Proulx, 2017; Ledermann&
Kenny, 2012), these basic ideas may be underdeveloped
among researchers examining dyadic processes. Indeed, the
idea of cross-level processes in dyadic analyses has largely
been limited to circumstances in which observed dyad-level
variables (i.e., number of children, length of relationship) are
included as predictors of individual-level outcomes (e.g.,

* Robert E. Wickham
rwickham@paloaltou.edu

1 Department of Psychology, Palo Alto University, Palo Alto, CA,
USA

https://doi.org/10.3758/s13428-018-1117-5
Behavior Research Methods (2019) 51:2629–2645

Published online: 10 September 2018

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1117-5&domain=pdf
mailto:rwickham@paloaltou.edu


relationship satisfaction). Providing dyadic researchers with a
framework for understanding how the dyad-level components
of individual variables may serve as indicators of a dyad-level
latent variable, which in turn may predict either individual- or
dyad-level variance components, has the potential to expand
the range of phenomena under investigation by relationship
scientists.

The present work begins by deconstructing the APIM and
CFM into their constituent submodels, to illustrate how these
analytic approaches treat the nonindependent or Bshared^
component of variance differently. This modular approach to
dyadic analysis leads to a number of interesting insights and
applications. For instance, understanding the empirical condi-
tions favoring the traditional APIM or CFM allows for a more
judicious application of each. Moreover, a pair of hybrid
models follow logically from this perspective, which allow
one to examine the relationship between predictors and out-
comes in terms of the shared dyadic-level variance of one
variable and the unique individual-level variance of the other.

Deconstructing dyadic data

Understanding the inner workings of the APIM and CFM and
their relation to the forthcoming AP–CF and CF–AP hybrid
models requires a basic familiarity with the underlying sample
moments from which the model parameters are estimated.
Without loss of generality, we adopt a generic design in which
a single predictor and outcome variable are measured for each
dyad member at a single time point, and we assume that dyad
members are distinguishable on the basis of some attribute
(e.g., birth order, sex), though the basic principles discussed
here generalize to situations in which multiple predictors are
postulated, as well as to dyads that comprise indistinguishable
members (i.e., same-sex couples). In the present example,
each dyad member (a, b) provides a score for the predictor
(X) and outcome (Y), resulting in sample matrices containing
four observed variables, Xa, Xb, Ya, Yb, which give rise to six
linear relationships among these person-level variables. These
associations can be represented either in unstandardized form,
as variances and covariances, or as correlation coefficients.
The present work draws on both representations.

Intradyadic correlations

Intradyadic (ID) correlations describe the association between
scores on the same variable for individuals belonging to the
same dyad (e.g., rXa,Xb). ID correlations also serve as a direct
measure of non-independence, or the extent to which individ-
uals belonging to the same dyad report similar (or dissimilar)
levels for a given variable, accounting for mean differences

across dyadic roles. Values of rid = + 1 and rid = – 1 suggest
perfect rank order concordance or discordance (respectively)
between members of the same dyad, and ID correlations of 0
reflect a complete absence of association. Shifting the level of
analysis from the individual to the dyad, the squared ID cor-
relation represents the proportion of variability that is between
dyads. Moreover, as the absolute value of the squared ID
correlation increases, the proportion of variance shared by
individuals belonging the same dyad also grows larger. For
example, an ID correlation of + .80 indicates that individuals
belonging to the same dyad report very similar values for the
variable, after accounting for role-specific differences in mean
levels (e.g., male partners may report lower levels of commit-
ment to the relationship), and that 64% of the variability is
common among dyad members. Perhaps less intuitive is the
case in which an ID correlation is – .80. In this case, 64% of
the variability is still shared, although it implies that persons
belonging to the same dyad are less similar to one another than
two randomly selected pairs of individuals. As a result, a neg-
ative ID correlation suggests when one dyadmember reports a
higher score on the attribute of interest, the other dyadmember
is likely to have a lower score (again, accounting for mean
differences across roles).

The poles of the continuum illustrated in Fig. 1 describe
situations of complete nonindependence (rid = – 1, rid = + 1),
characterized by perfect correlation (positive or negative)
among the dyad member responses, which are represented
by Venn diagram circles that completely overlap. Kenny and
colleagues (2006) designated variables with an ID correlation
of rid = – 1 as within variables, which may reflect a zero-sum
attribute of the relationship (e.g., the proportion of housework
performed) or identify a respondent’s role (e.g., gender, illness
status), in the case of distinguishable dyads. Variables with ID
correlations of rid = + 1 are between variables, which reflect
dyad-level attributes that are common to both members (e.g.,
relationship length, marital status). The center of the continu-
um corresponds to independent variables, which exhibit no
agreement between members of the same dyad (i.e., rid = 0).
Most variables fall somewhere between the poles and mid-
point of the continuum, and are known as mixed variables;
however, unlike within and between dyad variables, mixed
variables also contain some component of unique (person-
specific) variability within the dyad.

Actor–partner correlations

Actor–partner (AP) correlations describe either the relation-
ship between the predictor and outcome variables within the
same person (Actor correlations), or the association between
the predictor for one person and the outcome for their dyadic
partner (Partner correlations). For example, rActor a is the cor-
relation between the predictor for person a (Xa) and the
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outcome for person a (Ya), whereas the relationship between
the predictor for person b (Xb) and the outcome for person a
(Ya) is reflected in the rPartner a correlation. At first glance the
interpretation of the AP correlations appears unambiguous,
however, when considered in conjunction with the ID corre-
lations, it becomes apparent that in most cases (i.e., samples
and variables for which rid ≠ 0) these actor and partner corre-
lations are confounded by shared dyadic variance. As a result,
from a traditional multilevel modeling perspective, the ob-
served AP correlations reflect a weighted average of their
constituent individual- and dyad-level relationships (Kreft,
De Leeuw, & Aiken, 1995; Lüdtke et al., 2008; Preacher,
Zyphur, & Zhang, 2010). The commonly used actor-partner
and common-fate models may be distinguished by which
component of the AP correlation their parameters capture
and model. Following sections will discuss these differences
in detail, along with the role of shared dyadic variance in
shaping our interpretation of the structural coefficients esti-
mated in dyadic regression models.

Modeling dyadic nonindependence

Observed person-level variables in dyadic studies often cap-
ture variability that is unique to the individual along with some
part that is nonindependent, or shared between the dyadic
partners (i.e., Bmixed^ variables). Researchers have long
known that nonindependence in outcome variables must be
taken into account in order for the inferential tests applied to
other parameters to be valid (Kashy & Grotevant, 1999;
Kenny, 1995; Kenny & Judd, 1986), and prior work has de-
scribed two procedures that model nonindependence between
dyad members: the random-intercept method (Raudenbush,
Brennan, & Barnett, 1995) and the covariance method
(Griffin & Gonzalez, 1995), each of which is illustrated in
Fig. 2. For the sake of generality, these diagrams employ the
traditional LISREL notation utilized by Bollen (1989), and the
observed variables are treated as endogenous.

Under the random-intercept specification (top panel), the
observed response for each dyad member serves as a factor
indicator of a dyad-level latent variable (ηYdyad). As an

essential identifying constraint (Bollen, 1989), the loadings
for this random intercept are fixed to 1, and as such, each
person’s observed score contributes equal weight to the
dyad-level latent variable. The disturbance term for this vari-
able (ζYdyad) reflects dyad-specific deviations, whereas the
error terms for the observed variables (εYa, ε

Y
b) represent per-

son-specific deviations from the dyad-level factor score. The
variances of these terms can be described using measurement
model parameters, ψY, θYaa, θ

Y
bb (respectively). Moreover,

because the number of estimated parameters equals the num-
ber of elements in the data covariance matrix, these model
parameters can be expressed in terms of their sample mo-
ments. Most notably, the variance of the dyad-level latent
variable (ψY) equals the covariance between dyad member
responses, cov(Ya Yb), whereas the model parameters for the
individual-level residual variances equal the observed
(unconditional) variance [i.e., var(Ya), var(Yb)], minus the co-
variance among dyad member responses [cov(Ya, Yb)]. This
demonstration illustrates that the random intercept model
neatly decomposes variables representing observed person-
level variables (i.e., mixed variables) into between-dyad
(ψY) and within-dyad (θYaa, θ

Y
bb) variance components. As

a result, these parameters can also be used to express the intra-
class correlation (ICC) coefficient, or the proportion of (total)
variance in person-level responses attributable to (shared)
dyad-level influence (Snijders & Bosker, 2011).

