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Abstract This article proposes a general mixture item
response theory (IRT) framework that allows for classes
of persons to differ with respect to the type of processes
underlying the item responses. Through the use of mix-
ture models, nonnested IRT models with different structures
can be estimated for different classes, and class member-
ship can be estimated for each person in the sample. If
researchers are able to provide competing measurement
models, this mixture IRT framework may help them deal
with some violations of measurement invariance. To illus-
trate this approach, we consider a two-class mixture model,
where a person’s responses to Likert-scale items containing
a neutral middle category are either modeled using a gen-
eralized partial credit model, or through an IRTree model.
In the first model, the middle category (“neither agree nor
disagree”) is taken to be qualitatively similar to the other
categories, and is taken to provide information about the
person’s endorsement. In the second model, the middle cat-
egory is taken to be qualitatively different and to reflect a
nonresponse choice, which is modeled using an additional latent
variable that captures a person’s willingness to respond. The
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Introduction

There are a large number of different item response theory
(IRT) models available in the literature (see e.g., Embret-
son & Reise, 2013; Hambleton & Swaminathan, 1985; Lord
& Novick, 1968), allowing one to model dichotomous as
well as polytomous response data and to relate these to one
or multiple latent variables (Reckase, 2008). These mod-
els propose different ways of linking the probability of
observing a particular item score to the considered latent
variable(s) through the item response function (IRF). This
IRF can be parametric or nonparametric in nature, and can
be more or less restricted in its shape, depending on the par-
ticular IRT model. However, a common assumption shared
by most of these models is that whatever the precise speci-
fication of the relationship between the observed responses
on an item and the attribute(s) in question is, the same IRF
is applicable to all persons (Lord & Novick, 1968). This
can be seen as imposing a form of measurement invari-
ance (Mellenbergh, 1989; Meredith, 1993; Millsap, 2011)
because it assumes that a single IRT model is appropriate
for all persons in the sample, and hence that no between-
person differences exist with respect to the IRFs. We will
call this assumption IRT measurement invariance (MI), in
order to emphasize that we are considering the assumption
that a single IRT model is appropriate for all persons in the
sample.
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While assuming IRT MI to hold may be convenient from
a theoretical and a practical perspective, this assumption
may be too restrictive to be realistic in practice (Schmitt &
Kuljanin, 2008; Vandenberg & Lance, 2000), and it can be
violated in a variety of ways. Violations of MI at the level
of individual items have received considerable attention in
the literature, where a variety of methods for detecting dif-
ferential item functioning (DIF; Mellenbergh, 1989) across
observed groups has been proposed (Ackerman, 1992; Bock
& Zimowski, 1997; Holland & Wainer, 1993). If there is
DIF for a particular item, the parameters of the IRF of that
item are taken to depend on group membership (e.g., gender
or ethnicity).

A limitation of these standard multi-group approaches to
investigating and modeling DIF is that they require mem-
bership of the relevant groups to be known. Mixture IRT
(Rost, 1990) combines IRT modeling with latent class mod-
eling, and provides a more general way of addressing a lack
of MI than multi-group approaches, in the sense that the rel-
evant grouping variable is no longer assumed to be manifest
(Samuelsen, 2008). This makes mixture IRT a flexible and
general approach that allows researchers to gain a deeper
insight into the sources and nature of DIF, which is of great
scientific and practical importance.

Numerous mixture IRT methods have been proposed
(e.g., see Bolt, Cohen, & Wollack, 2001; Cho, De Boeck,
Embretson, & Rabe-Hesketh, 2014; Cohen & Bolt, 2005;
von Davier & Yamamoto, 2004; von Davier & Rost, 1995;
Rost, 1990, 1991; Rost, Carstensen, & von Davier, 1997;
Smit, Kelderman, & van der Flier, 2000). A framework that
is particularly noteworthy because of its generality is the
one proposed by von Davier (2008), which allows the user
to consider different functional forms of the relationship
between the manifest and the latent variable(s). However,
the framework is still limited in the sense that across differ-
ent mixture components the functional form is the same, for
example with the model in all mixture components being a
partial credit model. As a consequence, a form of IRT MI is
still assumed: While item parameters are allowed to differ
for the classes, the IRFs are still assumed to be of the same
parametric form for all classes.

While notably less common, there has also been some
interest in considering mixture models that do not have
the same IRT model in all classes. An early example is
the HYBRID model (von Davier, 1996; Yamamoto, 1987;
1989), which proposes a mixture of classes where some
classes are scalable (i.e., a standard IRT model holds and
the trait of interest is measured), while other classes are
not (i.e., item probabilities do not depend on a latent trait).
This model has for example been used to separate random
responders on multiple choice tests from those who respond
based on ability (Mislevy & Verhelst, 1990), and to model
speededness in educational testing (Yamamoto & Everson,

@ Springer

1995). On the one hand, HYBRID models can be considered
to have different structural models in each mixture com-
ponent. On the other hand, as Von Davier and Yamamoto
show (2007), HYBRID models can be represented as mix-
ture models with mixture components that have the same
parametric form, but with constraints imposed on some
model parameters. For example, a HYBRID model with
a latent class component and a Rasch model component
can be seen as a mixture Rasch model in which in one
class the variance of ability is constrained to be zero (von
Davier & Yamamoto, 2007, p. 107). Other researchers have
also suggested to consider IRT mixture models where in
some components constraints are placed on some of the
model parameters. A relevant example is the work by De
Boeck, Cho, and Wilson (2011), who proposed a mixture
IRT model for explaining DIF by introducing a secondary
dimension that influences the response probabilities in only
one of the two latent classes. Effectively, this results in a
mixture model of two two-dimensional IRT models of the
same parametric form, but where for all items the discrimi-
nation parameter for the second dimension is fixed to zero in
the non-DIF class, while it is allowed to be nonzero for the
DIF items in the DIF class. A similar approach was consid-
ered in the context of modeling cheating (Shu et al., 2013),
where every cheater obtains a person-specific increase in
ability, but only on items that were exposed (i.e., some items
having nonzero loading on this extra dimension, but only
for the group of cheaters). One could consider such models
to present a mixture of structurally different measurement
models, but only in the sense that the nested models differ
in the number of freely estimated parameters. To our knowl-
edge, existing mixture IRT approaches have all focused on
sets of measurement models where any differences in the
structure of these measurement models are due to some
model parameters being fixed for some of the classes. As
far as we know, no mixture IRT models have been proposed
where the measurement models have a fundamentally dif-
ferent structure, in the sense that for the different classes
the measurement models are not all (possibly constrained)
versions of one general measurement model.

If there are important qualitative differences between the
response processes in the different classes, the assumption
of having the same or a similar measurement model for all
classes may be unrealistic. For example, persons may differ
in their response styles or strategies when answering survey
questions (Baumgartner & Steenkamp, 2001), which may
be difficult to incorporate using IRFs of the same parametric
form. In general one can argue that it may not be realis-
tic to assume that differences in the response processes in
the different classes can be fully captured using a single
type of measurement model rather than resulting in struc-
turally different measurement models being appropriate for
the different classes.



Behav Res (2018) 50:2325-2344

2327

In this paper, we propose a general mixture IRT frame-
work that allows for structurally different measurement
models in different classes, while still keeping these mod-
els connected through the inclusion of a shared set of latent
variables that (partially) explain the observed response pat-
terns. The different measurement models do not need to
be nested, nor do they have to be special cases of a more
general measurement model. The approach proposed in this
paper makes it possible to obtain information for all per-
sons about the attributes intended to be measured, even if
there are important qualitative differences across classes in
the cognitive processes that relate these attributes to the
responses. The approach requires the researcher to formu-
late competing measurement models that may hold for an
unknown subsection of the population, after which a mix-
ture model can be estimated that includes these different
measurement models. In this framework, class member-
ship and IRT person and item parameters can be estimated
concurrently.

The structure of the remainder of the paper is the fol-
lowing. “Two measurement models for Likert-scale data”
discusses an issue in the context of modeling Likert-scale
data, where it is plausible that two structurally different
measurement models are needed to account for different
uses of the item categories across persons. In “Using the
general mixture IRT approach: a two-class mixture model
for Likert-scale data”, the proposed general mixture IRT
framework is illustrated by considering the specification of
a mixture model that makes use of the two measurement
models discussed in “Two measurement models for Likert-
scale data”, and a Bayesian estimation procedure is pro-
posed. “Simulation study” evaluates the performance of this
procedure under a variety of conditions using a simulation
study, considering both classification accuracy and param-
eter recovery. Subsequently, the procedure is applied to
an empirical example (“Empirical example”), to illustrate
the possible gains from considering mixture models that
incorporate structurally different measurement models. The
paper concludes with a discussion that considers both the
specified two-class mixture model for Likert scales and the
proposed mixture IRT framework in general.

