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Abstract Eyetracking research in psychology has grown ex-
ponentially over the past decades, as equipment has become
cheaper and easier to use. The surge in eyetracking research
has not, however, been equaled by a growth in methodological
awareness, and practices that are best avoided have become
commonplace. We describe nine threats to the validity of
eyetracking research and provide, whenever possible, advice
on how to avoid or mitigate these challenges. These threats
concern both internal and external validity and relate to the
design of eyetracking studies, to data preprocessing, to data
analysis, and to the interpretation of eyetracking data.

Keywords Eyetracking - Best practice - Experimental
design - Data analysis - Researcher degrees of freedom -
Internal validity - External validity

Eye-movement recordings began in the 19th century. During
most of the 20th century, it was very difficult and expensive to
record and analyze eye movements. Researchers who built or
bought an eyetracker could easily spend a year setting it up,
and the analysis was equally time-consuming. Hartridge and
Thomson (1948) devised a method for analyzing eye
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movements at a rate of almost 3 h of analysis time for 1 s of
recorded data, and as Monty (1975) remarked: “It is not un-
common to spend days processing data that took only minutes
to collect” (pp. 331-332). Even in the 1990s, eyetrackers were
found in only a few psychology, biology, and medical labs, at
places such as NASA, and in some very tech-savvy commer-
cial advertisement companies or car manufacturers. Usually
there was enough time to acquire the method from knowl-
edgeable colleagues and to run numerous pilots before the
actual data were recorded and analyzed. Since the early
2000s, eye-movement research has been adopted in many
new disciplines, many of them applied and full of researchers
with little experience in experimental design and statistics.
This diversification of eye-movement research has largely
been driven by technological development: Modern video-
based eyetrackers drastically simplified eyetracking, often
with a “plug-and-play” approach. Some of the eyetracking
hardware companies were highly successful in expanding
their customer base into new areas by making eyetracking
seem easy. Although the eyetracker users extended into new
fields, the experimentation and analysis skills necessary to
operate the equipment did not always follow suit. For exam-
ple, a survey of eyetracking research on decision-making
(Schulte-Mecklenbeck, Fiedler, Renkewitz, & Orquin, 2017)
showed that 35% of the reviewed studies included fewer than
16 critical trials. The reviewed studies originated from various
disciplines, such as psychology, marketing, economics, neu-
roscience, and human—computer interaction. The same survey
showed that 20% had fewer than five trials, and 12% had but a
single critical trial (Schulte-Mecklenbeck et al., 2017).
Although a single trial might be standard in medical research,
it is rarely recommendable in eyetracking studies using, for
instance, naturalistic stimuli. In this article, we caution against
using such a low number of trials (see the Undersampling of
Naturalistic Stimuli section), since it diminishes stimuli
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representativeness and threatens the external validity of the
study. The survey also reveals that many studies use total
dwell time as a dependent variable and that many studies
analyze multiple eye-movement metrics (see also von der
Malsburg & Angele, 2017). Here we advise against the use
of total dwell time (in the Total Dwell Time section) and
against analyzing multiple eye-movement metrics (in the
Analyzing Multiple Metrics section). We consider the former
a threat to the construct validity and the latter a threat to the
statistical validity of eye-movement research.

Motivated by these concerns, we outline a number of
threats to the validity of eye-movement research. Shadish,
Cook, and Campbell (2002) have described a general list of
threats to the validity of experimental and quasi-experimental
research. Following their example, we organize our list into
threats to internal and threats to external validity. By internal
validity, we refer to the extent to which warranted, and some-
times causal, inferences can be made from eyetracking stud-
ies, and with external validity, we refer to the ability to gener-
alize these inferences to new populations and stimuli.

Throughout the article, we refer to various studies to illus-
trate different points about eyetracking research practices. It is
important to note that although some studies are used as ex-
amples of practices that involve threats to validity, each study
must be understood in its own context. In experimental de-
sign, we are often forced to make trade-offs between various
problems and threats. When solving one problem, we often
acquire a new one. If we, for instance, use simplistic stimuli to
achieve internal validity, we often sacrifice external validity,
and vice versa.

We do not wish to reiterate what has already been said
about the proper way to conduct eyetracking research (for
overviews, see Duchowski, 2007; Holmgqvist et al., 2011;
Russo, 2011), but hope to challenge common assumptions in
eye-movement research and to increase awareness of method-
ological pitfalls. Although we believe that all threats are de-
scribed in sufficient depth to make recommendations for eye-
movement research, our examination is far from exhaustive.