The covariance approach (bottom panel) is comprised of a
nondirectional path linking the disturbances of person-level
responses provided by members of the same dyad (Ya, Yb).
Because this relationship is treated as an Bunanalyzed associ-
ation” or unconditional relationship (Bollen, 1989, p. 33), the
model parameters describing the variances of these distur-
bances represent total (rather than person-specific) variability,
which is a mixture of person- and dyad-level factors (as well
as measurement error). As before, the ICC or intradyadic cor-
relation can be expressed in terms of model parameters and
observed sample statistics. It is also clear that both specifica-
tions will perfectly replicate the sample covariance matrix,
and that the parameters of one are recoverable from the other.

Although these methods constitute mathematically equiva-
lent ways of modeling dyadic nonindependence, the practical

partner b

No Agreement 

All Variance is Unique

Perfect Disagreement 

All Variance is Shared

Perfect Agreement  

All Variance is Shared

Mixed-
Negative

BetweenWithin Independent Mixed-
Positive

rid = +1.0rid = 0rid = −1.0 rid ≈ +.5rid ≈ −.5

Fig. 1 Dyadic nonindependence continuum
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consequences of their application may differ dramatically de-
pending on the context in which they are applied. The most
salient difference between these approaches stems from the
manner in which nonindependence between dyad members
is parameterized. Specifically, the random intercept method
explicitly models dyad-level variability as a parameter (ζY),
whereas the covariance approach treats dyadic nonindepen-
dence as merely an unanalyzed association. As a result, the
random intercept method allows the researcher to directly ac-
cess the dyad-level variance component present in mixed var-
iables, in the form of factor scores (i.e., dyad-specific devia-
tions), which can in turn be used as predictor or outcome
variables in a larger structural model.

Finally, it is worth noting that the random intercept ap-
proach may become difficult to implement as the intradyadic
covariance approaches zero [i.e., cov(Ya, Yb) ➔ 0]. Under
these conditions, the dyad-level latent variable may become
empirically underidentified because all of the variability in
responses resides at the individual level. This aspect of the
random intercept specification underscores our argument that
the degree of dyadic nonindependence present in a given data

set has strong implications for the feasibility of certain dyadic
regression models, specifically models featuring a random
intercept. Difficulties can also arise when rid is negative be-
cause they suggest that a given dyad member is less similar to
his or her dyadic partner than to another person in the sample.
This causes problems for the latent variable approach because
the dyad-level variance (ψY) cannot be negative. However,
this limitation may be overcome by fixing one of the factor
loadings to − 1, which maintains the correct model-implied
covariance while allowing the estimated factor variance to be
positive (Ledermann & Kenny, 2012).

A modular perspective on existing dyadic
regression analysis

The present section introduces a modular approach to dyadic
regression analysis by recasting the traditional APIM and
CFM in terms of dyadic nonindependence. This synthesis sets
the stage for a pair of hybridmodels that will allow researchers
to approach dyadic analysis from a new perspective.

Ya

Yb

ζY
a

ζY
b

Covariance Method

ηY
dyad

Ya Yb

1 1

εY
a εY

b

Random Intercept Method

ζY
dyad

Fig. 2 The latent-variable and covariance approaches to modeling dyadic nonindependence
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The actor–partner interdependence model

The actor–partner interdependence approach is a multiple re-
gression model in which the outcome variable for each mem-
ber of the dyad is regressed on each dyad member’s predictor
variable. The traditional specification (Kenny, 1996; Kenny
et al., 2006) is illustrated as a path diagram in the upper-left
panel of Fig. 3 and is described by the following equations:

Y a ¼ νYa þ κactor aX a þ κpartner aX b þ εYa; ð1Þ
Y b ¼ νYa þ κactor bX b þ κpartner bX a þ εYb; ð2Þ

where Y is the outcome variable and ν represents the regres-
sion intercept. The Greek letter kappa (κ) is used to represent
these observed-on-observed variable regressions, with sub-
scripts describing the type of APIM coefficient and the dyad
member (i.e., a, b), and the εYa and εYb terms represent the
person-specific errors or residuals. For illustrative purposes,
the present example assumes that the individuals in question
are members of heterosexual relationships, so that they are
distinguishable on the basis of gender. The path leading from
one dyad member’s own predictor to his or her own outcome
is known as the actor effect (i.e., κactor a, κactor b; Kenny et al.,
2006), and the path leading from a dyad member’s own pre-
dictor to his or her partner’s outcome is known as the partner
effect (i.e., κpartner a, κpartner b).

These actor and partner coefficients describe the associa-
tions among individual-level variables, addressing research
questions that are inherently intradyadic in nature. Notably,
because the actor and partner regression coefficients represent
partialed or unique relationships, the association between the
shared or confounded component of the individual-level pre-
dictors is not reflected in the APIM regression coefficients.
The degree of confounding is directly related to the proportion
of shared dyadic variance on the predictor variable, as indicat-
ed by the rid X correlation. For example, the κactor a coefficient
represents the unique association between the predictor for
men and the outcome for men, after removing the component
of the raw rActor a correlation that is shared with the rPartner a
correlation. The standardized actor and partner coefficients
can be expressed in terms of raw correlations by applying
the rules of covariance algebra (Bollen, 1989; Kenny, 1979)
to the model equations:

Std: κactor a ¼ rActor a rid X *rPartner að Þ
1 − r2id X

ð3Þ

Std: κparner a ¼ rPartner a rid X *rActor að Þ
1 − r2id X

ð4Þ

Notice that in the numerator of Eq. 3, the correlation be-
tween person a’s predictor and person b’s outcome (rPartner a)
and the intradyadic correlation (rid X) are first multiplied and

then subtracted from the raw actor correlation (rActor a). This
means that as the magnitude of rid X increases, the value
subtracted from rActor a grows larger, and the κactor a coefficient
diverges further from the raw actor correlation. Conceptually,
these formulae are consistent with a general understanding of
multicollinearity in regression analysis: As the magnitude of
the correlation between predictors (i.e., rid X ) increases, more
of the total variability and potential covariability is shared
between predictors (dyad members). As such, the interpret-
ability of the κactor and κpartner coefficients becomes less clear
as the ratio of the predictor ID correlation to the AP correla-
tions grows larger (i.e., ID:AP > |1|), because the concept of
individual-level association begins to disintegrate when a sig-
nificant portion of (co)variability occurs between dyads (not
individuals). In contrast, the models described in the following
sections feature dyad-level latent variables as predictor, out-
come, or both.

The common-fate model

The CFM, first described by Kenny and La Voie (1985) and
later refined by others (Galovan et al., 2017; Griffin &
Gonzalez, 1995, Gonzalez & Griffin, 2002; Kenny, 1996;
Ledermann & Kenny, 2012), is a latent-on-latent regression
that comprises dyad-level latent variables measured by
individual-level predictor and outcome variables. The mea-
surement components of the model are expressed by the fol-
lowing equations linking the observed individual-level vari-
ables to dyad-level latent variables:

X a ¼ νXa þ 1ηX þ δXa; ð5Þ
X b ¼ νXb þ 1ηX þ δXb; ð6Þ
Y a ¼ νYa þ 1ηY þ εYa; ð7Þ
Y b ¼ νYb þ 1ηY þ εYb: ð8Þ

The upper-right panel of Fig. 3 provides the path diagram
for the generic CFM. Because each of the latent variables is
measured by only two observed variables, both factor loadings
are fixed to a constant (i.e., 1.0) in order to identify the latent
variables. These latent variables capture dyad-level information
regarding the relative standing of each dyad relative to others in
the sample. The structural relationship between the dyad-level
latent variables is described by the following equation:

ηY ¼ βSharedη
X þ ζY ð9Þ

The βshared coefficient in Eq. 9 describes the relationship
among the factor scores for the predictor (ηX) and outcome
(ηY) latent variables, which reflects the association between
the dyad-level variability in the predictor and outcome con-
structs. As such, the CFM addresses research questions that
are predominately interdyadic in nature (i.e., Do couples who
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report higher levels of responsiveness experience greater com-
mitment?). Finally, dyad-specific disturbances are carried by
the zeta (ζ) term.