Two measurement models for Likert-scale data

In many applications in the social sciences, attributes are
measured using Likert scales (Likert, 1932; Cronbach,
1950). These scales consist of items that have multiple
answer-category options, allowing respondents to select a
category that they feel is most appropriate. Often, these Lik-
ert items ask respondents to indicate the extent to which they
agree or disagree with a certain statement, using ordered cat-
egories that in some form or other are supposed to match a

certain level of agreement. These responses are then coded
into item scores, which are taken to be indicative of the
attribute of interest, and which can be analyzed using a
statistical model.

It is important to emphasize that while the coded
responses result in numerical item scores, the response cat-
egories are qualitative in nature. Thus, it is not necessarily
the case that the differences between an item score of 1
(e.g., “strongly disagree”) and 2 (e.g., “disagree”) in terms
of the severity of the position are the same as the differ-
ence between an item score of 2 and 3 (e.g., “neither agree
nor disagree”). Furthermore, due to the qualitative nature of
the categories, there are also likely to be differences across
persons in the way persons interpret and make use of these
categories. This complicates the analysis of the response
data using polytomous IRT methods, because it implies that
different measurement models are appropriate for different
persons.

Of particular relevance in this context is the middle cat-
egory that is often present in Likert items, for example
formulated as “neither agree nor disagree” or “neutral”.
While including such a middle category gives respondents
the possibility to communicate a neutral position towards
the presented statement, respondents differ in their interpre-
tation and use of this neutral category: Some respondents
select the neutral category to indicate that their position falls
somewhere in between the two adjacent categories (e.g., in
between “agree” and “disagree”), but others treat the neu-
tral category as a nonresponse option that indicates that they
do not have (or do not want to communicate) an opinion
regarding the statement that is presented (Kalton, Roberts,
& Holt, 1980; Raaijmakers, Van Hoof, 't Hart, Verbogt, &
Vollebergh, 2000; Sturgis, Roberts, & Smith, 2014). While
eliminating the middle category altogether may help avoid
this issue, this prevents respondents from being able to com-
municate a neutral position on the item, which may be a
valid response to the item (Presser & Schuman, 1980).

If the middle category is included, one can attempt to
model possible between-person differences in response style
with respect to the use of that category. Existing model-based
approaches to dealing with response styles aim to model a
person’s tendency to use the middle response category, which
is often labeled ‘midpoint responding’ (Baumgartner &
Steenkamp, 2001). In order to explain between-person dif-
ferences in how often the middle category is used, in
these approaches either an additional continuous latent vari-
able is added to the model (e.g., see Bockenholt, 2012;
Bolt, Lu, & Kim, 2014; Falk & Cai, 2016; Jeon & De
Boeck, 2016; Khorramdel & von Davier, 2014; Tutz &
Berger, 2016), or the use of different person mixture com-
ponents is considered (e.g., see Herndndez, Drasgow, &
Gonzélez-Rom4, 2004; Maij-de Meij, Kelderman, & van der
Flier, 2008; Moors, 2008; Rost et al., 1997). As a result

@ Springer



2328

Behav Res (2018) 50:2325-2344

persons are either placed somewhere on a dimension that
captures the midpoint responding tendency! seen as a con-
tinuous trait, or are placed in latent classes that differ in their
propensities towards choosing the middle category.

In contrast, we propose to consider two qualitatively and
fundamentally different ways in which respondents use the
middle category. That is, we focus not on the between-
person differences in how often the middle category is used,
but in how this category is used: either as an ordered cate-
gory located between “agree” and “disagree”, or as a non-
response option. This constitutes a fundamental and quali-
tative difference in how persons use the categories. While
researchers have been interested in capturing such qualita-
tive differences between classes, approaches that have been
suggested so far (e.g., see Herndndez et al., 2004; Maij-de
Meijj et al., 2008; Moors, 2008; Rost et al., 1997) have relied
on mixture IRT models that assume the same parametric
form for all classes. However, we argue that current mixture
IRT models are not optimally equipped to address this issue,
as it is not mainly about quantitative differences that may
exist in the way different persons use or interpret the scale
(e.g., with persons differing in their interpretation of how
strongly one has to agree with a statement before selecting
“strongly agree”; Greenleaf, 1992; Jin & Wang, 2014), but
rather about whether the person takes the middle category
to belong to the scale at all. To appropriately deal with this,
it may be necessary to consider a mixture of structurally
different measurement models that addresses the qualita-
tive differences that exist in the interpretation and use of
the middle category, as will be discussed in the following
sections.

Qualitatively similar categories

The standard way of dealing with the middle category on
Likert items is to assume that respondents who choose the
middle category select this category to indicate a neutral
level of endorsement, just as they would select the cate-
gory “strongly agree” to indicate strong positive endorse-
ment. This amounts to treating the categories as being
quantitatively different (i.e., indicating different degrees
of endorsement) but qualitatively similar (i.e., all of them
being indicative of the degree of endorsement of the same
statement and hence of the same attribute). Thus, the item
scores are considered to be ordinal, and it may be appropri-
ate to model these using polytomous IRT models. Let X p;
be the score of person p on item i which can take on values

It may be noted that the midpoint response style is in some modeling
approaches (e.g., see Tutz & Berger, 2016) seen as being the opposite
of an extreme response style (i.e., a tendency to use mostly extreme
categories), which both are captured using a single dimension.
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{1,2, ..., m}, where the maximum score m is odd and mT'H
is the middle category. We will for notational convenience
also assume that all item scores are ordered in accordance
with the direction of the scale.

Several polytomous IRT models exist that could be used
to analyze Likert-type data, which differ in their specifi-
cation of the IRF (Andrich, 1978; Bock, 1972; Masters,
1982; Muraki, 1992; Samejima, 1969). Because for this
paper the aim is to illustrate that measurement models of
different structures may be needed to optimally explain the
item responses, we want to make use of a relatively flexible
and unrestrictive IRT model, which is why we consider the
generalized partial credit model (Muraki, 1992), which we
here denote by gPCM-m to indicate that m categories are
modeled. In the gPCM-m, item scores are modeled through

exp (X2 (o (60, — 51)))
DiLiexp (Zi:l (O‘i (Opa; — 5ik)))

8 (Xpi 10pa;, @i, 8;) = , (D

where 64, is the person parameter of person p on dimen-
sion d; that item i is designed to capture, «; is the slope of
item i, and §; = &;1,..., 8, 1S a vector of thresholds of
the m categories, with §;; = 0 for identification. For each
response the gPCM-m can be represented as a decision tree
with one node and m possible outcomes (see Fig. la for
m =5).

It is rather common for questionnaires to consist of mul-
tiple Likert scales each designed to measure a single latent
trait. Suppose a test is intended to measure D dimensions,
such that for each person p the set of latent variables 8, =
{0p1,...,0,p} is of interest. Let us by d = {dy, ..., dk}
denote a design vector specifying to which dimension each
item belongs, where d; = d indicates that item i belongs
to dimension d. Since each item only captures one dimen-
sion, the item scores can be modeled through Eq. 1. When
D = 1, the subscript d; can be dropped and Eq. 1 becomes
the unidimensional gPCM (Muraki, 1992).

Qualitatively different categories

Using a gPCM (or a mixture of gPCMs) may be appropriate
if respondents consider the categories to differ only quan-
titatively, meaning that they take each category to reflect
a particular degree of endorsement and hence that we can
treat the item scores as ordinal. However, this would not
be defensible if respondents interpret the middle response
category as being qualitatively different from the other cat-
egories, for example by approaching it as a noninformative
response option. In that case, standard polytomous IRT
models are not appropriate for modeling the item scores,
because a respondent’s choosing the middle category can-
not be explained by an appeal to the dimension that the item
is supposed to capture.
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Fig.1 Two decision trees for a five-category Likert-scale item

Instead, it may be possible to model the response process
through the use of IRTree models (Bockenholt, 2012; De
Boeck & Partchev, 2012; Jeon & De Boeck, 2016). Using
IRTrees, one can model a response process that contains
multiple steps through the use of nodes, with each possible
response option corresponding to one specific path through
the IRTree. Each node in the IRTree corresponds to a spe-
cific statistical model, which may differ for different nodes.
Importantly, nodes within a single IRTree model can differ
with respect to the latent variables that play a role in them.