Threats to internal validity
Inappropriate comparisons

Many eyetracking studies aim to compare the distribution of
eye movements to different objects in an image. For instance,
Dodd et al. (2012) investigated whether participants fixate
more pleasing or more aversive objects, depending on their
left-wing versus right-wing political orientation. Glockner and
Herbold (2011) studied whether decision-makers fixate more
on the probabilities or the payoffs when choosing between
risky gambles, and Baker, Schweitzer, Risko, Ware, and
Sinnott-Armstrong (2013) studied whether readers of
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neuroscience articles pay more attention to neuroimages than
to bar graphs. Although these examples may seem uncontro-
versial, the last example is, at least in principle, an inappropri-
ate comparison. In the first example (Dodd et al., 2012), com-
parisons are made between groups of participants with respect
to the same stimuli whereas the last (Baker et al., 2013) com-
pares between stimuli (neuroimages vs. bar graphs). Contrary
to the authors’ expectations, readers pay less attention to the
interesting neuroimages than to the supposedly dull bar
graphs. Why could this be an inappropriate comparison?
The possible causes for fixating either object differ. Bar graphs
could very well receive more fixations than neuroimages be-
cause they are harder to understand, not because they are more
interesting (Shah & Hoeftner, 2002). The risky gambles ex-
ample can in principle lead to a similar challenge. Suppose, for
instance, that a study predicts that participants use a decision
strategy that results in more fixations to payoffs than to prob-
abilities. In experiments with gambles, information is typical-
ly presented using the same number of characters—for exam-
ple, “15%” and “$25”—but imagine that payoffs were pre-
sented as “twenty five dollars.” If so, participants would need
more fixations and longer time to process the payoft informa-
tion because of its unfamiliar presentation and the fact that it
contains 19 rather than three characters (Rayner, 2009). Such a
presentation would lead to a difference in eye movements in
the predicted direction and we would wrongfully conclude
that the data supports our prediction. Even in the standard case
in which probabilities and payoffs are presented using num-
bers, one could make a similar argument that the lower famil-
iarity of probabilities could lead to longer fixation durations.
The problem with inappropriate comparisons is particularly
unfortunate considering the aim of much eyetracking re-
search—namely, to compare eye movements executed to dif-
ferent stimuli. There are, however, a few ways of solving this
problem:

* The researcher examines differences in eye movements
due to stimulus features and develops or selects stimuli
that differ systematically on one or more features (see,
e.g., Orquin & Lagerkvist, 2015; Towal, Mormann, &
Koch, 2013).

» Comparisons are made between different groups of partic-
ipants to the same stimuli. Dodd and colleagues, for in-
stance, compared whether political left- versus right-wing
participants fixate more on positive or negative images
thereby avoiding a direct comparison between different
types of images (Dodd et al., 2012).

* The comparison is made between sets of stimuli that are
large enough to assume that irrelevant feature differences
randomize away (see the section on Undersampling
Naturalistic Stimuli). Nummenmaa and colleagues, for in-
stance, compared 16 pleasant to 16 unpleasant and 16 neu-
tral images to understand attention capture by aversive
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stimuli relative to positive or neutral stimuli (Nummenmaa,
Hyoni, & Calvo, 20006).

Analyzing multiple metrics

Recognizing data fishing in psychology and attempts to coun-
ter it are becoming more commonplace (Wicherts etal., 2016),
but what about eyetracking research? As it turns out,
eyetracking research probably provides an even higher num-
ber of researcher degrees of freedom than other quantitative
methods. Eyetracking data requires multiple preprocessing
steps and each step can be adjusted to provide a different
result: Changing the size of areas of interest (AOI) can, for
instance, improve the fit of a model (Orquin, Ashby, & Clarke,
2016). A surprisingly common feature in eyetracking studies
is comparison of multiple AOIs on multiple eye-movement
metrics (von der Malsburg & Angele, 2017). For instance, in
a study on food nutrition labels, Antinez et al. (2013) com-
pared six AOIs in one condition and four AOIs in another on
five different metrics yielding 105 significance tests. In the
absence of a Bonferroni correction or directed hypotheses, it
makes no sense to interpret these significance tests. Another
challenge with this approach is that the metrics in question
tend to be highly correlated, such as total fixation duration,
fixation count, and visit count.

Perhaps this highly data-driven approach to research has
become popular because the data processing tools from com-
mercial vendors invite their users to try out a broad scan of all
possible comparisons. Although exploratory approaches have
their merits, most eye-movement studies would benefit from
directed hypotheses and predictions. Fortunately, it is easy to
avoid analyzing multiple metrics by following a few simple
steps: (1) Formulate a hypothesis from theory, earlier studies,
pilot studies, or lay notions, and think of it in terms of eye
movements. (2) Take the stimulus or trial mechanism and
draw or simulate participants’ expected eye movements. (3)
Consider what is most important in the drawing or simulation
in order to test the hypothesis: movement, position, latency or
numerosity measures? (4) Finally, consult a list of measures
(e.g., Holmgqvist et al., 2011), and settle only on those mea-
sures necessary to test the hypothesis.