CFM overidentifying restrictions In contrast to the uncon-
strained APIM, the standard CFM is overidentified, because
the number of unique data elements in the sample covariance
matrix (ten) exceeds the number of parameters estimated (sev-
en), resulting in three degrees of freedom, which correspond
to a set of overidentifying restrictions (Bollen, 1989; Kenny,
1979). Practically, these restrictions express the CFM assump-
tion that the components of shared variance captured by the
latent variables are consistently related to one another (i.e.,
equal AP covariances), with the number of equalities corre-
sponding to the number of degrees of freedom. As with the
APIM, covariance algebra can be used to derive a hand cal-
culation formula for the standardized model coefficients:

Std: βshared ¼
rAPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rid X *rid Y
p ð10Þ

The resulting standardized βshared coefficient describes the
relationship between the dyad-level predictor and outcome
variables. The tenability of these overidentifying restrictions
is evaluated by the χ2 test of model fit. Though the offending
restriction is often evident from the sample covariance matrix,
the violation can also be identified by inspecting the model
residual covariance matrix, provided by all structural equation

modeling software platforms. The value of this coefficient will
range from − 1 to + 1, as long as the generalized mean of the
ID correlations (i.e., the denominator) is greater than the gen-
eralized mean of the AP correlations (i.e., the numerator).
Alternatively, when the AP correlation exceeds the mean ID
correlation, βshared will be greater than 1 (i.e., |βshared| > 1).
This introduces difficulties in both interpretation and statisti-
cal inference, because ηX will appear to Boverpredict^ ηY (i.e.,
ΨY < 0) and the standard errors for the estimated coefficients
cannot be computed. Finally, the formula described in Eq. 10
is undefined when either rid X or rid Y is 0, so the βshared
coefficient cannot be computed unless both the predictor and
outcome variables contain shared dyadic variance. These ba-
sic ratios (i.e., ID correlations > AP correlations; ID correla-
tions > 0) establish boundaries for the raw sample correlations,
confirming that the CFM is most appropriate when dyadic
nonindependence is high; however, the relationship between
the sample correlations and CFM parameters is further com-
plicated by a series of restrictions on the pattern of AP
associations.

In practice, the overidentifying restrictions imposed by the
CFM are often violated (Ledermann & Kenny, 2012), and
modifications to the model are required in order to obtain an
unbiased estimate for βshared. Consider a scenario in which
three of the AP correlations are of equal magnitude (e.g.,
rActor a = rPartner a = rPartner b = .3), but one of the correlations
is notably different (e.g., rActor b = .6). Under these conditions

ηX
ηY

1 11 1

YaXbXa Yb
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βshared
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a δX
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the standard CFM overidentifying restrictions are only partial-
ly satisfied, because rActor a = rPartner a = rPartner b ≠ rActor b. The
violated restrictions can be relaxed by allowing the residuals
of the offending variables (e.g., Xb and Yb) to correlate. These
residual paths are important to the CFM, because the average
AP correlation will overestimate the strength of the dyad-level
association when the AP correlations are heterogeneous.

Sometimes only two or three of the AP correlations are
approximately equal in magnitude. In these situations, one
or two of the overidentifying restrictions will be violated,
and an additional residual covariance parameter must be in-
cluded for each. The choice of which residual covariance to
include is far from arbitrary, because the AP correlation cor-
responding to the modeled covariance is no longer influencing
the estimate of βShared. As a result, the residual paths that
correspond to the larger of the errant AP correlations should
be estimated in order to ensure that the βshared coefficient re-
flects the more conservative estimate of the shared dyad-level
association. Consider a scenario in which two of the AP cor-
relations are approximately equal to one another (e.g., rActor a
≈ rPartner a ≈ .3), but differ from the other two AP associations
(e.g., rActor b = .5, rPartner b = .7). An unbiased estimate of
βshared would be obtained by specifying the residual covari-
ances that correspond to the larger AP correlations (i.e.,ΘActor

b, ΘPartner b). In contrast, specifying residual covariances that
correspond to the smaller AP correlations leads to an inflated
βShared coefficient, because the more conservative AP correla-
tions (i.e., rActor a, rPartner a) do not contribute to the estimate of
the shared dyad-level coefficient. As a general rule of thumb,
when the model is correctly specified, the estimated residual
covariances in the correct specification will have the same
sign as the βshared coefficient. However, it is also important
to consider the impact that these residual covariances have on
the interpretation of the shard dyadic coefficient, because the
resulting shared coefficient no longer represents the combina-
tion of all AP correlations. Thus, in cases in which the as-
sumption of equal AP correlations is violated, it may be ar-
gued that the CFM does not provide an optimal characteriza-
tion of the dyadic relationships, and other models, such as
those presented below, may provide a better alternative.

Analysis and critique of traditional actor–partner
and common-fate models

Prior work has advised researchers to rely on theory (Kenny,
1996) or the contextual features of each measured construct
(Galovan et al., 2017; Ledermann & Kenny, 2012) when ap-
proaching dyadic analysis, whereas the present work points
out that empirical aspects of the predictor and outcome vari-
ables (i.e., the magnitude and direction of the ID and AP
correlations) also influence the feasibility of each model.
Although the APIM and CFM feature the same four observed
variables (Xa, Xb, Ya, Yb), meaning that either could be applied

in a given scenario, examining the APIM and CFM through
the lens of dyadic nonindependence reveals that the models
address fundamentally different aspects of the dyadic process.
The bottom panel of Fig. 3 provides a conceptual representa-
tion of the coefficients estimated in each model, using the
Venn diagram scheme introduced earlier. More specifically,
the APIM is a multivariate regression model, in which the
person-specific components of the predictor variable are cap-
tured by the regression coefficients. In contrast, the CFM is a
latent-on-latent regression model, in which the component of
shared dyadic variances is both empirically present and theo-
retically prominent for both the predictor and outcome
variables.

The mono-level regressions featured in the APIM and
CFM implicitly assume that nontrivial levels of variance re-
side at the between- and within-dyad levels, respectively, for
both the predictor and outcome variables. However, in prac-
tice, research questions may naturally arise that involve one
construct that is inherently person-specific (e.g., trait anger),
for which the corresponding observed variables exhibit rela-
tively little nonindependence (e.g., |rid pred| < .05), and another
variable (e.g., constructive communication) that is more dy-
adic in nature (e.g., |rid out| > .40). The remainder of this article
demonstrates that loosening the traditional restrictions on
these models leads to a pair of hybrid models that are both
conceptually intuitive and theoretically compelling.

Hybrid actor–partner and common-fate
models

The APIM and CFM implicitly assume that predictors and
outcomes contain comparable levels of dyadic nonindepen-
dence and that the shared dyadic variance either serves as
the focal point of the analysis for both the predictor and out-
come (CFM) or is removed (partialed out) from the structural
coefficients (APIM). In practice, a researcher’s questions may
involve the dyad-level component of one construct and the
individual-level component of another. Moreover, the empir-
ical reality observed in a given dataset—specifically, the mag-
nitude of the ID correlations—may lead the researcher to fo-
cus on the dyad- or individual-level variance components of
the predictor or outcome. The first hybrid model relaxes these
constraints by examining a situation in which individual-level
variables predict shared dyadic outcomes (i.e., the AP–CFM),
and the second illustrates a scenario in which the shared dy-
adic component of the predictor variance is associated with
individual-level outcomes (i.e., the CF–APM). Because the
coefficients linking predictor and outcome variables cross
levels of analysis, the concept of a standardized coefficient
is ambiguous for these hybrid models. This is not surprising,
given the convention within multilevel modeling (Hox, 2010)
of discussing the relationships among predictors and
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outcomes solely in terms of unstandardized coefficients. As
such, the formulae provided for the hybrid models will more
closely approximate the unstandardized solutions provided by
statistical software. Mplus code for these hybrid models can
be found in the Appendix.

It is also important to note that minor discrepancies be-
tween hand-calculated and software-estimated solutions can
be attributed to the use of standardized coefficients
(correlations) rather than raw sample moments (covariances)
in the hand calculation formulas. We chose to present approx-
imate formulae based on correlations because they are more
comprehensible and intuitive than the more exact solutions
based on covariances and variances. As a result, the hand
calculation formulas presented here do not account for differ-
ences in the variances across dyad members. These formulas
will also differ from those provided by software, because of
minor violations of overidentifying restrictions. Although al-
gebraically correct, the formulas for both hybrid models will
provide results identical to those from software only under
very specific conditions, and they should be regarded primar-
ily as didactic tools.

The AP–CFM hybrid model

The AP–CFM is a structural equation model featuring a dyad-
level latent outcome regressed on each person-level predictor
variable. The path diagram describing the AP–CFM is illus-
trated in the upper left panel of Fig. 4. The measurement
model for the dyad-level latent variable was provided in
Eqs. 7 and 8, and the structural portion is expressed by Eq. 11.