To capture the response process where the middle cate-
gory of a Likert-scale item is taken to represent a nonre-
sponse option, we propose to model the responses with an
IRTree model with two nodes, in line with the IRTree mod-
els discussed by Jeon and de Boeck (2016). For m = 5
this IRTree model is illustrated in Fig. 1b. The first node
represents whether the person chooses the middle category
(i.e., decides to avoid giving an informative response to
the question) or not. We assume here that whether or not
an informative response is given will depend both on the
item that is answered and the person that answers the item.
That is, as is common in the response-style literature, we
assume that persons differ in the degree to which they will
display a response style (e.g., see Bockenholt, 2012; Tutz
& Berger, 2016) and this response style is assumed to be
stable (i.e., constitutes a person trait; e.g., see Baumgart-
ner & Steenkamp, 2001; Greenleaf, 1992). Following this
assumption, we propose to consider a single latent variable
that captures between-person differences in the usage of the
middle category on the items on the test. This latent variable
can provisionally be thought of as corresponding to a trait
that captures a person’s tendency to avoid giving informa-
tive responses. The second node of the IRTree comes into
play only if the middle category is not chosen. In this case
the respondent chooses from the m — 1 remaining categories
and the choice depends on the latent trait that the scale was
designed to measure.

To apply the IRTree model, we need to re-code the item
score X p; into two different variables (see also De Boeck
& Partchev, 2012). For the first node, we recode X ; into a
dichotomous outcome variable X% indicating whether the
middle category was selected (X ;i = 1) or not (X;l. = 0).
For the second node, we recode X p; into an ordinal outcome

variable X;f =1,...,m — 1, such that

m+1
X;?ZX[,,'—I<XP,'> > ) 2)
If X%, = 1 the response process has terminated after the

first node and hence X ;’f is missing.

Both nodes of the IRTree can be modeled using com-
mon IRT models. In line with Jeon and De Boeck 2016,
we propose to model the first node of the IRTree using a
two-parameter logistic model (2PL; Lord & Novick, 1968):

(exp (eis (6p0 — 5iS)))XZi
h X* 9 , . ’8» = ’ 3
1 ( pi |0p0; @is ’S) 1+ exp (ais (0po — dis)) ©

where 0,0 denotes the person parameter of person p, ;s
and §;5 denote the slope and the location parameter of
item i, and the subscript S refers to “Skipping” giving an
informative response. Here, 6, is a latent variable that cap-
tures a respondent’s tendency to skip items by choosing
the nonresponse option, with low values of 6, indicating
a relatively strong tendency to provide informative answers
(i.e., to avoid using the middle category). It can be empha-
sized here that the model in Eq. 3 assumes the existence
of both person- and item-level effects: Persons are taken
to differ in their overall tendency to select the middle cat-
egory (0p0), but items also differ in the extent to which
people are inclined to provide noninformative responses to
it (i.e., the item location §;s can vary across items). This
is in line with the idea that item content and formula-
tion can play an important role in determining the extent
to which nonresponse occurs, but that the probability of
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observing a noninformative response will also depend on
person characteristics such as response style.

The second node of the IRTree captures the selection of
a response category relevant for the attribute of interest, for
which we propose to use the gPCM. Thus, a respondent’s
choice for one of the (m — 1) remaining categories (i.e., after
eliminating the middle category) is modeled through

X
exp (21;1 air (Opa; — 5ikr))

Yt exp iy @it (Opa; — Sikr))
“)

ha (X057 | Opa; s it 8i) =

where o;7 and §;7 denote the slope and the threshold
parameters of item i, and subscript T refers to the “IRTree”
in order to differentiate these parameters from those in the
gPCM-m.

To model Xp;, the models at the two nodes can be
combined to obtain

h (X pi 10p0, 0pa;, is, Sis, ot 8iT)

1-x%,
= I (X;Z,- [0p0, ais, 51‘5) (hz(Xf,T | Opa;» it SiT)) )

The differences in structure between the IRTree and the
gPCM-m can be observed by contrasting Eq. 5 with Eq. 1,
where it may also be noted that the gPCM-m is not a spe-
cial case of the IRTree model in Eq. 5. To determine which
of the two models should be preferred, one could compare
their fit to the data. However, if one part of the popula-
tion treats the middle category as a noninformative response
option while the other part of the population responds in
line with the gPCM-m, neither model will fit the data very
well, and using either one of them would result in estimates
for the person and item parameters that will to some degree
be biased. In such cases, it may be preferable to consider a
mixture of the two models, as will be discussed in the next
section.

Using the general mixture IRT approach:
a two-class mixture model for Likert-scale data

When researchers suspect that IRT MI is violated and that
classes of persons exist that differ qualitatively in their
response processes, they can consider making use of the
general mixture IRT approach proposed in this paper. This
requires the researcher to formulate different measurement
models that capture the suspected differences in the underly-
ing response processes. One constraint that can be imposed
is that the different measurement models are connected
through the inclusion of a shared set of relevant latent vari-
ables. The scales for the different classes can then be linked
by imposing constraints either on the person-side of the
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model (identical distribution of these latent variables in all
classes) or on the item-side (if parameters with a similar
function are present in all classes; discussed for regular
mixture IRT models in Paek & Cho, 2015).

In the context of modeling Likert-scale data, one can
consider using a mixture of the two models that have been
proposed in the previous section. Here, we propose to con-
sider a person mixture. That is, we assume that persons
belong to one of the two classes, and that this class mem-
bership is fixed throughout the test. Thus, class membership
is taken to be a person property, and persons are assumed
to stick to one interpretation of the middle response cate-
gory for all the items on the test. To connect the two models,
one can make the assumption that the latent variables 6,
(i.e., excluding 6p) that play a role in the second node of the
IRTree model are the same as those present in the gPCM-m
(see also Fig. 1). For this particular mixture model we pro-
pose to link the scales by assuming the same distribution of
the latent trait(s) in both classes.

For this two-class mixture model for Likert-scale data,
the probability of a certain item score for person p on item
i depends on the class membership of person p, denoted by
Zy,. Z, = 1 if the person belongs to the gPCM-m class,
and Z, = 0 if the person belongs to the IRTree class. The
response of person p to item i can be modeled as:

F(Xpi10p0, Opa;» AR, 8iRr, s, 8is, i, 8iT, Z)p)

z
= (8(Xpi |0pa;, @ir. 8ir)) ™" x (hl (Xf,,- |9p0705i578iS)

1-2,
Fok I_X;"
X (hz(Xpi [Opa; it 5iT)> (6)

where «; g and §;;r are used instead of «; and §;; for the
slope and the threshold parameters in the gPCM-m to unify
the notation.? To estimate this mixture model, a Bayesian
MCMC algorithm can be employed. The specification of the
prior distributions and the estimation procedure is the topic
of the next two subsections.

Prior distributions

For each person p {60, 0p1, ..., 0,p} are assumed to have
a multivariate normal distribution with a zero mean vec-
tor and a (D + 1) x (D + 1) covariance matrix X. The
mean is constrained to O for identification, because in IRT
models only the difference (6 — §) is identified and not
the parameters themselves (Hambleton, Swaminathan, &
Rogers, 1991). The variances in X are also not identified,
however to simplify the conditional posterior distributions

2 The subscript R refers to the “Regular” model, because the gPCM-
m is a simpler and more common model for the Likert data than the
IRTree model.
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and to improve convergence instead of constraining them we
estimate X freely, and at each iteration of the Gibbs Sam-
pler re-scale the parameters such that all the variances in X
are equal to 1.

For the hyper-prior of ¥ we choose an inverse-Wishart
distribution with D + 3 degrees of freedom and Ip as the
scale parameter. With this choice for the prior degrees of
freedom, the posterior is not sensitive to the choice of the
prior scale parameter, because in the posterior distribution
the prior is dominated by the data when N > D + 3 (Hoff,
2009, p. 110).

All Z s are assumed to have a common prior Bernoulli
distribution with the hyper-parameter 7 specifying the prob-
ability of a person randomly drawn from the population
belonging to the gPCM-m class. This is a hierarchical prior
(Gelman, Carlin, Stern, & Rubin, 2014), that is, for each
person the posterior class probability depends on the pro-
portion of persons in this class. This results in shrinkage of
the estimates of persons’ class memberships: If one of the

classes is small, then the proportion of persons estimated to
belong to this class would be even smaller. The advantage of
this prior is that if one of the classes is absent this class will
most likely be estimated to be empty, which would often
not happen if instead an independent uniform prior would
be used for each person. As the prior of & we use B(1, 1),
such that a priori all values between 0 and 1 are taken to be
equally likely.

A priori, the item parameters are assumed to be indepen-
dent of each other. For each of the item slope parameters
(¢ig, @is, i), a log-normal prior distribution (to ensure
these parameters to be positive) with a mean of 0 and
variance of 4 is used. Using a relatively large variance com-
pared to the range of values that the logs of slope parameters
normally take on ensures that the prior is relatively uninfor-
mative and that the posterior will be dominated by the data
(Harwell & Baker, 1991). The following prior is used for
the item threshold and location parameters:

m m—1
P(8ir, 8is, 8i1) N (8i5; 0, 10) Z(8i1r = O Z(8i17 = O)HN(5ikR; 0, 10) l—[N(5ikT; 0,10). (7
k=2 k=2
Here, large variances are again used for the parameters to ~ Estimation

ensure that the prior is relatively uninformative. As has been
mentioned before, §;17 = §;1g = 0 for identification.