Data quality

Data quality comprises many aspects of research—for exam-
ple, the end-to-end latency (Reingold, 2014), tracking loss, or
sensitivity to a participant’s movements (Niehorster,
Cornelissen, Holmqvist, Hooge, & Hessels, 2017). Data qual-
ity can vary considerably across eyetrackers. The average ac-
curacy (validity) ranges from around 0.4° to around 2°
(Holmgqvist, Zemblys, Mulvey, Cleveland, & Pelz, 2015).
The difference in precision (reliability) has even a larger

range, from around 0.005° root-mean squared (RMS) in the
best remote eyetrackers, to 0.5° RMS in the poorest
(Holmgpvist et al., 2015). These data quality issues imply that
fixations are never measured at their true location begging the
question of how small objects can reliably be studied with
eyetracking. For instance, using a Tobii eyetracker with a pre-
sumed accuracy of 0.5° and precision 0.35°, Donovan and
Litchfield (2013) studied detection of cancer nodules, the
smallest of which were 0.28°. Similarly, Orquin and
Lagerkvist (2015) studied detection of product labels that
were 1.8° using a Tobii eyetracker with an accuracy of 0.5°
and precision of 0.18°. In both cases, the obvious question is
whether the stimuli are large enough for the respective
eyetrackers. So far, no standard to determine the smallest pos-
sible object that can be used with a given eyetracker’s accura-
cy and precision has been proposed.

In order to propose a standard, we introduce a few con-
cepts. We refer to the percentage of fixations to an object that
fall within the boundaries of the object as the capture rate.
Low capture rates may cause several problems such as uncer-
tainty about the amount of fixations to a given object, and if
objects are close to each other, it leads to assignment of fixa-
tions to wrong AOIs (Orquin et al., 2016). The capture rate is a
function of the true location and distribution of eye fixations
and the hardware-related noise distribution. If the properties of
the true fixation distribution are unknown, it is safest to as-
sume that fixations are uniformly distributed within the
boundaries of the object, thereby making no assumptions
about which parts of the stimulus are more likely to be fixated.

To understand the different factors that may influence the
capture rate, we perform a simulation study on the effects of
accuracy, precision, stimulus size, stimulus shape, offset an-
gle, and the centrality of the fixation distribution. We examine
the effects of accuracy, precision, stimulus size, and fixation
distribution separately, and the effects of stimulus shape and
offset angle together. Unless stated otherwise, the simulation
assumes a round object with the true fixation locations uni-
formly distributed inside the object. All simulations follow the
same procedure: First, we obtain the true fixation location by
drawing 100,000 random samples from a bivariate uniform
distribution. The distribution ranges from (0, 0) to (xuj, Y1),
where x,; and y,; are the upper limits on the x- and y-axes. We
then retain all fixations that fall within 7° of the center of the
distribution, thereby obtaining a circle with  being the radius.
Then we draw offset angles uniformly—that is, the direction
in which the fixation is being offset, between 0° and 360°—as
well as offset distances from a normal distribution with mean
equal to the accuracy of the eyetracker and standard deviation
equal to the precision of the eyetracker. Next we compute the
offset fixation, by adding the offset distance in the offset angle
to each true fixation location. We compute the capture rate as
the percentage of offset fixations that fall within » degrees of
the center of the object. To study the effect of stimulus size, we
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vary x,; and yy;, and to study accuracy and precision, we vary
the mean and standard deviation of the offset distance distri-
bution. To study stimulus shape, we vary the proportion be-
tween x,; and y,;, thereby creating objects with a higher or a
lower height-to-width ratio—that is, changing the ratio of pe-
rimeter to area. To study the effect of fixation distribution
centrality, we draw the true fixation distribution from a beta
distribution varying the alpha and beta parameters. The larger
the beta-to-alpha parameter ratio, the more central the fixation
distribution becomes. To study the offset angle, we draw offset
angles uniformly between 0° and 360°, or if an offset angle
tendency is assumed, we draw a single common offset angle
from a uniform distribution between 0° and 360°.

The results of the simulation studies are shown in Fig. 1.
The figure shows that larger stimulus sizes increase the cap-
ture rate, and that even for an excellent eyetracker, with accu-
racy = .5 and precision = .1, stimuli have to be more than 5° in
diameter to achieve a high capture rate—that is, above .8. We
also see that as accuracy and precision gradually decline, the
capture rate goes down, but this is mostly true for small stimuli
<2°, whereas large objects, >8°, retain a high capture rate even
for very poor levels of accuracy and precision. We also see

that the capture rate is influenced by the centrality of the fix-
ation distribution, with more central distributions leading to
higher capture rates. Finally, we see that as the area-to-
perimeter ratio of a stimulus increases, the capture rate de-
creases and the variance of the capture rate increases. The
ideal stimulus is therefore a circle, since it minimizes the
area-to-perimeter ratio. Stimulus shapes such as rectangles
are more vulnerable to offset angles, and therefore yield lower
capture rates on average.