ηY ¼ γaX a þ γbX b þ ζY ð11Þ

As before, ηY represents the dyad-level latent variable mea-
sured by each member’s observed outcome, whereas Xa and
Xb represent observed predictors for each dyad member. The
gamma (γ) parameters represent these latent-on-observed var-
iable regressions, with subscripts describing the type of APIM
coefficient and the dyad member. These coefficients describe
the unique association between each person-level predictor
and the shared dyadic component of the outcome variable.
For example, if Y variables are scores on a measure of rela-
tionship satisfaction, and Xa is interpersonal trust for male
members of heterosexual couples, the γa coefficient describes
the degree to which men with higher levels of trust tend to
belong to dyads reporting higher levels of relationship satis-
faction. As in any model with multiple predictors, the associ-
ation with the shared or Bconfounded^ component of the pre-
dictor is not reflected in these coefficients, and the degree of
confounding is directly related to the proportion of shared
dyadic variance on the predictor variable (i.e., rid X). As such,

the AP–CFM is most applicable in situations in which rid X is
weak and rid Y is moderate or strong.

Expressing AP–CFM coefficients using sample correlations
The AP–CFM has a pair of overidentifying restrictions stipu-
lating that the AP covariances originating from the same dyad
member must have the samemagnitude. Specifically, the actor
correlation for partner a is assumed to have the same magni-
tude as the partner correlation for partner b (i.e., rActor a =
rPartner b), because both correlations involve the predictor var-
iable for partner a (Xa). Similarly, the partner correlation for
partner a must equal the actor correlation for partner b (i.e.,
rPartner a = rActor b), because both correlations involve the pre-
dictor for partner b (Xb). These restrictions are conceptually
logical, in that they stipulate that person-specific predictor
variance is consistently related to the shared dyadic variance
component for the outcome variable. The overidentifying re-
strictions result in a baseline model with two degrees of free-
dom, and accepting these restrictions allows for an approxi-
mate solution for the coefficients:

γa ¼
roriginate a− rid X *roriginate b

� �

1−r2id X
ð12Þ

γb ¼
roriginate b− rid X *roriginate a

� �

1−r2id X
ð13Þ

where, in an approximate sense, roriginate a ≈ Mean(rActor a,
rPartner b) and roriginate b =Mean(rActor b, rPartner a). The resulting
γ coefficients describe the relationship between individual-
level predictors and a dyad-level outcome variable in terms
of the AP correlations that originate from dyad members a
(i.e., rActor a, rPartner b) and b (rActor b, rPartner a). Interestingly,
these formulae are identical to those for computing the APIM
actor and partner coefficients described earlier. Indeed, impos-
ing the AP–CFM constrains on the traditional APIM leads to
equivalent models; however, later sections will illustrate that
the AP–CFM allows for greater flexibility in modeling com-
plex dyadic processes when the outcome variable exhibits a
high degree of dyadic nonindependence. These formulae sug-
gest that the structural coefficients linking the predictor and
outcome variables become attenuated (relative to the zero-
order correlations) as shared predictor variance increases,
making the AP–CFM best suited for variables with weak
intradyadic correlations among the dyad member predictors.

AP–CFM example for trait anger and constructive communi-
cation The following example illustrates the AP–CFM by
drawing on previously validated measures selected from
the Parent Survey of 500 Family Project (Schneider &
Waite, 2000), and focuses on 242 heterosexual couples
with teenage children. The participants responded to two
items from Taylor’s Anger scale (Taylor & Tomasic,
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1996; BMy anger is unpredictable,^ BI get more angry
than I should^; r = .67) using a scale ranging from 0
(Never) to 4 (Very Often), and a predictor variable
representing person-level anger scores was created by
computing the mean of these items. Additionally, a
person-level observed variable representing constructive
communication style was created using a pair of items
introduced by the following prompt: BThere are various
ways that couples deal with serious disagreements. When
you have a serious disagreement with your spouse/part-
ner, how often do you. . . .^ A composite was created by
averaging participants’ responses to two items (BDiscuss
disagreements calmly,^ BArgue heatedly or shout out at
each other^ [R]; α = .65), measured on a scale ranging
from 1 (Never) to 5 (Very Often).

The right panel of Table 1 provides the raw correlations
(lower triangle), covariances (upper triangle), and variances
(lower tier) for the variables of interest. As we noted in the
previous analysis, the ID correlation for constructive commu-
nication was strong and positive (r = .454), though the ID
correlation for the other predictor was essentially zero (r = −
.002), suggesting that dyad members exhibit no similarity in
trait anger. All of the observed AP correlations were negative

in direction, and ranged from − .195 to − .500, suggesting that
the dyad-level variance components were consistently related
to one another.

The model χ2 for the fully constrained baseline AP–CFM
with person-level anger predicting dyad-level constructive
communication was statistically significant [χ2(2) = 26.75, p
< .01], suggesting that one or both of the overidentifying re-
strictions were likely violated. A closer inspection of the sam-
ple correlation matrix revealed that the rActor M correlation (r =
− .500) was notably larger than the corresponding rPartner W

correlation (r = − .202), suggesting that the overidentifying
restriction associated with roriginate a was likely violated. As a
result, the AP–CFMwas respecified with a covariance linking
the residuals of men’s anger and women’s constructive com-
munication (i.e., ΘAnger.

m,
Const.Comm.

w), since this covariance
corresponded to the stronger correlation in violation of the
overidentifying restriction, and this single degree-of-freedom
model exhibited a marginally significant chi-square value
[χ2(1) = 2.94, p = .09] indicating that the remaining
overidentifying restriction was likely satisfied.

Parameter estimates for the final model are provided in the
left panel of Table 1. The path linking men’s individual-level
anger to dyad-level constructive communication was negative
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and significant (γmen = − .18, 95%CI: [− .28, − .07]), suggest-
ing that male partners with greater anger tend to cultivate
relationships characterized by less constructive communica-
tion. Similarly, the coefficient describing the association be-
tween women’s anger and dyad-level communication was al-
so negative and significant (γwomen = − .26, 95%CI: [− .35, −
.17]), and collectively, person-level anger scores were able to
account for approximately 37% of the variance in dyad-level
communication [1 − (.154/.244) = .368]. As expected, the
residual path ΘAnger.

m,
Const.Comm.

w was negative and signifi-
cant, suggesting that the γmen coefficient underestimates the
relationship between men’s anger and men’s communication,
but not women’s communication.

The hand-calculated coefficients were comparable to the
estimates provided by Mplus for both men {γmen = − .202 −
(− .002 × − .254)/[1 − (− .0022)] = − .318/.999 = − .202} and
women {γwomen = − .254 − (− .002 × − .202)/[1 − (− .0022)] =
− .254/.999 = − .254}.1 Because anger scores are independent
across dyad members (i.e., rid X = 0), the estimated coeffi-
cients are very similar to the AP correlations. The discrepancy
between the hand-calculated and software-estimated solutions
arises from the heterogeneity of variances across dyad mem-
bers and from trivial violations of the remaining
overidentifying restriction.

Summary of AP–CFM The AP–CFM is most useful when the
predictor exhibits low levels of dyadic nonindependence but
the outcome variable displays a moderate (or greater) level of
nonindependence. Moreover, the AP–CFM is only applicable
when the AP relationships originating from the same dyad
member type have the same sign. As in the traditional CFM,
violating this overidentifying restriction requires the estima-
tion of residual covariance paths, so that unbiased estimates
are obtained for the structural coefficients. It could be argued
that the AP–CFM represents either a restricted form of the

simple APIM, in which κactor a = κpartner b and κactor b =
κpartner a, or a relaxed form of the CFM, with nondirectional
paths connecting the residuals of Xa to Ya or Yb, and Xb to Ya or
Yb. Though partially correct, these interpretations are incom-
plete, because they neglect both the conceptual and empirical
importance of shared dyadic variance. For example, if the
outcome variable reflects an inherently dyad-level construct
such as interpersonal trust, and if the predictor construct is
more person-centric (e.g., level of abuse experienced as a
child), the AP–CFM provides a more theoretically sensible
approach for evaluating the structural relationship between
these variables than does the traditional APIM or CFM. The
following section describes a complementary model, featuring
a dyad-level predictor and individual-level outcomes, that is
most applicable when nonindependence is high for the predic-
tor but low for the outcome variable.

The CF–APM hybrid model

The CF–APM is a structural equation model in which
individual-level outcome variables are regressed on a dyad-
level latent variable. The path diagram describing the CF–
APM is illustrated in the upper-right panel of Fig. 4. The
measurement model for the dyad-level latent variable was
provided in Eqs. 7 and 8, and the structural portion is
expressed by the following equations:

Y a ¼ νYa þ λaη
X þ εYa; ð14Þ

Y b ¼ νYb þ λbη
X þ εYb: ð15Þ

Ya and Yb represent the observed person-level outcome var-
iables, and the νs are their respective intercepts, whereas ηX is
the dyad-level latent predictor variable. The lambda (λ) pa-
rameters represent the association between the dyad-level pre-
dictor attribute and each individual-level outcome variable in
these observed-on-latent variable regressions. For example, if
the Y variables are scores on a measure of anxiety symptoms
and X is a measure of perceived financial security, the λ

1 Because a residual covariance parameter was estimated, the correlation not
represented by the residual path (rPartner Women = − .202) was used for rorigin in
the hand-calculated estimate.