The model can be estimated by sampling from the joint
posterior distribution of the model parameters:

pB0.0.ar. 87, a5, 85, ar, 8. Z. T, 7 |X) o p(Z)p(0) [ [ (p(Op0. 0, | ) p(Z, | 7))

p

X HP(OHS, dis, a;s, 8is, AR, OiR) 1_“_[ F(Xpi10p0, Opd;, AR, 8iR, ais, 8is, i, 8iT, Zp), (8

i P o1

where 0 is a vector of 6,0s of all persons and # is an N x D
matrix of person parameters of all persons on all dimensions
1to D; a7, ag, and ap are the vectors of «;7s, ajgs, and
a;gs of all the items, respectively; §7 and §g are the matri-
ces of threshold parameters of all the items in the gPCM-m
and gPCM-(m — 1), respectively; 85 is a vector of ;s of
all the items; Z is a vector Z,s of all persons. To sam-
ple from the posterior distribution in Eq. 8 we developed a
Gibbs Sampler algorithm (Geman & Geman, 1984; Casella
& George, 1992) in R (R Core Team, 2015). The Appendix
contains the description of the algorithm, and the code is
available in the Online Supplementary Materials.

To start the Gibbs Sampler, starting values for the model
parameters need to be specified (see Appendix for the
details). To remove the effect of the starting values on the
results, the first part of the sampled values (i.e., burn-in)
is removed. Even after discarding the burn-in, the results
of the algorithm might still depend on the starting values
of Z when a finite number of iterations are used for the

burn-in period. For example, if at the start of the algorithm
none of the persons who belong to the IRTree are assigned
to the IRTree class, then the IRTree item parameters will not
be sampled optimally and it is possible that the class will
initially become empty, because the non-optimized IRTree
model will not fit the data of these persons better than the
gPCM-m. To avoid ending up with a chain stuck in such a
local maximum (i.e., having an empty class even though that
class should not be empty), we recommend the use of multi-
ple chains (Gamerman & Lopes, 2006), retaining the results
of the best chain chosen based on the average post-burn-in
log-likelihood:

Le= D00 D Inf (Xpi 165,07 e, 87§ 875, e, 8. 73,
top i
®

where L. is the average post-burn-in log-likelihood in chain
¢, the superscripts ¢ and ¢ denote the values of a parame-
ter in the 7-th post-burn-in iteration in the c-th chain, and

@ Springer



2332

Behav Res (2018) 50:2325-2344

T denotes the number of post-burn-in iterations. By using
a diverse set of starting values and retaining the chain for
which L. is highest, the risk of obtaining a solution based
on a local maximum can practically be avoided (Gamerman
& Lopes, 20006).

The sampled values of the parameters from all post-burn-
in iterations in the best chain are used to approximate the
joint posterior distribution in Eq. 8, which can be used to
obtain estimates of the parameters. This approach automat-
ically takes the uncertainty about the class membership of
persons into account in the posterior of @, as the marginal
posterior of 8, is a weighted mixture of the two posteriors
of 8, conditional on the class membership:

p@p) = p@plZ, =0)p(Z, =0)
+p0,1Z, = )p(Z, = 1). (10)

For all continuous parameters, we use the corresponding
posterior means as their estimates, which are approximated
by the averages of the corresponding post-burn-in sampled
values. For each Z, the posterior mode is used as an esti-
mate. The posterior probability of a person belonging to a
certain class is approximated by the proportion of iterations
in which this person has been assigned to this class.?

Simulation study

While the proposed general mixture IRT framework allows
researchers to specify structurally different measurement
models, the practical usefulness of such an approach will
depend on the extent to which the different measurement
models can be successfully distinguished in realistic sets
of data with a limited amount of information available per
person and per item. For measurement to improve through
the use of these mixture models it is crucial that persons
can be classified with a high degree of accuracy and that
parameters can be recovered. The extent to which this is
possible will depend on the particular measurement mod-
els that are considered, which makes a general assessment
of the feasibility of using the proposed approach in practice
difficult. However, if the procedure can be used successfully
under realistic conditions in the context of the proposed two-
class mixture model for Likert-scale data, this may inspire
confidence that application of the approach in other con-
texts is feasible and useful as well. To assess the range
of conditions within which the proposed procedure does

31t may be noted that because our mixture model considers two mea-
surement models that have a different parametric form, label switching
both across chains and within chains of the sampler by definition
cannot occur (Jasra, Holmes, & Stephens, 2005). Thus, while label
switching can be problematic for approaches dealing with structurally
identical models (e.g., standard IRT mixture models), this is not an
issue for the current approach.
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and does not show acceptable performance, a simulation
study was performed that assessed classification accuracy
(“Classification accuracy”). To assess the extent to which
item parameters are estimated correctly and the extent to
which using the mixture model improves the accuracy of
person estimates compared to using a nonmixture gPCM
when two different classes are present, a small-scale follow-
up simulation study was also performed that considers
recovery of the item parameters of the mixture model and
compares the recovery of persons’ latent trait values under
the two models (‘“Parameter recovery”).

Classification accuracy
Method

Design Four design factors were considered: sample size
(N = 500, 1000, 2000), number of items (K = 20, 40),
number of dimensions that the test is intended to mea-
sure (D = 1,2; items distributed equally for D = 2),
and proportion of persons belonging to the IRTree class
(P = 0,.25,.5). For the simulation study a full factorial
3 x 2 x 2 x 3 design was used. Five-point Likert scales were
considered with persons either belonging to the gPCM-5
class or to the IRTree class with the 2PL in the first node
and the gPCM-4 in the second node. In each condition, 50
replicated data sets were generated using Eq. 6. In each
replication, the model was estimated using the Gibbs Sam-
pler with ten chains with 2000 iterations each (including
1000 iterations of burn-in; number based on pilot studies).

Parameter specification For each condition the item and
the person parameters were generated in the same way. For
the first N x P persons in the sample Z, = 0 (i.e., IRTree
class) and the remaining Z s were set to one (i.e., gPCM-5).
All s were sampled independently from A/ (0, 1). Thus, all
person parameters were independent, matching the expec-
tation that in most cases a response tendency would be
orthogonal to the traits of interest.

Because the process of giving an informative response
is assumed to be relatively similar across the two classes,
the item parameters of the gPCM-5 and gPCM-4 were set
to be correlated. The logs of «;7 and ;g were sampled
from a bivariate normal distribution with means equal to 0,
variances equal to 0.25 and correlation of .5. Here a mod-
erate correlation was chosen, as it accommodates the fact
that having less categories available to provide an infor-
mative response may alter the discriminative properties of
the item to some degree, while still being relatively similar
under both models. The threshold parameters were sampled
through 8;z = 8; + {—8;, —1.5, —0.5,0.5, 1.5} and §;7 =
8 +{—8;,—1.5,0, 1.5}, where §; ~ N(0, 1). This spec-
ification was chosen such that overall item locations, J;s,
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under the two models were the same, capturing the idea that
having fewer categories should not alter the overall location
of the item on the scale. For the first node of the IRTree,
ajs ~ LogNorm(—0.5,0.25) and 8;s ~ N (2, 0.25), which
results in approximately 18% of responses in the IRTree
class corresponding to the middle category. The low value
of — 0.5 for the mean of In «; § was chosen to match the fact
that items were not designed to measure a tendency to avoid
giving informative responses.

Outcome measures Under each condition the accuracy of
the classification of the persons in the two classes was inves-
tigated. A person p was considered to be correctly classified
if true class membership was equal to the estimate of Z,.
For P = .25 and P = .5 several outcome variables were
considered. Py is the proportion of overall correctly clas-
sified persons, while Pr,.. and Ppcys are the proportions
of correctly classified persons among those whose true class
membership is IRTree and gPCM-5, respectively. Per; i
the proportion of persons assigned to the correct class with
high certainty (i.e., posterior probability of at least .95).
For these four outcome measures, the average and standard
deviation across the 50 replications were considered. For
P = 0, the only outcome measure was the proportion of
replications in which the IRTree class was estimated to be
empty (i.e., all persons classified correctly).

Results

Overall results The results of the simulation study are dis-
played in Table 1. The results obtained for P = 0 were
very similar across all conditions, and are for that reason not
displayed in Table 1. For P = 0, the IRTree class is consis-
tently estimated to be empty: Across all replications in all
conditions, it only happened once that the IRTree class did
not become empty (for N = 2000, K = 40and D = 1), and
in that one replication only two persons out of 2000 were
assigned to the IRTree class. Thus, there does not appear
to be a risk of overfitting, meaning that empty classes are
consistently identified as such.

In the majority of conditions the classification accuracy
is encouraging: In all conditions the overall proportion of
correctly classified persons (P,;;) exceeded .80 and in many
cases .90 (see Table 1). The impact of the design factors
on the outcome measures is discussed below. Because the
results in Table 1 did not indicate any notable effect of
the number of dimensions on classification accuracy, the
subsequent discussion will focus on D = 1.