Generally, the simulations show that predicting the capture
rate in a specific situation requires knowledge about the size
and shape of the stimulus, the accuracy and precision of the
eyetracker, and whether fixations are centrally distributed. We
therefore recommend that studies that require high capture
rates perform simulation studies beforehand. As an alternative
to capture rate simulations, one can use a heuristic solution. If
we assume that fixations are uniformly distributed and that our
stimulus is circular, the capture rate can be approximated as
the intersection between two displaced circles. This heuristic
only holds when precision is very low, <.2, in which case the
heuristic solution is identical to the actual one to the third
decimal. To compute the heuristic, we only need to know
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Fig. 1 Simulation results showing the expected capture rates depending
on various factors. (Top left) Effects of stimulus size. (Top middle) Effects
of eyetracker accuracy. (Top right) Effects of eyetracker precision.
(Bottom left) Effects of the centrality of fixations to the object. The
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height-to-width ratio for rectangular stimuli. A ratio of 1 indicates a
square, and higher ratios indicate more rectangular stimuli. The line
shows the mean capture rate, and the shaded area indicates the minimum
and maximum capture rates. The software for generating these calcula-
tions is available at https://github.com/jacoborquin/capturerate
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the radius of the (round) stimulus, 7, and the accuracy of the
eyetracker, represented here as d:

d 1
2r2cos ! <2> 5 dV 4r2—d*
r

capture rate =
2

When the precision of the eyetracker is 0, the heuristic
solution is similar to the results obtained by simulation. It is
important, however, that the heuristic be used only for round
stimuli when we can safely assume uniform fixation distribu-
tions, and when the precision is below .2. In Table 1, we
present the simulation results for six common eyetrackers,
assuming round stimuli and a uniform fixation distribution.

Hidden defaults

A hidden default is a decision we are unaware of having made.
Hidden defaults occur whenever we copy other researchers’
experimental designs without considering alternatives, or
when we analyze our eyetracking data unaware of the many
transformations the software has performed on the data. The
problem with hidden defaults is that they do not ensure an
optimal result. In fact, hidden defaults are a guaranteed way
of propagating poor ideas from researcher to researcher. As an
example, many researchers may fail to realize that remote
eyetrackers often average the positions of both eyes as a de-
fault, even though it is generally recommended to rely on the
position of the dominant eye (Holmqvist et al., 2011, pp. 42,
60, 119). Of course, averaging might make sense in some
situations. Both accuracy and precision have been found to
improve when averaging the eyes (Cui & Hondzinski, 2006),
but even with just a slight difference in timing between the
two eyes, averaging the signals could alter saccade measures
such as the latency, velocity profile, and peak velocity or
skew. For studies in which these saccade measures are impor-
tant, it is advisable to turn off averaging (Holmqvist et al.,
2011, p. 60).

More generally, data processing in any eyetracker is largely
a trade secret. Averaging can be turned off, but filtering is

Table 1 Minimum stimulus sizes, in degrees of visual angle, to obtain
an 80% capture rate for a noncentral (uniform) fixation distribution, given
the manufacturer-reported hardware accuracy and precision

Eyetracker Accuracy  Precision Min Size
EyeLink 1000 (ideal calibration) 25 .01 1.6°
EyeLink 1000 (average calibration) .5 .05 3.2°
Tobii 1750 5 25 3.3°
Tobii 2150 5 35 3.4°
SMI RED 4 .03 2.6°
Eye Tribe 1 .1 6.4°

often hidden and can alter the saccade profile in ways that
are very hard to remedy. Figure 2 shows how saccades have
been given a very high onset acceleration, most likely by
internal filtering.

Hidden defaults exist not only in software but also in spe-
cific lines of research. An example is the unfortunate use of
high cutoffs for minimal fixation durations. For instance,
Jansen, Nederkoorn, and Mulkens (2005) used a 300-ms min-
imum fixation duration threshold. Manor and Gordon (2003)
noted that 200 ms has become the de facto standard in clinical
studies, originally derived from a 1962 study of eye move-
ments in reading. Since the range from 200 to 300 ms often
encompasses the median of a fixation duration distribution
(Holmgqvist et al., 2011, p. 381), around 50% of the fixations
will be lost with such a high cutoff, tending to change the
results of a study entirely.