Table 1 Anger and constructive communication AP–CFM

Coeff. Est. ZObs Correlations, Covariances, and Means

γmen − .18 − 3.33**

γwomen − .26 − 5.46** Angerm Angerw Commm Commw

ψComm. 0.15 5.27** Angerm – − .001 − .307 − .115

ΘComm.
m 0.32 7.50** Angerw − .002 – − .113 − .178

ΘComm.
w 0.27 7.54** Commm − .500 − .195 – .244

ΘAnger
m 0.65 10.78** Commw − .202 − .332 .454 –

ΘAnger
w 0.58 10.91** Mean 1.00 1.02 3.68 3.60

ΘAnger
m,
Anger

w 0.02 0.53 Variance 0.650 0.575 0.579 0.497

ΘAnger
m,
Comm.

m − 0.19 − 4.53** χ2(1) = 2.94, p = .09

** p ≤ .01. * p ≤ .05. Correlations are provided in the lower triangle, and covariances are in the upper triangle
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coefficients describe the extent to which individuals belonging
to dyads with greater financial security report fewer anxiety
symptoms. The CF–APM describes the relationship between
the shared or Bconfounded^ component of the predictor and
the individual-level component of the outcome variable. As a
result, the CF–APM is most applicable in situations in which
rid X is moderate or strong, and it can be a better alternative to
the CFM when rid Y is weak.

Expressing CF–APM coefficients using sample correlations
The CF–APM has two overidentifying restrictions, stipulating
that AP correlations terminating at a dyad member’s outcome
must have the same magnitude. Specifically, the actor and
partner correlations for partner a must equal one another
(i.e., rActor a = rPartner a), because both correlations involve
the outcome variable for partner a (Ya), and the actor and
partner correlations for partner b must also be equal (i.e.,
rActor b = rPartner b), because both correlations involve the out-
come for partner b (Yb). These restrictions make conceptual
sense, in that they suggest that shared dyadic variance in the
predictor variable is consistently related to person-specific
var iance in each dyad member ’s ou tcome. The
overidentifying restrictions result in a baseline model with
two degrees of freedom. Accepting these restrictions allows
for an approximate solution for the coefficients:

λa ¼ rterminate a
rid X

ð16Þ

λb ¼ rterminate b
rid X

ð17Þ

where rterminate a ≈ Mean(rActor a, rPartner a) and rterminate b ≈
Mean(rActor b, rPartner b). The resulting λ coefficients describe
the relationship between the dyad-level predictor and
individual-level outcome variables in terms of AP correlations
that terminate at the dyad members a (i.e., rActor a, rPartner a)
and b (rActor b, rPartner b). Violation of the overidentifying re-
strictions will bias these coefficients unless residual covari-
ance paths are estimated in order to relax the constraint. As
before, the residual covariance path should be estimated for
the largest correlation in the offending pair, so that the λ
coefficient will be based on the more conservative estimate
of the relationship between the dyad-level predictor and
person-level outcome.

CF–APM example for marital satisfaction and depression
Drawing again on the 500 Families dataset, descriptive statis-
tics for measures of marital satisfaction (i.e., the ENRICH
martial inventory; Fowers & Olson, 1993; Nielsen, 2005)
and depression symptoms (CES-D; Radloff, 1977) are provid-
ed in the right panel of Table 2. The ID correlation for marital
satisfaction was strong and positive (r = .583), whereas the ID
correlation for depression was essentially zero (r = .04). As

expected, the AP correlations were negative and ranged from
− .224 to − .430, and the χ2 test of model fit for the baseline
AP–CFMwas statistically significant [χ2(2) = 12.15, p < .01],
suggesting that at least one of the overidentifying restrictions
was not satisfied. In the present example, the rActor W correla-
tion (r = − .379) is notably larger than the corresponding
rPartner W correlation (r = − .224). As a result, the AP–CFM
was respecified with a residual covariance linking the resid-
uals of women’s martial satisfaction and women’s depression
(i.e., ΘMarSat.

w,
Depress.

w). The revised model had a single de-
gree of freedom, χ2(1) = 0.51, p = .48, and a nonsignificant
chi-square, suggesting that the remaining overidentifying re-
striction was likely satisfied.

Parameter estimates for the final model are provided in the
left panel of Table 2. The path linking dyad-level satisfaction
to men’s depression was negative and significant (λmen = −
.68, 95%CI: [− .88, − .48]), suggesting that male partners
belonging to dyads with greater satisfaction report significant-
ly lower levels of depression. Similarly, the coefficient de-
scribing the association between dyadic satisfaction and
women’s depressive symptoms was also negative and signif-
icant (λwomen = − .36, 95%CI: [− .55, − .17]). The residual
path relaxing the overidentification restriction on the correla-
tions terminating at women’s depression was negative and
significant (ΘMarSat.

w,
Depress.

w = − 10.27, 95%CI: [− 16.39, −
4.15]), which is consistent with the idea that the total relation-
ship between women’s satisfaction and depression also com-
prises an individual-level component. As before, the hand-
calculated coefficients were similar to the estimates provided
by Mplus for both men (λmen = − .376/.583 = − .64) and
women (λwomen = − .224/.583 = − .38).2

Summary of CF–APM The CF–APM describes the extent to
which shared dyadic variance in the predictor is related
to individual-level outcome variance. Because of this, the
CF–APM requires a nontrivial component of dyad-level
variance in the predictor, as well as AP relationships
terminating at the same dyad member’s outcome with a
common sign and nonzero magnitude. Under these con-
ditions, the λ coefficients provide a powerful test of the
association between dyad- and individual-level variance
components. Although a simplified version of the CF–
APM could be estimated by regressing individual-level
outcomes on an observed dyad-level composite formed
from the individual-level predictors, this approach is
problematic for a number of reasons. First, an observed
dyad-level composite would contain both reliable (true-
score) variance and random measurement error, which
would attenuate the structural coefficients relative to the

2 Because a residual covariance parameter was estimated, the correlation not
represented in the residual path (rPartner Women = − .224) was used for rterm in the
hand-calculated estimate.
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latent-variable approach. Second, the observed dyad-level
predictor method confounds individual- and dyad-level
correlations, because the true-score variance in the ob-
served predictor contains both individual- and dyad-
level components. In contrast, using a latent-variable ap-
proach to partition predictor variance into distinct
sources allows for a more powerful and precise evalua-
tion of these processes.

Analysis of the hybrid AP–CF and CF–AP models

The latent-variable approach to modeling dyadic nonindepen-
dence allows the researcher to partition the variance in
individual-level variables into person- and dyad-specific var-
iance components, and thus constitutes a useful tool for ex-
amining the relationships between dyad-level variance in the
predictors and individual-level variability in the outcomes,
and vice versa, through the CF–AP and AP–CF models. The
lower panel of Fig. 4 provides a conceptual representation of
the effects estimated in each model, using the Venn diagram
scheme. The gamma coefficients (γ) located at the top of the
diagram connect unique (person-specific) variance in each
predictor to the shared dyadic variance component in the out-
come. More conceptually, these coefficients describe how
individual-level variables relate to a dyad-level outcome var-
iable. In contrast, the lambda coefficients (λ) located at the
bottom of the figure connect the shared variance in the pre-
dictor to individual-level variance in the outcome variable,
corresponding to a top-down process in which the dyad-
level variance of individual-level predictors relates to
individual-level outcomes. The modular approach to dyadic
analysis described here casts the observed individual-level
and latent dyad-level variables as Bmodel building blocks^
for simple bivariate (single-predictor, single-outcome) regres-
sion models. However, this perspective readily generalizes to
more complex designs involving multiple predictors, out-
comes, or even intervening variables, as is illustrated in the
following section.