Sample size As can be observed in Table 1, for most con-
ditions sample size only had a small positive effect or even
no clear effect on classification accuracy. However, sample
size did have a notable impact on the proportion of persons

Table 1 Results of the simulation study on classification accuracy

N K D P P11(SD)  Prree (SD) Ppcm (SD)  Peerr (SD)
500 20 1 .25 .83(.06) .39(29) .98(.02)  .60(.19)
5 .83(05) .83(10) .84(.07) .49 (.08)
2 25 81(06) 28(29) 98(.02)  .58(21)
5 .81(05) .83(.08) .80(.09) .46 (.09)
40 1 25 .94(03) .82(10) .98(01)  .85(.04)
5 .94(02) 94(.02) .94(03)  .79(.05)
2 25 93(03) .78(13)  98(01)  .84(.04)
5 .94(02) 94(.02) .93(02)  .79(.05)
1000 20 1 .25 .88(.04) .64(18) .96(01) .64 (.08)
5 85(04) 86(.04) .85(06)  .47(.10)
2 25 87(02) .61(11)  96(.02) .61 (.06)
5 .85(03) .85(.04) .85(04)  .46(.07)
40 1 25 .96(01) .88(.04) .98(01)  .85(.03)
5 .95(01) 95(.02) .95(02)  .81(.05)
2 25 95(01) .87(04) 98(01)  .84(.03)
5 .95(01) 94(.02) .95(02)  .80(.05)
2000 20 1 .25 .90(.02) .71(09)  .96(.01) .59 (.07)
5 .87(03) .86(.03) .88(.03)  .48(.08)
2 25 89(02) 71(07)  96(01)  .59(.07)
5 .86(02) .86(.03) .87(.03)  .45(.07)
40 1 25 .96(01) 90(.03) .98(01)  .85(.04)
5 .95(01) 95(.02) .96(01)  .81(.04)
2 25 96(01) .89(.03) .98(01)  .84(.03)
5 .95(01) 95(.02) .96(01) .80 (.04)

Average values of P, (overall proportion of correctly classified per-
sons), Pr,e. (proportion of correctly classified persons among those
whose true class membership is IRTree), Ppcy (proportion of cor-
rectly classified persons among those whose true class membership
is gPCM-5), and P.,; (proportion of persons that were assigned to
the correct class with high certainty) and their standard deviations
(SD) across 50 replications for different sample sizes (N), number of
items (K ), number of dimensions (D), and true proportions of persons
belonging to the IRTree class (P)

correctly placed in the IRTree class (Prye.) when K = 20
and P = .25. Here, little information is available per per-
son (because K = 20) and for N = 500 there is also little
information available for estimating the IRTree item param-
eters (because only 125 persons belong to that class). Using
the mixture model in this challenging condition may not be
ideal, as the IRTree class was estimated to be empty in about
25% of replications, and the average Pry.. was low and its
variance was high. For K = 20 and P = .25, with larger N
the issue of the empty IRTree class disappeared, the average
Pr,e. improved, and its variance decreased.

Number of items For all outcome measures, results
improved markedly when increasing K from 20 to 40. The
overall proportion of misclassified persons (1 — P,;) is more
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Table 2 Average absolute bias (Bias), variance, and mean squared error (MSE) of the estimates of each type of item parameter in the mixture
IRT model (1000 persons, 40 items, single dimension of primary interest; based on 100 replications)

P=0 P=.25 P=25

Bias Variance MSE Bias Variance MSE Bias Variance MSE
iR 0.027 0.010 0.011 0.010 0.014 0.014 0.015 0.025 0.025
Bikr 0.045 0.044 0.048 0.056 0.075 0.080 0.044 0.121 0.128
ais - - - 0.068 0.115 0.121 0.025 0.052 0.052
Bis - - - 0.017 0.067 0.067 0.033 0.033 0.034
T - - - 0.134 0.130 0.164 0.066 0.052 0.063
Bikr - - - 0.132 0.531 0.595 0.065 0.218 0.236

than halved by this increase in test length, with P,;; exceed-
ing .90 in all conditions (see Table 1). Additionally, for
K = 40 in all conditions approximately 80% or more of the
classifications were both correct and made with the poste-
rior probability of at least .95. This is a strong improvement
over the conditions with K = 20, where P,,,; was close to .5.

Class proportions When both classes are present (i.e.,
P = 25 or P = .5), the relative size of the two classes did
not appear to affect the overall proportion of correct classi-
fications. However, the class proportions did have a strong
impact on the classification accuracy for persons belonging
to the IRTree. For P = .25, relatively few persons belong
to the IRTree class. As will be further discussed in the next
section, this complicates the estimation of the item parame-
ters for that class. Additionally, because a hierarchical prior
was used, the procedure’s posterior probability of a person
belonging to a class depends on the estimated proportion
of persons belonging to that class (Gelman et al., 2014).
As a consequence, classification accuracy is likely to be
reduced for the smaller class (but improved for the larger
class). Because persons not assigned to the IRTree class are
assigned to the gPCM class, Ppcy is larger when P = .25
compared to when P = .5.

Parameter recovery
Method

To assess whether using the mixture model may improve
measurement, the accuracy and precision of the estimates of
both 6; and the item parameters were investigated for the
situation where N = 1000, K = 40 and D = 1. On the item
side, we investigated how well the different item parame-
ters were recovered. For the assessment of the recovery of
the item location, we examined parameter recovery of the
intercepts of the item and category characteristic functions
(Bis = —isdis, Bikr = —aiTdikt, and Bixr = —0tiRS;kR)
rather than the location and threshold parameters, because
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the former were considered in the estimation procedure (see
Appendix) as their estimates are more stable (see also Fox,
2010). Hence, investigating the recovery of the item and
category intercepts (B;s, Bixt, and Bjkg) provides a better
insight into the degree to which the item location is correctly
recovered by the procedure. On the person side, we inves-
tigated how well 8 was recovered, and compared this with
the recovery of 61 under a nonmixture gPCM-5.

Three conditions were considered, which differed with
respect to the proportion of persons belonging to the IRTree
class (P = 0,.25,.5). A single set of item parame-
ters and continuous person parameters was generated (see
“Method”) and used for all three conditions. For each condi-
tion 100 data sets were simulated, for which the two models
were estimated.* The bias, variance, and mean squared error
(MSE) of the estimates of the item parameters of the mix-
ture model and of the estimates of 0; under both models
were investigated.

Results for the recovery of the item parameters

The item parameter recovery results are presented in
Table 2. For P = 0, only the recovery of the gPCM-5 model
is considered as in that condition the data do not contain
information about the IRTree parameters. The results show
that the average absolute bias is rather small for each type
of parameter. Bias seems to be most notable for gPCM-4
parameters in the condition where P = .25, when there
are relatively few persons in that class (0.134 and 0.132
for «;j7 and Bjrr, respectively). The average absolute bias
in these parameters of the gPCM-4 appears to be approxi-
mately halved when the number of persons belonging to that
class increases from 250 to 500 (P = .5). The only excep-
tion seems to be the intercept in the first node of the IRTree
(Bis), where bias is low in both conditions.

4The nonmixture gPCM-5 was estimated using a Gibbs Sampler sim-
ilar to the one used for estimating the mixture model, but which only
considers a single class (i.e., with every person permanently assigned
to the gPCM-5 class).
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Fig. 2 Bias of the estimates of #; under the nonmixture gPCM-5 (a, b, ¢) and the mixture model (d, e, f) when the true model is the mixture

model with the true proportion of persons in the IRTree class equal to P. Each point represents a single person

With respect to the variance of the estimates, the item
category intercept of the IRTree (B;xr) appears to be the
most difficult to recover, especially when P = .25. The
variance of the IRTree item parameter estimates is more than
halved when class size is doubled (P = .5). Similarly, the
variance of the estimates of the gPCM-5 parameters is also
lowest when the gPCM-5 class is largest (P = 0) and gets
worse when P > 0.

As the bias in the parameter estimates is small compared
to their variance, the patterns observed for the MSE largely
match those that were found for the variance. Thus, the
MSE results indicate that of all parameters considered BT
is the most difficult to recover when class size is small, but
that for all parameters the recovery greatly improves if the
number of persons belonging to the relevant class increases.
All of this suggests that class size strongly influences item
parameter recovery, and that care should be taken to ensure
that both classes have sufficient observations if the mixture
model is to be used. When class size is reasonable (e.g., at
least 500 persons in each class), item recovery of all relevant
parameters appears to be adequate.

Results for the recovery of 61

The results for the recovery of 8; are displayed in Fig. 2, which
provides a graphical display of the bias of the estimates of

01 observed under both the gPCM-5 and the mixture model.
The MSE:s for these two models are displayed in Fig. 3.