Less obvious hidden defaults only become evident with
time. Saccade onset thresholds, hidden inside algorithms,
guide how fast the eye must move before the movement can
be considered a saccade. In a meta-analysis on Parkinson’s
disease, Chambers and Prescott (2010) surprisingly found that
when tracking with video-based eyetrackers, patients have
longer saccade latencies than controls, but not when tracked
with scleral search coils (Robinson, 1963). They noted that
Parkinson patients’ saccades are subdued, meaning that the
eye accelerates less vigorously. As a result, their saccades will
typically take slightly longer to cross a saccade onset velocity
threshold, even if the true latency is identical to that of con-
trols. This effect is pronounced in video-based eyetracking,
because the onset velocity threshold is higher than in the al-
gorithms for coil data, which have less noise. In both cases,
the saccade onset threshold is hidden in the software, inacces-
sible to the user. Saccade detection may work for control sub-
jects and yet fail for clinical groups with nonnormal velocities.
The only way to circumvent the problem of event detection is
manual inspection, preferably of each saccade in each trial for
each subject.

A simple remedy for hidden defaults is to map the flow of
information and the data-processing steps, and to make active
choices about each of these. Mapping the process, however,
may be difficult, but help can be found in methodological
overviews (Holmgqvist et al., 2011; Schulte-Mecklenbeck
etal., 2017).

Total dwell time (also known as total gaze duration or total
fixation duration)

The total dwell time (TDT) is the sum of all dwells (set of one
or more consecutive fixations in an AOI) falling within an area
of interest (AOI) during a trial or any other specified period of
time (Holmgqvist etal., 2011, pp. 190, 389). This metric is very
popular and has been used in many published articles
(Schulte-Mecklenbeck et al., 2017). The problem with TDT
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Fig. 2 Saccades recorded with the Tobii glasses II, 100 Hz. The red line
is the velocity, and the blue line is the x-coordinate. The sharp onsets of
saccades contrasts with smooth offsets, with no postsaccadic oscillations,
suggesting that these saccade profiles are the result of a hidden filter. This

is that it often involves inappropriate aggregation of data. TDT
becomes inappropriate when a researcher uses the metric to
draw conclusions about one AOI receiving more attention
than another AOI. Although it may be true that TDT is higher
for AOI A than for AOI B, the difference in TDT can arise
from three independent conditions. First, AOI A may receive
more fixations or dwells than B; second, fixations to A may
have a longer duration than fixations to B; and third, A may be
fixated with a higher likelihood than B. Each of these three
conditions has a different psychological interpretation.

e If A receives more dwells than B, even when both are
fixated in all trials, this means that participants are more
likely to refixate A. Refixations are probably due to top-
down control, such as a high relevance of the stimulus to
the task (Orquin & Mueller Loose, 2013) or the stimulus
being confusing or difficult to process (Rayner, 2009).

+ If the duration of fixations to A lasts longer than that of
fixations to B, this can mean that A is the more complex
stimulus, requiring a longer processing time (Just &
Carpenter, 1976), or it may mean that A is the more inter-
esting or relevant stimulus (Orquin & Mueller Loose,
2013).

» If A is more likely to be fixated than B, this could be due to
both top-down and bottom-up control processes—that is,
goal-driven versus stimuli-driven fixations. A bottom-up
process would, for instance, imply that A is more salient
than B, and therefore more likely to attract fixations (Itti &
Koch, 2001). A top-down process would imply that A is
more relevant than B, consequently attracting more fixa-
tions (Orquin & Lagerkvist, 2015).

Finding a difference in TDT only means that at least one of
the three conditions has been met, and interpreting the
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suspicion is further supported by an RMS/STD value for this recording of
0.38, which is much lower than the expected 1.41 for unfiltered data
(Holmgqyvist et al., 2017)

difference requires breaking down the metric into its constit-
uent parts.

To demonstrate this, we performed a reanalysis of the ex-
periment reported in Orquin and Lagerkvist (2015). Their
study investigated the effects of visual and motivational sa-
lience on eye movements in consumer choices. The study was
a mixed within-subjects—between-subjects experiment in
which participants made decisions between two food prod-
ucts, one of which bore a product label. The motivational
salience of the label was manipulated between subjects by
providing the participants with instructions about the label
having a positive, a negative, or a neutral meaning. The visual
salience of the label was manipulated within subjects as either
high or low salience, by controlling the transparency of the
label. We also analyzed the effect of product position. In the
choice task, products were placed on the left or the right side
of the screen, and we expected participants to have more eye
movements to the left option in correspondence with their
reading direction. To demonstrate the redundancy of TDT,
we began by analyzing TDT and then proceeded to calculate
fixation likelihood. Given a difference in fixation likelihoods,
we analyzed fixation count, fixation duration, dwell count,
and dwell duration conditionally on the AOI being fixated.
We fitted all metrics with generalized linear mixed models
by using the nlme package in R. To account for dependencies,
we fitted random intercepts grouped by participant and trial.