Application: Combining traditional
and hybrid approaches to examine cross-level
mediation

The hybrid models presented here have the potential to broad-
en the way researchers investigate dyadic processes. One ex-
ample is the potential for these models to allow one to exam-
ine the indirect effect of an individual- or dyad-level predictor
on individual- or dyad-level outcomes, via mediating vari-
able(s) residing at either level of analysis. The idea that con-
structs operationalized at different levels may influence one
another is familiar to researchers working with traditional
nested designs, such as experience-sampling studies (West
et al., 2011; Wickham & Knee, 2013), and a compelling body
of methodological work has emerged describing the theoreti-
cal and conceptual aspects of the associated statistical models
(Bauer, Preacher, & Gil, 2006; Lüdtke et al., 2008; Preacher
et al., 2010). In the context of dyadic research, one possibility
is that dyad-level processes may be the mechanism though
which individual-level predictors influence individual-level
outcomes, as is illustrated in Fig. 5. This path diagram de-
scribes a mediation model composed of the bivariate APIM,
AP–CFM, CFM, and CF–APM used the previous examples.
In the first stage, an AP–CFM describes the relationship be-
tween individual-level trait anger and dyad-level constructive
communication. Dyad-level communication goes on to pre-
dict dyad-level relationship satisfaction in a CFM, and in the
third stage, dyad-level relationship satisfaction is linked to
individual-level depressive symptomology in a CF–APM.
Finally, direct paths linking individual-level anger and depres-
sion scores correspond to the APIM.

Cross-level mediation example

The model illustrated in Fig. 5 was specified using the final
configuration for each bivariate analysis (i.e., including the
previously specified residual covariances), and it proved an
excellent fit for the data: χ2(11) = 9.83, p = .54, RMSEA =

Table 2 Marital satisfaction and depression CF–APM

Coeff. Est. ZObs Sample Statistics

λmen − .68 − 6.68**

λwomen − .36 − 3.76**

ψMarSat. 28.71 7.65** MarSatm MarSatw Depressm Depressw
ΘMarSat.

m 11.95 4.49** MarSatm 41.18 28.40 − 20.33 − 10.15

ΘMarSat.
w 30.09 8.04** MarSatw .583 57.71 − 18.01 − 20.32

ΘDepress.
m 40.82 9.50** Depressm − .430 − .322 54.16 2.08

ΘDepress.
w 46.12 10.44** Depressw − .224 − .379 .040 49.78

ΘDepress.
m,

Depress.
w − 4.35 − 1.40

ΘMarSat.
w,

Depress.
w − 10.27 − 3.29**

** p ≤ .01. * p ≤ .05. Correlations are provided in the lower triangle, covariances are provided in the upper triangle, and variances are along the diagonal
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.034, 90% CI: [.000, .062]. The AP–CFM coefficients linking
anger to constructive communication were negative and sig-
nificant for both men (γmen = − .20, 95%CI: [− .30, − .11]) and
women (γwomen = − .26, 95%CI: [− .36, − .16]), suggesting
that individuals reporting higher levels of depression tend to
cultivate relationships with less constructive communication
patterns. Moreover, the CFM coefficient linking dyad-level
communication and marital satisfaction was positive and sig-
nificant (βshared = 7.83, 95%CI: [5.74, 9.93]), suggesting that
couples reporting more constructive communication were
more satisfied. In the final stage, the CF–AP coefficients were
negative and significant for both men (λmen = − .54, 95%CI:
[− 0.77, − 0.32]) and women (λwomen = − .70, 95%CI: [− 1.00,
− .40]), indicating that individuals in relationships character-
ized by higher satisfaction tended to report lower levels of
depression. Finally, the direct actor path linking anger and
depression was significant for men (κactor m = 2.76, 95%CI:
[1.65, 3.87]), but not for women (κactor w = 0.90, 95%CI: [−
0.35, 2.14), whereas the partner path was nonsignificant for
men (κpartner m = −0.26, 95%CI: [− 1.30, 0.79]), but a signif-
icant negative coefficient was observed for women (κpartner w
= − 1.69, 95%CI: [− 2.84, − 0.54]).

The model in Fig. 5 contains four indirect pathways
through which anger may influence depression via construc-
tive communication and martial satisfaction. The indirect ac-
tor paths (i.e., Indiractor m = γmen × βshared × λmen; Indiractor w =
γwomen × βshared × λwomen) link an individual’s own anger
score to his or her own depression, whereas the indirect part-
ner paths (i.e., Indirpartner m = γwomen × βshared × λmen;
Indirpartner w = γmen × βshared × λwomen) link an individual’s
partner’s predictor to his or her own outcome. Because the
sampling distribution for these indirect effects is likely to be

nonnormal (Shrout & Bolger, 2002), 95% confidence inter-
vals were estimated using the nonparametric bootstrapping (k
= 5,000) procedure provided by Mplus (Muthén & Muthén,
2014). The indirect actor effect for women (Est. = 1.42,
95%CI: [0.54, 2.31]) was nearly two times larger than the
corresponding effect for men (Est. = 0.86, 95%CI: [0.24,
1.48]), but the indirect partner effects were identical for men
(Est. = 1.11, 95%CI: [0.44, 1.77]) and women (Est. = 1.11,
95%CI: [0.35, 1.87]). None of the confidence intervals for
these indirect effects contained zero, which suggests that the
magnitudes of these pathways are likely different from zero.

The results of these analyses are consistent with the argu-
ment that individual trait-level anger is associated with
individual-level depressive symptoms, and that this relation-
ship may be explained (in part) by dyad-level communication
style and martial satisfaction. That is, individuals who report
higher levels of trait anger cultivate close relationships char-
acterized by less constructive communication style. In turn,
dyads exhibiting lower levels of constructive communication
also tended to report lower levels of relationship satisfaction.
Diminished satisfaction at the dyad level undermines
individual-level well-being, as manifested in higher levels of
depressive symptomology.

General discussion

Researchers have long been aware that individual-level re-
sponses collected from members of the same two-person
group (i.e., dyad) are often correlated, which violates the as-
sumption of the independence of observations imposed by
general linear modeling approaches (Kenny, 1996).
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Moreover, a critical evaluation of the dyadic literature sug-
gests that applied researchers tend to regard nonindependence
among responses as Bnuisance^ variance that must simply be
accounted for so that they may get on to the business of ad-
dressing their substantive research questions. In contrast, the
present work argues that nonindependence among the re-
sponses provided bymembers of the same dyad is intrinsically
meaningful, because it reflects the degree to which the con-
struct of interest represents an individual- versus a dyad-level
process. This perspective encourages researchers to consider
the magnitude of intradyadic correlations and the relative
strength of actor–partner correlations when selecting a dyadic
regression model, because failing to do so may lead to a sub-
optimal analytic approach that may obscure potentially inter-
esting relationships. We also argue that the traditional APIM
and CFM possess an implicit assumption of uniformity re-
garding any nonindependence in predictor and outcome vari-
ables that is both unnecessary and unrealistic. In response, a
pair of hybrid models, AP–CFM and CF–APM, were de-
scribed, which connect predictor and outcome variables across
the individual and dyad levels, allowing researchers to pose
research questions involving top-down and bottom-up pro-
cesses. Traditional and hybrid models can also be combined
in order to examine cross-level mediation models, which can
describe processes that otherwise might be obscured by
unilevel APIM-only (Ledermann, Macho, & Kenny, 2011)
or CFM-only (Ledermann & Macho, 2009) mediation
models.

Comparison to prior work

A number of prior methodological and empirical publications
have described variations on the standard APIM and CFM,
and the commonalities among previous work and the present
discussion warrants analysis. For example, the didactic
example used in Teachman, Carver, and Day (1995) primer
on dyadic analysis features paths linking person-level vari-
ables to dyad-level latent variables as part of a larger process
model, as have Conger and colleagues (Conger et al., 1999;
Matthews, Conger, & Wickrama, 1996), as well as Burk and
Laursen (2010). Although many of these expositions were
well ahead of their time (particularly Teachman and col-
leagues), they differ from the present work in a number of
important ways. Most critically, the present article is the first
to fully articulate the relationship between lower-order sample
moments (i.e., correlations or covariances) and the corre-
sponding hybrid model parameters. Moreover, the present ar-
ticle is distinct in its modular perspective on dyadic analysis,
which allowed us to make more concrete recommendations
regarding model selection and specification based on the de-
gree of dyadic non-independence present in a given construct.

Ledermann and Kenny (2012) and, more recently, Galovan
et al. (2017) also described a number of interesting variations

on the traditional CFM, some of which are directly relevant to
the models discussed here. For example, the default CFM
described by Ledermann and Kenny is less restrictive (df =
1) than the version presented here (df = 3) and is characterized
by two additional covariances linking each dyad member’s X-
variable residual to their own Y-variable residual. The authors
went on to describe a number of variations on this general
design, including a Bpure CFM,^ which is identical to the
generic CFM presented here, as well as an equivalent
respecification of their default model in which person-
specific random intercepts are substituted for the within-
person residual covariances (Btwo-factor CFM^) .
Ledermann and Kenny also proposed a Bmultilevel CFM^ in
which directional paths between person-level observed X and
Y variables are estimated, in addition to the dyad-level direct
path between latent X and Y, which is noteworthy for a number
of reasons. Finally, as part of a final worked examples, the
authors presented a cross-level mediation model in which
individual-level actor and partner paths lead to a dyad-level
mediator, and ultimately dyad-level outcome.