Empty IRTree class The results of the gPCM-5 and the
mixture model are practically identical when P = 0 (see
Figs. 2 and 3). This indicates that using the mixture model
when in fact using only the gPCM-5 would have sufficed
does not deteriorate the quality of the estimates of 6. For
this condition, the average absolute bias of the estimates
of 01 in both models was 0.06. The average variance of
the estimates was 0.03, and the average MSE was 0.04 for
both models. As can be seen in Fig. 3a and d, the MSEs
of the estimates increase when moving away from 0. In
this condition, low 6 s are overestimated while high 6;s are
underestimated, as illustrated in Fig. 2a and d. This shrink-
age towards the mean is in both models due to the use of
a hierarchical model (Fox, 2010). Such shrinkage can be
considered desirable because it minimizes prediction error,
therefore one would ideally like to observe the same amount
of shrinkage in the other conditions (i.e., when P > 0).
Deviations from the pattern observed for P = 0 can be
taken to indicate lack of robustness of the model inferences
for P > 0, that is, that estimates of 6; differ from those that
would have been obtained if all persons had belonged to the
gPCM-5 group.
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model is the mixture model with the true proportion of persons in the IRTree class equal to P. Each point represents a single person

Small IRTree class For P = .25, the average absolute bias
and the average MSE was slightly lower for the mixture
model (0.07 and 0.05, respectively) than for the gPCM-5
model (0.08 and 0.07, respectively), while the average vari-
ance was similar (0.045 for both models). As can be seen
in Fig. 2b, under the nonmixture gPCM-5 the 6, of persons
belonging to the IRTree class is highly overestimated at the
lower end and underestimated on the higher end of the 6;-
scale, resulting in a relatively large average absolute bias
and MSE for this group (0.24 and 0.17, respectively). For
persons with high or low true values of 6; and belonging to
the IRTree class the MSEs were much lower when the mix-
ture model was used (Fig. 3e) than when the nonmixture
gPCM-5 was used (Fig. 3b).

When using the nonmixture gPCM-5, the parameters of
the persons whose true class is the gPCM-5 were only
slightly biased (0.03), and while there is still shrinkage to
the mean for this group, the observed effect was smaller than
for P = 0. In the mixture model for persons belonging to
the gPCM-5 class a similar degree of shrinkage to the mean
(average absolute bias of 0.05) was observed as in the con-
dition with P = 0 (comparing Fig. 2d and e), indicating that
the bias of the estimates for this group is similar to the bias
observed when P = 0. For persons from the IRTree class,
the estimates of 61 show more shrinkage towards the mean
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(average absolute bias of 0.11), which may be due to the
lower number of informative responses available per person.

Equal class sizes For P = .5, the gPCM-5 shows a larger
average absolute bias (0.12) and MSE (0.09) than the mix-
ture model (0.06 and 0.06, respectively), while the average
variance was similar (0.05 for both models). As can be seen
in Fig. 2¢ and f, for persons whose true class membership is
the IRTree, using the nonmixture gPCM-5 model resulted in
01 being highly overestimated on the lower end and under-
estimated at the higher end of the ;-scale (absolute bias of
0.19). Figure 3c and f show similar patterns for the MSEs.

The estimates of 81 for persons whose true membership is
gPCM-5 were only slightly biased under the gPCM-5 (abso-
lute bias of 0.04), but the direction of the bias is different
compared to P = 0: For P = .5 there is underestimation
on the lower end and overestimation on the higher end of
the scale. Thus, instead of the shrinkage towards the mean
observed for P = 0, the estimates are slightly inflated under
the gPCM-5 when P = .5 for persons belonging to the
gPCM-5 class, indicating that when using the nonmixture
model the estimation of 6 is also not robust for persons for
whom a gPCM-5 model would in fact be appropriate.

In contrast, when using the mixture model the bias of
the estimates for persons belonging to the gPCM-5 class
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obtained in this condition is very similar (both in direction
and size) to that observed when P = 0 (see Fig. 2f and d).
Additionally, there is much less discrepancy between the
MSEs obtained for persons belonging to the IRTree class
and persons belonging to the gPCM-5 class when using the
mixture model (Fig. 3f), compared to when the nonmixture
gPCM-5 model is used (Fig. 3c).

Empirical example

The mixture model was applied to data on the ‘Experiences
in Close Relationships” (ECR) questionnaire developed by
Brennan, Clark, and Shaver (1998). The questionnaire con-
sists of 36 items belonging to two dimensions (18 items
each). The first dimension captures avoidance in close
relationships, for example using the item “I don’t feel
comfortable opening up to romantic partners”. The sec-
ond dimension captures anxiety in close relationships, for
example using the item “I worry about being abandoned”.
The authors derived these items based on a factor analysis
using several existing self-report measures of adult roman-
tic relationships. The authors reported that the subtests have
Cronbach’s alpha of .94 and .91 for avoidance and anxi-
ety, respectively. Furthermore, in the paper proposing this
measurement instrument it was shown that the two dimen-
sions can predict theoretically appropriate target variables
(Brennan et al., 1998). All items were five-category Lik-
ert items, where the middle category was labeled “neither
agree nor disagree”. While this formulation should suggest
to the respondent that the middle category belongs to the
same scale as the other categories, this does not guarantee
that every respondent would use the middle category in this
way, and differential use can be investigated using the mix-
ture model. Responses of 1000 persons randomly sampled
from a larger sample were used for the analysis.

The mixture model was estimated using the Gibbs Sam-
pler with 10 chains with 10000 iterations each (including
5000 iterations of burn-in). With respect to the number of
iterations, we decided to stay on the safe side compared to
the simulation study by taking both a longer burn-in and
using more iterations for the post-burn-in, because compu-
tational time is less of an issue when only one data set needs
to be analyzed.

In addition to the mixture model, two non-mixture mod-
els were also considered: the gPCM-5 and the IRTree model,
both assuming that a single measurement model captures
the structure in the data (i.e., assuming IRT MI). Both mod-
els were estimated using the same estimation procedure
as for the mixture model, but where for all persons class
membership was fixed to that of the model that was con-
sidered. The relative fit of the three models was compared
using the deviance information criterion (DIC), which was

Table 3 Model comparison for the three models fitted to the expe-
rience in close relationships data: Expectation of the deviance (D;
measure of model fit), effective number of parameters (pp; measure
of model complexity), and deviance information criterion (DIC)

Model D PD DIC

gPCM-5 86993.17 2010.87 89004.04
IRTree 86441.34 2633.07 89074.41
Mixture 82275.47 2294.56 84570.03

used because it adequately takes the complexity of hierar-
chical models into account (Spiegelhalter, Best, Carlin, &
van der Linde, 2002). Model complexity is captured by the
number of effective parameters pp, defined as the differ-
ence between the deviance averaged across iterations and
the deviance computed for the parameter estimates. In hier-
archical models pp is typically smaller than the number of
parameters present in the model, because the contribution
of a parameter to pp depends on the ratio of the informa-
tion about the parameter in the likelihood to its posterior
precision (Spiegelhalter, Best, Carlin, & Van der Linde,
1998).

The mixture model performed better than the other two
models in terms of the DIC (see Table 3). The mixture
model’s complexity (pp) was higher than that of the gPCM-
5, but lower than that of the IRTree model, where 6y is
estimated for every person. The mixture model has a lower
pp than the nonmixture IRTree model due to the fact that
in the former 6ys do not contribute (or hardly contribute) to
pp for the persons who are classified in the gPCM-5 class
with high certainty, because for these persons 6 is effec-
tively sampled from the prior and is not informed by the
data. The fit of the mixture model (D) was much better than
that of the other two models, outweighing (as indicated by
the DIC) the increase in complexity in switching from the
gPCM-5 model to the mixture model. These results indicate
that using the mixture model rather than either one of the
two non-mixture models may be preferred.

For the mixture model, based on the estimates of the
Zps, 340 persons were assigned to the IRTree class, and
660 persons were assigned to the gPCM-5 class. Figure 4
shows the estimated posterior probabilities of belonging to
the IRTree class with persons ordered based on this proba-
bility. Most of the persons were assigned to one of the two
classes with high certainty. Among the persons assigned to
the IRTree class and to the gPCM-4 class, 79% and 88%,
respectively, had a posterior probability of belonging to the
corresponding class higher than .95.