The results of the analyses are shown in Table 2, and the
observed effects are illustrated in Fig. 3. The left—right posi-
tion of a product had a significant effect on TDT, with the left
option having a higher TDT, as expected. Breaking down this
effect, we found that there was no variance in the fixation
likelihoods; all products were fixated in all trials. The differ-
ence in TDT therefore stems from one of the other metrics. In
fact, all of the other metrics—fixation count, fixation duration,
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Table2  Significance tests for the breakdown of TDT in terms of its underlying metrics for three different factors: Position, plus visual and motivational

salience

Dependent variable Position

Visual Salience

Motivational Salience

Total dwell duration F(1,1715) = 36.125, p < .001

No variance in fixation likelihood
F(1, 1715) = 36.298, p < .001
F(1, 1715) = 12.669, p < .001
F(1, 1715) = 574.495, p < .001

F(1,1715) = 27.673, p < .001

Fixation likelihood
Fixation count
Fixation duration
Dwell count
Dwell duration

F(1, 1044) = 4.897, p = .027
F(1, 1044) = 8.205, p = .004
F(1,567)=2.514, p =113
F(1, 567) = 0.892, p = .345
F(1,567) = 0.244, p = .622
F(1, 567) = 0.522, p = 470

F(2,147) = 1.512, p= 224
F(2, 147) = 11.79, p < .001
F(2, 141) = 0.008, p = .992
F(2,141) = 2.57, p = .080

F(2, 141) = 2.498, p = .086
F(2, 141) = 1.448, p = 238

dwell count, and dwell duration—were significantly different.
The left option received more fixations and dwells, but the
right option had longer fixations and dwells. Visual salience
had a marginally significant effect on TDT, and this effect was
explained entirely by differences in fixation likelihood, with
the high-salience label being more likely to be fixated than the
low-salience one. Given that the label was fixated, there were
no differences in any of the other metrics. Motivational sa-
lience had no effect on TDT, but our breakdown approach
revealed that there was nevertheless a significant difference
in fixation likelihood, as well as marginal effects on fixation
duration and dwell count. We concluded from this reanalysis
that given a difference in TDTs, we cannot know what under-
lying metric drives this difference. Given that no difference in
TDTs is present, we also cannot conclude that there are also no
differences in the underlying metrics. For this reason, we ad-
vise against the use of TDT in eyetracking research.

Fixed versus free exposure time

When designing eyetracking experiments, we must decide on
the duration of stimulus exposure. A common approach is to
fix the exposure time so that a participant sees a stimulus for
some predetermined period of time (Reutskaja, Nagel,
Camerer, & Rangel, 2011). The alternative, using a free expo-
sure time, allows participants to gaze at the stimulus for as
long as they wish, typically until the participant presses a
key on the mouse or the keyboard. Although a fixed exposure
time has its merits in, for instance, psychophysics, it tends to
be misapplied in more behavior-oriented studies. The problem
is twofold. First, it is difficult to match the exposure time to the
exact point in time at which the participant would have other-
wise terminated the trial. A fixed exposure times will therefore
always be either shorter or longer than the participant-driven
exposure time. This deviation will most likely create an expe-
rience of either time pressure (Reutskaja et al., 2011) or
idleness (Hsee, Yang, & Wang, 2010). In many cases, time
pressure is what the experimenter hopes to achieve—idleness
probably is not. The second problem with a fixed exposure
time is interpretation of the data. Assuming idleness, one must

consider the distribution of eye movements in the idle period.
For example, in a discrete-choice experiment with fixed ex-
posure time, one has a clear interpretation of eye movements
until the decision is made. In the idle period, however, the
participant may stare at any object at random or continue in
a postdecision process (Clement, 2007). As a rule, it is there-
fore advisable not to use a fixed exposure time, but there are,
of course, situations in which it is required. If we, for instance,
wish to understand the development of a fixation process over
time, a fixed exposure time allows for direct comparison of
different trials. Using free exposure times, on the other hand,
requires that we transform trials of different lengths or focus
our analysis on, for instance, the first 500 ms after stimulus
onset or the last 500 ms before a response is made (Shimojo,
Simion, Shimojo, & Scheier, 2003).

Assuming an eye-mind relationship (reverse inference)

It can be very tempting to think that eyetrackers report atten-
tion or some other cognitive process. Eyetrackers, however,
report eye movements and gaze, while attention is always
inferred. Nevertheless, because attention plays a central part
in many models of cognition, researchers often assert the so-
called eye—mind assumption, which was proposed by Just and
Carpenter (1976). On the basis of studies of eye movements in
reading, they suggested that there is no appreciable lag be-
tween what is being fixated and what is being processed at a
cognitive level. The eye—mind assumption originated from
reading research but has been introduced into other areas, as
well (Svenson, 1979).