Ledermann and Kenny (2012) argued that the choice of
whether to focus on the individual or dyad level
operationalization of a construct depends on the measurement
(e.g., item wording) and research objective. For example, they
argued that self-report items that address individual-level be-
havior or attitudes (e.g., BI tell my partner how I feel,^ p. 141)
may be more appropriately addressed by the APIM, whereas
questions that address the relationship as the object (e.g., BWe
tell each other how we feel,^ p. 141) may be best modeled by
the CFM. Although the authors also acknowledged that em-
pirical aspects of the construct (i.e., level of nonindependence)
may limit the feasibility of CFMs in some circumstances, they
stopped short of advocating that researchers look to noninde-
pendence as a guiding feature when selecting models for dy-
adic analysis. Galovan et al. (2017) expressed a similar view-
point, and also provided an interesting discussion of the theo-
retical issues regarding the distinction between level of mea-
surement and level of analysis. The present work does not
advocate that researchers rely solely on sample correlations
to guide model specification, but rather consider sample cor-
relations as setting practical boundaries for the feasibility of
estimating person, dyad, or cross-level processes. We also
argue that when large, representative sample data are avail-
able, researchers should be less wary of using ID correlations
to inform their model specification.

It is also important to consider the present work in terms of
the broader literature on multilevel structural equation model-
ing (MSEM; Preacher et al., 2010). In fact, the cross-level
dyadic models presented here and in prior research (Burk &
Laursen, 2010; Conger et al., 1999; Kenny & La Voie, 1985;
Ledermann & Kenny, 2012; Matthews et al., 1996; Teachman
et al., 1995) appear to contradict Preacher and colleagues’
demonstration that under the standard MSEM formulation,

Behav Res (2019) 51:2629–26452642



lower-level observed variables may not directly influence
higher-level variables. More specifically, contemporary
MSEM thinking (Lüdtke et al., 2008; Preacher et al., 2010)
holds that mediational processes for hierarchically nested data
are essentially mono-level, because the random intercepts par-
tition the variance of lower-level observed variables into
lower- and upper-level components that are orthogonal.
However, the decomposition of the structural coefficients in
the AP–CF and CF–AP models provided here (Eqs. 12–13,
15–16) suggests that the data structure generated by dyads
may constitute an exception to this general rule in which
lower-level observed variables may exert a direct influence
on variables at a higher level (and vice versa).

Our discussion was restricted to situations in which dyad
members are distinguishable (e.g., heterosexual couples,
nontwin siblings, or therapist–client dyads), because the
overidentifying restrictions on the hybrid models are much
more stringent (and less likely to be satisfied) when dyad
members are indistinguishable (e.g., same-sex dyads ormono-
zygotic twins). For indistinguishable dyads there are no longer
explicit roles, so the rActor a and rActor b correlations for each
dyad member are the same (i.e., rActor), as are the rPartner a and
rPartner b correlations (i.e., rPartner). Additionally, because the
overidentifying restrictions of hybrid models require actor and
partner correlations to be equal (rActor = rPartner), by extension,
all AP correlations are assumed to be equal in these models. A
formal evaluation of hybrid models for indistinguishable
dyads is left for future work.

Extensions and limitations

The multiplicative product (Xa × Xb) of the individual-level
predictors for each dyad member is another form of between-
dyad predictor. These Actor × Partner interactions allow the
researcher to address hypotheses related to dyadic coordination
or matching effects (Wickham & Knee, 2012). Indeed, the
Actor × Partner interaction represents a fundamentally different
process from the shared dyad-level coefficient described by the
CFM or the individual-on-dyad regressions native to the CF–
APM. In the context of the APIM, coordination refers to chang-
es in outcome that occur when dyad members have similar (or
dissimilar) values on the predictor variable and are based on
differences in the levels of matching (or mismatching) across
the dyads in the sample of interest. Specifically, a positive co-
efficient for the Xa × Xb predictor suggests that dyads in which
both members have high or low scores will have higher values
on an individual dyad member’s outcome.

The logic supporting Actor × Partner effects in the APIM
generalizes to the AP–CFM hybrid model, and the interpreta-
tion of the interaction term is nearly identical. The only qual-
ification is that in the context of the AP–CFM, a positive
coefficient for the Xa × Xb predictor indicates that dyads in
which both members have high or low scores will have higher

values on the dyad-level variance component of the outcome
variable. Wickham and Knee (2012) showed that allowing the
magnitude of the Actor × Partner interaction to vary across
dyad member role identities (e.g., male–female) results in an
APIM analysis that directly corresponds to the source and
outcome matrices that form the basis of interdependence the-
ory (IT; Kelley et al., 2003). Future work should seek to inte-
grate the previously established connections between the
APIM and IT with the hybrid models introduced here.3

The present work has focused on situations in which predic-
tor and outcome constructs are operationalized by a single ob-
served measure, though the basic principles discussed here gen-
eralize to more complex situations in which multiple indicators
of a predictor or outcome variable are available for each dyad
member. Finally, future work should also further explore issues
concerning statistical power for the hybrid models described
here (in addition to the traditional APIM and CFM), as well
as model specification and estimation considerations when the
observed variables are not continuous (i.e., nominal, count, or
censored).

Concluding remarks

The present work has recast the components of well-
understood and widely applied dyadic regression models in
terms of nonindependence. We showed that the APIM
removes the influence of dyadic nonindependence (between-
dyad variance) from the primary parameters, whereas the
CFM treats nonindependence as a central feature of the model
(relegating within-dyad variance to the error terms), which
suggests that in conditions under which the APIM is less ap-
plicable (i.e., higher levels of nonindependence), the CFM is
ideally suited, and vice versa. The present work also intro-
duced two hybrid models, which relax the uniformity-of-
nonindependence assumption implicitly imposed by the
APIM and CFM. As such, all of the approaches to dyadic
analysis presented here should be viewed as complementary
frameworks, with distinct theoretical and empirical implica-
tions. Understanding the conditions that favor each of the
models should encourage a more informed and effective use
of these valuable analytic tools.

Author note The work of the first author was supported in part by
Tobacco Related Disease Research Prevention (TRDRP) Grant #24RT-
0027, funded by the State of California. The TRDRP had no role in the
study design, collection, analysis, or interpretation of the data; writing of
the manuscript; or the decision to submit the article for publication.

3 Under conditions of multivariate normality, the first-order variables (e.g., Xa
and Xb) are uncorrelated with their product term (Aiken & West, 1991, pp.
191–192). As a result, the product term of dyad member responses to the
predictor or outcome should not be included as indicators in the CFM or
CF–APM latent variables. Including the product term in these models would
lead to model identification and convergence problems.
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Appendix: Mplus input scripts for hybrid
models

TITLE: AP-CFM from Worked Example

DATA: FILE IS 500famdata.dat;

VARIABLE: 

NAMES ARE dyad_id 

m_support f_support m_burden f_burden m_stress f_stress

m_anger f_anger m_comm f_comm m_marsat f_marsat m_dep f_dep m_anx f_anx;

USEV ARE m_anger f_anger m_comm f_comm;

MISSING IS .;

ANALYSIS:     

TYPE IS GENERAL;

ESTIMATOR IS ML;

MODEL:

!Measurement Model;

Eta_ConsComm BY m_comm@1 f_comm@1;

!Structural Model;

Eta_ConsComm ON m_anger (gamma_m)

f_anger (gamma_f);

!Covariances;

m_anger WITH f_anger (anger_r);

OUTPUT: SAMPSTAT STDYX CINT RESIDUAL;

!****;

TITLE: CF-APM from Worked Example

DATA: FILE IS 500famdata.dat;

VARIABLE: 

NAMES ARE dyad_id 

m_support f_support m_burden f_burden m_stress f_stress

m_anger f_anger m_comm f_comm m_marsat f_marsat m_dep f_dep m_anx f_anx;

USEV ARE m_marsat f_marsat m_dep f_dep;

MISSING IS .;

ANALYSIS:     

TYPE IS GENERAL;

ESTIMATOR IS ML;

MODEL:

!Measurement Model;

Eta_MarSat BY m_marsat@1 f_marsat@1;

!Structural Model;

m_dep ON Eta_MarSat (lambda_m);

f_dep ON Eta_MarSat (lambda_f);

!Covariances;

m_dep WITH f_dep (dep_res);

f_marsat WITH f_dep (rcov_1); 

OUTPUT: SAMPSTAT STDYX CINT RESIDUAL;

Behav Res (2019) 51:2629–26452644



References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and
interpreting interactions. Newbury Park: Sage.

Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and
testing random indirect effects and moderated mediation in multi-
level models: New procedures and recommendations.Psychological
Methods, 11, 142–163. https://doi.org/10.1037/1082-989X.11.2.142

Bollen, K. A. (1989). Structural equations with latent variables (Wiley
Series in Probability andMathematical Statistics). NewYork:Wiley.

Burk, W. J., & Laursen, B. (2010). Mother and adolescent reports of
associations between child behavior problems and mother–child re-
lationship qualities: Separating shared variance from individual var-
iance. Journal of Abnormal Child Psychology, 38, 657–667.

Campbell, L., & Kashy, D. A. (2002). Estimating actor, partner, and
interaction effects for dyadic data using PROC MIXED and HLM:
A user-friendly guide. Personal Relationships, 9, 327–342.

Conger, R. D., Rueter, M. A., & Elder, G. H. (1999). Couple resilience to
economic pressure. Journal of Personality and Social Psychology,
76, 54–71.

Fowers, B. J., & Olson, D. H. (1993). ENRICH marital satisfaction scale:
A brief research and clinical tool. Journal of Family Psychology, 7,
176–185.

Galovan, A., Holmes, E. K., & Proulx, C. (2017). Theoretical and meth-
odological issues in relationship research: Considering the common
fate model. Journal of Social and Personal Relationships, 34, 44–68.

Gonzalez, R., & Griffin, D. (2002). Modeling the personality of dyads
and groups. Journal of Personality, 70, 901–924.

Griffin, D., & Gonzalez, R. (1995). Correlational analysis of dyad-level
data in the exchangeable case. Psychological Bulletin, 118, 430–
439. https://doi.org/10.1037/0033-2909.118.3.430

Hox, J. (2010). Multilevel analysis: Techniques and applications (2nd).
New York: Routledge.

Karney, B. R., Story, L. B., & Bradbury, T. N. (2005). Marriages in context:
Interactions between chronic and acute stress among newlyweds. In T.
A. Revenson, K. Kayser, & G. Bodenmann (Eds.), Couples coping
with stress: Emerging perspectives on dyadic coping (pp. 13–32).
Washington, DC: American Psychological Association.

Kashy, D. A., & Grotevant, H. D. (1999). Methodological and data ana-
lytic advances [Special Issue]. Personal Relationships, 6(9).

Kelley, H. H., Holmes, J. G., Kerr, N. L., Reis, H. T., Rusbult, C. E., &
Van Lange, P. A. M. (2003). An atlas of interpersonal situations.
New York: Cambridge University Press.

Kenny, D. A. (1979). Correlation and causality. New York: Wiley-
Interscience.

Kenny, D. A. (1995). The effect of nonindependence on significance
testing in dyadic research. Personal Relationships, 2, 67–75.

Kenny, D. A. (1996). Models of non-independence in dyadic research.
Journal of Social and Personal Relationships, 13, 279–294.

Kenny, D. A., & Judd, C. M. (1986). Consequences of violating the
independence assumption in analysis of variance. Psychological
Bulletin, 99, 422–431. https://doi.org/10.1037/0033-2909.99.3.422

Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social
psychology. In D. Gilbert, S. T. Fiske, & G. Lindzey (Eds.),
Handbook of social psychology (4th ed., Vol. 1, pp. 233–265).
New York: McGraw-Hill.

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis
(1st). New York: Guilford Press.

Kenny, D. A., & La Voie, L. (1985). Separating individual and group
effects. Journal of Personality and Social Psychology, 48, 339–348.

Kreft, I. G., De Leeuw, J., & Aiken, L. S. (1995). The effect of different
forms of centering in hierarchical linear models. Multivariate
Behavioral Research, 60, 1–21.

Ledermann, T., & Kenny, D. A. (2012). The common fate model for
dyadic data: Variations of a theoretically important but underutilized
model. Journal of Family Psychology, 26, 140–148.

Ledermann, T., &Macho, S. (2009). Mediation in dyadic data at the level
of the duads: A structural equation modeling approach. Journal of
Family Psychology, 23, 661–670.

Ledermann, T., Macho, S., & Kenny, D. A. (2011). Assessing mediation
in dyadic data using the actor–partner interpendence model.
Structural Equation Modeling, 18, 595–612.

Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T.,
&Muthén, B. (2008). The multilevel latent covariate model: A new,
more reliable approach to group-level effects in contextual studies.
Psychological Methods, 13, 203–229. https://doi.org/10.1037/
a0012869

Matthews, L. S., Conger, R. D., & Wickrama, K. A. S. (1996). Work–
family conflict and marital quality: Mediating processes. Social
Psychology Quarterly, 59, 62–79.

Muthén, L. K., & Muthén, B. O. (2014). Mplus user’s guide (7th). Los
Angeles: Muthén & Muthén.

Neff, L. A., & Karney, B. R. (2004). How does context affect intimate
relationships? Linking external stress and cognitive processes within
marriage. Personality and Social Psychology Bulletin, 30, 134–148.
https://doi.org/10.1177/0146167203255984

Nielsen, M. R. (2005). Couples making it happen: Marital satisfaction
and what works for highly satisfied couples. In B. Schneider & L. J.
Waite (Eds.), Being together, working apart: Dual-career families
and the work–life balance (pp. 196–216). Cambridge: Cambridge
University Press.

Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel
SEM framework for assessing multilevel mediation. Psychological
Methods, 15, 209–233. https://doi.org/10.1037/a0020141

Radloff, L. (1977). Center for Epidemiologic Studies Depression Scale.
Applied Psychological Measurement, 1, 385–401.

Raudenbush, S. W., Brennan, R. T., & Barnett, R. C. (1995). A multivar-
iate hierarchical model for studying psychological change within
married couples. Journal of Family Psychology, 9, 167–174.

Schneider, B., &Waite, L. (2000). The 500 Family Study. ICPSR04549–v1.
Ann Arbor, MI: Inter-University Consortium for Political and Social
Research [Distributor], 2008-05-30. doi:10.3886/ICSPR04549.v1.

Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and non-
experimental studies: New procedures and recommendations.
Psychological Methods, 7, 422–445. https://doi.org/10.1037/1082-
989X.7.4.422

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis:
Modeling change and event occurrence. Oxford: Oxford University
Press.

Snijders, T. A. B., & Bosker, R. J. (2011). Multilevel analysis: An intro-
duction to basic and advanced multilevel modeling (2nd). Thousand
Oaks: Sage.

Taylor, J., & Tomasic, M. (1996). Taylor’s measures of dysphoria, anxi-
ety, anger, and self-esteem. Handbook of Tests and Measurements
for Black Populations, 2, 295–305.

Teachman, J. D., Carver, K., & Day, R. (1995). A model for the analysis of
paired data. Journal of Marriage and the Family, 557, 1011–1024.

West, S. G., Ryu, E., Kwok, O. M., & Cham, H. (2011). Multilevel
modeling: Current and future applications in personality research.
Journal of Personality, 79, 2–50.

Wickham, R. E., & Knee, C. R. (2012). Interdependence theory and the
actor–partner interdependence model: Where theory and method
converge. Personality and Social Psychology Review, 16, 375–393.

Wickham, R. E., & Knee, C. R. (2013). Examining temporal processes in
diary studies.Personality and Social Psychology Bulletin, 39, 1184–
1198.

Behav Res (2019) 51:2629–2645 2645

https://doi.org/10.1037/1082-989X.11.2.142
https://doi.org/10.1037/0033-2909.118.3.430
https://doi.org/10.1037/0033-2909.99.3.422
https://doi.org/10.1037/a0012869
https://doi.org/10.1037/a0012869
https://doi.org/10.1177/0146167203255984
https://doi.org/10.1037/a0020141
https://doi.org/10.1037/1082-989X.7.4.422
https://doi.org/10.1037/1082-989X.7.4.422

	Examining cross-level effects in dyadic analysis: A structural equation modeling perspective
	Abstract
	Deconstructing dyadic data
	Intradyadic correlations
	Actor–partner correlations
	Modeling dyadic nonindependence
	A modular perspective on existing dyadic regression analysis
	The actor–partner interdependence model
	The common-fate model
	Analysis and critique of traditional actor–partner and common-fate models

	Hybrid actor–partner and common-fate models
	The AP–CFM hybrid model
	The CF–APM hybrid model
	Analysis of the hybrid AP–CF and CF–AP models

	Application: Combining traditional and hybrid approaches to examine cross-level mediation
	Cross-level mediation example

	General discussion
	Comparison to prior work
	Extensions and limitations
	Concluding remarks

	Appendix: Mplus input scripts for hybrid models
	References