To investigate whether it is plausible that the improved
fit that was obtained when using the mixture model instead
of either nonmixture model was due to working with struc-
turally different measurement models in the two classes, we
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7 2 is interpreted as a nonresponse option), the items do rea-
g sonably well in differentiating persons on this tendency to
> ° produce noninformative responses (6p) for persons belong-
E = ing to the IRTree class, and—as indicated by the interquar-
g tile range of the «;gs — the items also differ in the extent
g 3 to which they capture this tendency. Furthermore, the item
g o location parameter §; s showed notable variance across items
é ° (standard deviation of 0.76), and ranged from 0.82 to 3.94
4 2 (mean of 2.13). This indicates that there was a substantial

T T T T T
200 400 600 800 1000
Persons (ordered)

o

Fig. 4 Posterior probabilities of belonging to the IRTree class for the
Experience in close relationships data. Each point represents a person,
with persons ordered based on their posterior class probability

performed a post-hoc analysis in which for each obtained
class separately we fitted both the IRTree model and the
gPCM-5, and compared both models in terms of fit and DIC.
The idea behind this post-hoc analysis was that if a single
measurement model would have been appropriate in both of
the two classes, the DIC should indicate that measurement
model to be preferred in both classes. As can be observed in
Table 4, for the group of persons that were assigned to the
IRTree class by the mixture model, fitting a gPCM-5 instead
of an IRTree model greatly worsens the fit, and the DIC indi-
cates that the IRTree model is much preferred for this class.
Vice versa, for the group of persons assigned to the gPCM-
5 class fit is worsened when the IRTree model rather than
the gPCM-5 is fitted to the data, and the DIC indicates that
for this class the gPCM-5 is preferred. These results suggest
that using these structurally different measurement models
for the two classes is indeed necessary to adequately model
the response data.

Consideration of the parameter estimates obtained using
the mixture model yielded substantively relevant results that
would have been unavailable if only a gPCM-5 would have
been used. For the mixture model the median of the esti-
mated «o;ss was equal to 0.70, with an interquartile range
of [0.55;1.26]. Thus, while the items were not designed
to measure persons’ tendencies to avoid giving informa-
tive answers (i.e., selecting the middle category when this

Table 4 Model comparison of the gPCM-5 and IRTree model con-
sidered separately for both classes obtained based on the mixture
model

Class Z = 0: IRTree Class Z = 1: gPCM

Model D pp  DIC D PD DIC

gPCM-5 30361.66 771.84 31133.50 52484.74 1370.02 53854.75
IRTree 29715.09 994.53 30709.63 52671.08 1749.36 54420.44
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difference between the items in terms of how likely persons
were to provide a noninformative response. While inves-
tigating whether certain item properties can be linked to
higher or lower values of §;5 is beyond the scope of this
example, such study might be of interest to test construc-
tors who likely want to avoid designing items that evoke
noninformative responses.

Interestingly, the correlation between 6y and the ‘avoid-
ance’ dimension of the ECR is estimated to be .27 (with
[.14,.40] as the 95% credible interval). This indicates that
persons who show a high degree of avoidance in close
relationships also display a stronger tendency to avoid giv-
ing informative responses, at least on this questionnaire
about close relationships. This can be seen as providing
some indication that 6y might capture a substantively rele-
vant dimension that can be related to other relevant person
attributes, such as the avoidance tendency that the scale was
designed to measure. These findings invite further research
into the nature of the tendency to produce noninformative
responses as captured by 6p and its relation to other traits.

Discussion
The mixture model for Likert data

This manuscript considered the application of the proposed
general mixture IRT framework to address between-person
differences in how the middle response category on Likert-
scale items is interpreted and used. For this, a mixture of
a gPCM and an IRTree model was used, where the IRTree
model assumes a person-specific ‘information-avoidance
tendency’ to influence the usage of the middle response
category. By using a mixture of two structurally different
measurement models, the model can accommodate the pos-
sibility that persons show qualitative differences in their
usage of this category and take this into account for the
measurement of the attribute(s) of interest.

It may be noted that our approach to modeling the usage
of the middle category in Likert-scale items is distinct from
but related to other approaches that consider response styles
and nonresponse choice (Raaijmakers et al., 2000; Moors,
2008). That is, like others have suggested before, we relate
differential usage of the middle category on Likert-scale
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items to a person-specific response tendency that is assumed
to be continuous, but we predict that the way this ten-
dency displays itself will depend on the interpretation of the
response categories: Only if a person considers the middle
response category to constitute a viable nonresponse option
will its usage depend on that person’s tendency to provide
a noninformative response. As a consequence, a person’s
response tendency cannot simply be assessed by considering
differential use of the middle category, but rather requires us
to model a person’s interpretation of that middle category.
The simulation study suggested that if such between-
person differences in interpretation and use of the middle
category exist, using this mixture model can notably reduce
the bias in the person estimates. The biggest gain was
obtained for persons belonging to the IRTree class, for
whom the gPCM-5 was not the correct model, resulting in
severe bias when the mixture was not taken into account.
However, the estimates obtained for persons in the gPCM-
5 class improved as well, due to improved recovery of the
gPCM-5 item parameters as a consequence of not including
persons grouped in the IRTree class for the estimation of
those parameters. The results of the simulation study indi-
cate that when the test is not too short, the procedure is able
to classify most persons with a high degree of certainty.
The application of the proposed mixture model to empir-
ical data suggested that using such a mixture model can
improve measurement in practice, as the mixture model
outperformed both non-mixture models. Using the mix-
ture model may also provide relevant additional informa-
tion about persons (estimates of class membership and
information-avoidance tendency) as well as items (the
extent to which the item evokes noninformative responses)
that may be of interest to researchers or test constructors.

The general mixture IRT framework

In this article we proposed a general mixture IRT framework
that allows researchers to use a mixture of structurally dif-
ferent measurement models. The approach was illustrated in
the context of a two-class mixture model for Likert data, but
it can readily be applied using any set of measurement mod-
els for which Bayesian estimation procedures are available
and for which the concurrent estimation of these different
models is tractable. Usage of these mixture models may lead
to improved recovery of the relevant person parameters (i.e.,
more accurate information about the attributes of interest) as
well as improved understanding of the response processes
that are involved (e.g., about the differential use of response
categories).

While this manuscript has considered a particular appli-
cation of the general mixture IRT framework, it is to be
expected that the framework can be relevant in a variety
of other contexts. Whenever different response processes

are expected to play a role for different persons, it may
be relevant to consider using a mixture of structurally dif-
ferent measurement models. That is, assuming the same
measurement model (albeit with different item parame-
ters) to adequately capture qualitatively different response
processes may not be realistic, and a mixture of differ-
ent models may do more justice to the actual underlying
processes and improve measurement. For example, in the
context of educational measurement researchers often have
to deal with the fact that items on educational tests can be
solved using different strategies, some of which may only
be known to a subgroup. Likewise, students may differ in
their willingness to guess on multiple choice items, or may
differ in the way they guess (i.e., random guessing ver-
sus informed guessing). The framework may also be useful
for dealing with the effects of confounding factors such as
dyslexia or test anxiety, which may only play a role for
part of the sample. Examples such as these are likely to be
present in many other fields as well.

It may be noted that for the successful application of the
framework the measurement models should result in differ-
ential predictions for the expected response patterns, result-
ing in differences in the likelihood for individual response
patterns. That is, for the different measurement models to
be separable, they should be empirically nonequivalent. The
larger the differences in prediction are, the more easily per-
sons are assigned to the right class and the more can be
gained from using a mixture of measurement models instead
of a single model. While the simulation results obtained for
the specific mixture model that was considered here were
encouraging, more research is needed to provide a complete
picture of the general conditions under which the procedure
performs well.

As a recommendation, we suggested to consider mea-
surement models linked through the inclusion of a shared
set of latent variables. While assuming this weak form of
MI is not necessary for the mixture model to be estimable,
it has strong appeal from the measurement point of view, as
it entails that the same attribute is measured in each class.
Whether assuming this weak form of MI is reasonable will
need to be assessed in the context of the application at hand,
which should be tested empirically (e.g., see Messick, 1989,
1995).

It can be noted that even if the model in each class mea-
sures the same attribute, that in itself does not guarantee
that the latent variables obtained for these models are on the
same scale, an issue that holds for mixture IRT models in
general (Paek & Cho, 2015). In our application of the pro-
cedure we took as a starting point that the latent variable has
the same distribution in both classes (i.e., equal mean and
variance), and fixed the two scales through the distribution
of the latent variables. This may be defensible when there is
no reason to assume that class membership is related to the
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trait that is measured. However, one can consider creating a
common scale through the item-side rather than through the
person-side of the model if one suspects class differences in
the distribution of the shared latent variable(s).” In decid-
ing which way of fixing the scales is preferable, one will
have to consider the plausibility of these different possible
constraints.