There is, indeed, a relation between looking and thinking,
but this relation must be proved rather than just assumed,
because of its many caveats and exceptions. For instance,
eye movements are closely coupled with attention, such that
a saccade is always preceded by a change in attention (Deubel
& Schneider, 1996). However, because attention shifts before
the fixation ends, attention and fixations are not perfectly
coupled. In fact, the eye-mind assumption has been falsified
in various instances. For instance, Deubel (2008) has shown
disassociations of fixations and attention by up to 250 ms in
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<« Fig. 3 Effects of position on screen, visual salience (bottom-up
condition), and motivational salience (top-down condition) on total dwell
time and its underlying metrics

some situations. For all these reasons, the eye—mind assump-
tion should only be made after careful deliberation.

Instead of the eye—mind assumption, which is difficult to
support, eyetracking researchers may instead consider a signal
detection assumption. The question is whether fixations to an
object imply that the object has been processed, and whether
the absence of fixations implies that the object has not been
processed. We can then consider situations that lead to false
positives (fixated but not processed) and false negatives (not
fixated but processed).

One of the situations that may lead to false negatives is the
possibility of peripheral processing—that is, an observer de-
tecting and identifying an object without fixating it. The in-
fluence of peripheral vision is well established in both reading
and scene viewing (Rayner, 2009), and peripherally processed
words can lead to semantic activation and priming effects
(Devine, 1989). One of the challenges in ruling out peripheral
uptake is that it depends on the features of the stimuli, such as
the size and contrast of objects (Melmoth & Rovamo, 2003) or
how crowded the scene is around the object (Whitney & Levi,
2011), as well as on characteristics of the observer, such as the
level of expertise and familiarity with the task (Reingold,
Charness, Pomplun, & Stampe, 2001).

One of the situations that may lead to false positives is the
risk of selective feature extraction. It has been demonstrated
that observers typically fail to extract or encode all possible
features from visual objects, only extracting or encoding the
task-relevant features (Hayhoe, Bensinger, & Ballard, 1998).
This means that we cannot conclude from a fixation to an
object that the object as a whole has been processed. Instead,
the observer may only have processed a single feature of the
object. A related phenomenon is inattentional blindness, in
which observers make a direct fixation to an object yet are
unaware of the existence of the fixated object (Koivisto,
Hyoné, & Revonsuo, 2004).

Another issue that may lead to both false positives and false
negatives is inappropriate AOI definitions. Because of inac-
curacies in both eyetrackers and the human visual system,
fixations often fall outside the object that is the target of the
saccade. If the AOI around an object has a narrow margin—
for example, <0.5° beyond the object border—we may fail to
detect fixations falling outside the object, leading to false neg-
atives. On the other hand, when objects are placed close to
each other, we risk assigning fixations that fall outside an
object to a neighboring object, leading to false positives for
the neighboring object (Orquin et al., 2016).

Finally, it is worth mentioning that other data sources—for
example, choice data, verbal protocols, and retention tests—
can suggest whether the object was processed and taken into

consideration. This is known as methodological triangulation
(Holmgpvist et al., 2011, p. 95).

Threats to external validity
Undersampling of naturalistic stimuli

As we discussed above, it is regrettably common to find
eyetracking studies with only one or two critical trials
(Schulte-Mecklenbeck et al., 2017). Besides the fact that a
limited number of trials leads to lower statistical power, it
leads to another negative consequence. Whenever studies rely
on naturalistic stimuli—for instance, images of products or
advertising—one necessarily factors into the experiment any
random features of those stimuli. Some images may be more
or less bright, include more or larger objects, and so forth. Eye
movements are highly susceptible to these stimulus differ-
ences (Orquin & Mueller Loose, 2013). However, these dif-
ferences are not a problem as such. We can think of the ex-
perimental stimuli as a random effect; in this case, the more
trials we include, the safer it is to assume that any differences
wash out over the conditions of interest. Including more and
heterogeneous stimuli, then, actually adds to the robustness of
the conclusions (Cooper, Hedges, & Valentine, 2009).
Experiments with only one or two trials, on the other hand,
produce eye-movement distributions that are specific to the
particular stimulus. As a rule of thumb, using more trials al-
ways reduces the bias in our stimulus sample. We can calcu-
late the expected deviation, E[d], of a sample of size N from a
normally distributed population as:

E[d] = J5 24/ (x)dx

where f(x) is the probability density function for a normal
distribution with mean equal zero, and standard deviation,
o =s/v/N, where s is the population standard deviation. As
N increases, the standard deviation of the sample, o, de-
creases and the expectation of the sample going toward
zero, which is the population mean. Following this we see that
having more than 16 trials yield an average bias <0.2 SD—
that is, a small effect in terms of Cohen’s d. Using one trial
yields an average bias >0.75 SD—that is, a large effect, mean-
ing that our sample is biased or unrepresentative of the popu-
lation. If we assume that the stimuli differ on more features—
for example, visual salience, surface size, and position—the
probability of at least one feature being biased is 1 — P¥, where
P is the probability of the feature being biased, and & is the
number of features. To demonstrate the importance of ade-
quate sampling, we reanalyzed data from Peschel and
Orquin (2013). Their data set was based on a list of 158 con-
sumer products from four categories sold in Danish supermar-
kets. The product features—for example, brand, logo, image,
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and nutrition labels—were described with regard to their vi-
sual salience, relative surface size, and distance to the center of
the product, dimensions known to influence the probability of
consumers fixating nutrition labels (Graham, Orquin, &
Visschers, 2012). Our question was, how many products
should we include in a study in order to reliably estimate
the probability of consumers fixating nutrition labels? If
we only include one product, we are likely to either over- or
underestimate the probability of consumers fixating the label
by a large margin. To understand how many products we
would need for a representative sample, we focused on the
80 products that carried nutrition labels. We drew sample sizes
from 1 to 25 products. For each sample size, we iterated
10,000 times and computed the absolute deviation of the sam-
ple mean from the population mean. We then divided by the
population standard deviation to obtain a standardized effect
size measure: |Mgample — Mpopulation/SDpopulation- The results of
the simulation are shown in Fig. 4. The figure is nearly iden-
tical to the analytical solution, showing that a representative
sample, defined as deviating by less than 0.2 SDs from the
population on all three dimensions, on average requires 16
products.

Dimension
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Generalization of eye-movement distributions

Applied research often wishes to make inferences about clas-
ses of stimuli such as advertising, product packaging, health
warnings, and so forth, for policy purposes (Graham et al.,
2012). If the experiment suffers from undersampling of natu-
ralistic stimuli, then clearly we cannot generalize anything
beyond the sparse stimuli. Even if the experiment uses a broad
range of stimuli, it may still be difficult to generalize eye
movements beyond the laboratory environment. As we
discussed above, eye movements are highly susceptible to
small changes in the environment. In a laboratory setting,
we may find that participants exposed to faces fixate directly
on the eyes. Generalizing this eye-movement distribution to
the real world would, however, be problematic, since people
in natural environments mostly fixate just below the eyes
(Foulsham, Walker, & Kingstone, 2011).

One remedy of this problem would be to change the focus
from eye-movement distributions to psychological mecha-
nisms. A causal mechanism is our best chance of generalizing
beyond the laboratory (Cooper et al., 2009). For instance, a
psychological mechanism such as central gaze bias—that is, a
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Fig. 4 (Top left) Expected deviations (as standard deviations [SD]) between a stimulus sample of size N and the stimulus population of nutrition labels,
(Top right) Histogram of salience ranks. (Bottom left) Histogram of surface size. (Bottom right) Histogram of distance to center
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tendency to fixate the center of an array of products—may
transfer well from the laboratory to the supermarket (Gidl6f
& Holmgyist, 2011). Mechanism studies, however, impose
greater demands on the research question and experimental
design. First, we need to identify possible mechanisms based
on known or new theoretical considerations about eye-
movement control processes. Second, on the basis of the spe-
cific hypothesis, we need a true experimental design with
random assignment to treatment conditions; that is, besides
our manipulation of the independent variable, everything else
has to remain equal. Using a quasi-experimental design,
Lohse (1997), for example, studied the effect of surface size
on eye movements to yellow-page advertising. Even though
the study was informative about the effect of surface size, in
theory it is impossible to make causal claims about surface
size, because it could be confounded with other variables.
Third, given that we hypothesized a causal mechanism, con-
ducted a true experiment, and established a statistical effect on
eye movements, we would still have to exercise caution in
making any claims about causality. Only in the absence of
alternative explanations and successful replications of our hy-
pothesis could we have confidence in the causal mechanism.

Summary

Eyetracking research has experienced a surge in the past de-
cade as the equipment has become cheaper and easier to use.
Many types of eyetrackers can be operated without any skills
in experimental design or data analysis, thereby lowering the
barriers to conducting eyetracking research. This development
may have led to some research practices that would best be
avoided. Motivated by this concern, we have proposed a list of
threats to the validity of eye-movement research. The list of
threats will allow researchers to identify problems before
conducting their studies and may serve as a reference for ed-
itors and reviewers. It is important, however, to realize that
this list cannot replace what has already been said about sound
research practices, and that the list may not be exhaustive.
New threats may be added as methodological research pro-
gresses. Also, we must emphasize that the list should never be
applied uncritically, lest it become a hidden default.

Author note The authors thank Ignace Hooge, Richard Dewhurst, and
Sonja Perkovic for comments on previous versions of the manuscript.
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