One limitation of the approach as it was presented is
that it assumes that there is a person mixture, rather than a
person-by-item mixture. This corresponds to assuming that
persons can be assigned to a single class for all items, and
precludes the possibility of class-switching across items.
In the context of the two-class mixture model for Likert
data this may make sense, given that the model is supposed
to capture different interpretations of the middle category,
which one can assume persist across items. However, if one
considers for example different measurement models that
are supposed to capture different response styles, or the use
of different response strategies, then it may make sense to
allow for switching of classes across items. While theoreti-
cally appealing, this may turn out to be problematic from a
practical point of view, because allowing for person-by-item
mixtures means that class membership needs to be estimated
separately for each item, based on very little information.
It would be interesting to explore whether it can gener-
ally be feasible to consider such person-by-item mixtures
in practice. A possibly more feasible (but also less flexible)
alternative would be to consider person-by-subscale mix-
tures, where class membership is taken to be fixed within a
subset of the items but class switching across subscales is
allowed.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix

Gibbs sampler for the mixture model for Likert data
Before the parameters can be sampled from their full con-
ditional posterior distributions, initial values need to be
specified. Random starting values are used for the person
class memberships:

zg ~ Bernoulli(.5), (11)

5In the case of the mixture model for Likert data, one could for exam-
ple fix the scales through the item-side of the models by constraining
the threshold parameter ; of the gPCM-5 and the gPCM-4 to have the
same mean and variance, and freely estimating the distribution of 8,
for one of the classes.
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where the superscript 0 denotes that it is the initial value.
An identity matrix Ip is chosen for the covariance matrix
of person parameters. The continuous person parameters are
sampled independently from A(0, 1). The initial values of
all item slopes are equal to 1, and the initial values of all item
difficulties in the 2PL are equal to 1. The threshold param-
eters in the gPCM-m and gPCM-(m — 1) (except §;17 and
8i1r) are spaced with equal distance on the interval between
-1.5and 1.5:
3 3(m —2)

8 = (0, -15, (—1.5+—>,...,<—1.s— — ),1.5},<12>
m—1 m—1
3 3m —3)
0
0 = —1.5,(-1. | —15 - Sha3
8% = {0, 15,( L5+ — 2), < 15— ="— ),15}(1)

At each iteration the algorithm goes through the follow-
ing steps:

Step 1 For each dimension d € [1 : D], for each person p
sample 6,4 from its full conditional posterior (i.e., given
the current values of all other parameters):

POpa 1 Xp, 050, 0 pay, ar, ar,8R, 87, Z), T), (14)

where X, is the response vector of person p, and 8 )
is the vector of person parameters of person p in dimen-
sions except 0 and d.

The sampling process at Step 1 differs depending on
the class membership of person p. If Z, = 1, then
the following scheme is used: First, generate a candidate
value 6* from

p(gpd |9p07 op(d)s E) = N(M;v ajz)s (15)

where 1% and a;,“z are the conditional mean and the con-
ditional variance given 6 ,(4). Second, generate a vector
of responses to the items in dimension d, denoted by Y,
according to the gPCM-m (see Equation 1) given 6* and
the current values of a g and § g. Third, generate a random
number u ~ U(0, 1). The candidate value 6* is accepted
as the new value of 6,4 if

u<exp | @ —0p) | D eirXpi =YD ||. (16)
iely
where 1; denotes the set of items in dimension d.

If Z, = 0: First, generate a candidate value 6* from:
N (,u;, ad*2), Second, generate a vector of responses to
the items in dimension d, denoted by Y**, according to
the gPCM-(m — 1) (see Eq. 4) given 6* and the current
values of a7 and 87. Third, generate a random number
u ~ U0, 1). The candidate value 6* is accepted as the
new value of 6,4 if

u<exp | (0*—60,q) Z(l =Xy (X —=Y[™)
iely

a7
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Step 2 For each person p sample 6,0 from its full condi-
tional posterior:

p(gp()'Xp’opaaSvSS’ vaz)' (18)

For p € {p : Z, = 1} sample from: 6,y ~
N (/L(’;, oy 2) . The posterior distribution does not depend
on the data for the persons p € {p : Z,, = 1}.

For p € {p Z, = 0}: First, generate a can-
didate value from: 8* ~ N (M(*;,U(’)"z). Second, gen-
erate a vector of responses to all items, denoted by
Y*, according to the 2PL (see Eq. 3) given 6* and
the current values of ag and §g. Third, generate a

(1 —7) [ m (Xf,, |60, ais, 5is) (hz(X;}k [6pd;, it 5iT)>

random number u ~ U(0, 1). The candidate value 6*
is accepted as the new value of the parameter if

u < exp ((9* — 6,0) (Z ais (X — Y,-*))) . (19

l
where 0, is the current value of the parameter. Other-
wise, the current value is retained.

Step 3  For each person p sample the person’s class mem-
bership Z, from its full conditional posterior
P(Zp1Xp,0p0,0p,0p, a5, 07,8g, 85,87, 7m),  (20)
which is a Bernoulli distribution with the probability:

i T [T (X pi16pa;, ik, 8ir)

1
Pr(Z,=1) = , 21
(Zp =1) o, 21
where
1-X7,
(22)

are the posterior odds of belonging to the IRTree class,
which are the product of the prior odds and the ratio of
likelihoods of X, under the two models.

Step4 Sample 7 from its full conditional posterior p (| Z)
which depends only on the current class memberships of

the persons. This conditional posterior is a beta distribu-
tion:

B<1+ZZ,,,1+N—ZZ,,>. (23)
p p

Steps 5-7 For each item i sample its slope parameters «; g,
a;s and ;7 from their full conditional posterior distributions:

V4
p@ir |Xi, 04, 8ir, Z) o< p(eir) [ [ (8(Xpi |6pa> ik, i)™, (24)
p
i 1-z,
pl@is 1Xi. 80,815, 2) o plais) [T (1 (Xpi 160, i, 8i5)) " (25)
p

plair | X, 04, 8i7,Z) o< plair) l_[ (hz (Xf,’f |0pd; > it 8is
p

))(I_X;i)(l_zp)

, (26)

where X; is a vector of responses of all persons to item
i, 84 is a vector of person parameters of all persons
on dimension d;, @ is the vector of person parameters
of all persons in the first node of the IRTree. Sampling
from each of these posteriors is done using a Random
walk Metropolis algorithm with a log-normal proposal
centered around the log of the current value (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings,
1970).

Steps 8-10 For each item i sample its threshold param-
eters 8;g, 8;7 and the difficulty &;s from their full
conditional posterior distributions. To make the sampling

procedure more stable, instead of sampling the threshold
parameters we sample the intercept parameters:

Bikr = —oiTdikt, Yk € [2 1 m], 27
Bis = —aisés, (28)
Bikr = —irSikr, Yk € [2: (m — D)]. (29)

from their full conditional posteriors

PBikr 1 Xi, 04, air, $iyr, L), Y k € [2:m], (30)
p(Bis | Xi, 00, ajs, Z), 31)
pBikt | Xi, 04, aiT, 8igyr. L), Vke [2: (m—1)], (32)
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where 8; g and 8; k)7 are vectors of all the item thresh-
old parameters of item i except the k-th threshold in the
gPCM-m and the gPCM-(m — 1), respectively. Sampling
from each of the posteriors is done using a Random walk
Metropolis algorithm with a normal proposal centered
around the current value. It may be noted that due to the
transformation the priors of the intercept parameters are
not independent of the slope parameters:

pBirr | ait) = N (Bixr; 0, 10a7y) (33)
p(Bis |ais) = N(Bis; 0, 10a) (34)
p(Bikr | @ir) = N (Bikg: 0, 10a7g) 35)

The sampled parameters are then transformed back to the
original parameters.

Step 12 Sample the covariance matrix of the person
parameters from its full conditional posterior p(X |6),
which given the inverse-Wishart prior is known to be an
inverse-Wishart distribution (Hoff, 2009):

T ~IW (Ippi+ ) (00.0,)0p0.0,)". D +3+ N
p
(36)

Step 13 Because in IRT models only the product of the
slope parameter and the person parameter is identified, at
each iteration we re-scale the model parameters to equate
the variances of the person parameters to 1:

epdajlz_%, Vpe[l:N]Vd€[0: D]
QiR —> QiR\/Zd;q;, Vi € [1:n]
ais — ais/2o0, Vi €[l:n] (37
oiT —> Oll'T,/Edidi, Vi e [1 :n]
D)

de .
Sde > glie—, ¥d,e€[0: D]

At the initialization the starting values of the person
and item parameters might be far from where the pos-
terior mass is concentrated. To make sure that at the
beginning of the algorithm one of the classes does not get
empty due to the item and the person parameters in that
class having suboptimal values after the initialization, in
the first 200 iterations Step 3 of the algorithm is omitted.
That is, in the first 200 iterations we sample not from the
conditionals of the joint posterior in Eq. 8 but from the
conditionals of

(00,0, a7, 87, as, 85, ag, 8z, T, 7| X, Z0), (38)

meaning that for the first 200 iterations Z does not get
updated. After the first 200 iterations the sampled param-
eters have gotten closer to where the posterior density
is concentrated, and the full algorithm starts including
sampling of the person class memberships.

@ Springer
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