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Abstract The variable criteria sequential stopping rule
(veSSR) is an efficient way to add sample size to planned
ANOVA tests while holding the observed rate of Type I errors,
&, constant. The only difference from regular null hypothesis
testing is that criteria for stopping the experiment are obtained
from a table based on the desired power, rate of Type I errors,
and beginning sample size. The veSSR was developed using
between-subjects ANOVAs, but it should work with p values
from any type of F test. In the present study, the «, remained
constant at the nominal level when using the previously pub-
lished table of criteria with repeated measures designs with
various numbers of treatments per subject, Type I error rates,
values of p, and four different sample size models. New power
curves allow researchers to select the optimal sample size mod-
el for a repeated measures experiment. The criteria held «,
constant either when used with a multiple correlation that var-
ied the sample size model and the number of predictor vari-
ables, or when used with MANOVA with multiple groups and
two levels of a within-subject variable at various levels of p.
Although not recommended for use with x> tests such as the
Friedman rank ANOVA test, the vc¢SSR produces predictable
results based on the relation between F and x°. Together, the
data confirm the view that the veSSR can be used to control
Type I errors during sequential sampling with any # or F-sta-
tistic rather than being restricted to certain ANOVA designs.
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The goal of this article is to extend the use of the variable
criteria sequential stopping rule (veSSR; Fitts, 2010a, b,
2011a, b) to include a variety of experimental circumstances
involving repeated measures from the same subjects. The
veSSR is a tool to help preclinical and behavioral researchers
working with small sample sizes (< 40/group) to conserve
sample size and to control the Type I error rate when
conducting experiments using ¢ tests or F tests. Sequential
stopping rules (SSRs) are better known in clinical trials, where
it has long been recognized that the completion of a large trial
all the way to the expected ending sample size may be uneth-
ical. If the trial is doing harm, the experiment must be stopped
early. If the treatment is performing better than expected, the
trial should be stopped so the placebo group can receive the
benefit of the new treatment. The method is efficient with
sample size.

A problem arises when researchers use informal stop-
ping procedures (one cannot call them “rules”) instead of
formal ones. Naive use of informal stopping procedures
contributes to the proliferation of false positive results in
the literature and threatens the validity of statistical conclu-
sions (Garcia-Pérez, 2012).

As a simple example of the problem and its solution,
suppose a researcher designs an experiment to discover the
effect of a drug on a behavior. Two groups of subjects will
be tested, one with the drug and one with a placebo.
Instead of using the conventional method of testing all N
subjects from the power analysis, the researcher naively
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decides to use fewer subjects in hopes that the significant
effect can still be detected. Perhaps the drug is expensive or
the subjects are rare. If the first ¢ test with the smaller
sample size is not quite significant at the .05 level, the
sample size can always be augmented gradually to include
the full N subjects. This method is extremely efficient with
sample size, because it is often successful if there is a true
effect of the drug. What the naive researcher does not re-
alize is that the Type I error rate (e.g., o« = .05) is easily
inflated to double the expected rate. This inflation can read-
ily be demonstrated in simulation studies. See Fitts (2010a,
2011a) for a detailed numerical example of how this rate
becomes inflated.

In many circumstances, there may be ethical reasons to
limit sample size as much as possible (Fitts, 2011a). In such
cases, it is less obvious that a strict adherence to the formal
rules of the null hypothesis test is the best choice. The solution
is to use a SSR in conjunction with the hypothesis test to allow
the addition of sample size in graded increments without in-
flating the rate of Type I errors in the experiment. A simple
method to accomplish this is to reduce the criterion p value,
like the Bonferroni correction for multiple contrasts, so that
the Type I error rate does not exceed .05 regardless of what
happens during the sequential testing (Frick, 1998).

The vcSSR is a method and a set of tables (veSSR Tables:
Table 2 in Fitts, 2010a; Table 1 in this paper, abridged; or full

Table1 Lower and upper criteria of the veSSR for four sample size models and four levels of o used in this study, reprinted in part from 16 models in

Fitts (2010a)

Type I error rate o

.005 .010 .050 .100
Lower/upper bound model n Added Lower Upper Lower Upper Lower Upper Lower Upper
4/18 1 .00086 35 .002 2 .015 .26 .035 .36
2 .001 45 .0025 219 .015 41 .045 3
3 .0013 .39 .003 31 .025 .19 .045 .39
4 .00156 425 .004 .15 .03 .16 .055 3
5 .002 2 .004 .35 .03 2 .06 32
6 .002 26 .004 .39 .025 35 .06 33
6/18 1 .00094 4 .002 5 .0165 24 .039 33
2 .0012 32 .0027 .26 .018 3 .044 33
3 .0014 33 .003 32 .02 3 .049 32
4 .0016 25 .00375 2 .023 27 .052 33
5 .0019 5 .004 .35 .025 3 .059 32
6 .0019 .0042 3 .026 3 .059 33
8/32 1 .00078 . .00187 238 .015 25 .035 35
2 .00094 31 .0021 3 .015 34 .036 4
3 .0011 3 .0025 27 .019 .26 .04 4
4 .0012 43 .0028 .25 .019 3 .05 .29
5 .0014 A5 .0033 235 .025 . .05 34
6 .00156 219 .0031 355 .03 15 .045 A5
7 .0017 23 .0039 2 .025 25 .05 41
8 .0018 2 .0039 23 .026 245 .055 .34
10/40 1 .00078 .35 .0018 .24 .015 .25 .035 35
2 .00094 .29 .002 3 .015 32 .04 33
3 .001 33 .0024 24 .019 23 .043 33
4 .00125 26 .0028 21 .02 24 .045 33
5 .0013 24 .0028 27 .02 27 .049 31
6 .0014 22 .0029 34 .021 28 .049 33
7 .0015 23 .0031 37 .023 25 .049 36
8 .00164 38 .0038 2 .024 27 .05 4
9 .0018 2 .00375 275 .025 25 .05 4
10 .0018 2 .0037 28 .025 .26 .05 42
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vcSSR Tables in Supplement 1) that allow biomedical and
behavioral researchers to conduct ordinary null-hypothesis
testing experiments with small sample sizes in an efficient
manner by adding sample size in stages until the experiment
is stopped (1) because an obtained ¢ or F statistic is significant
at a desired Type I error rate, « (.005, .01, .05, or .10), (2)
because the p value is so high it is deemed futile to continue,
or (3) because the further addition of sample size would ex-
ceed a predetermined maximum value. The method uses, on
average, up to 30 % fewer subjects than the “Fixed Sample
Rule” (FSR) that predetermines sample size from an a priori
power analysis and conducts the experiment in a single step
(i.e., as null hypothesis tests were originally intended to be
used). Numerous examples of how and when to use the
vcSSR are presented in Fitts (2011b).

The veSSR Tables provide criteria based on the desired
beginning and ending sample sizes, the number of subjects
that will be added at each step (n added), and the a priori
Type I error rate, «. The two criteria for an experiment consist
of a lower criterion for significance and an upper criterion for
“futility” for each set of conditions. The criteria were deter-
mined by computer simulations to hold the observed rate of
Type I errors, «, (observed alpha), at the selected o through-
out the experiment. The criteria are “variable” between these
sets of conditions because they were selected individually to
hold «, constant at &, not merely to assure that &, will be less
than «. For that reason, the criteria maximize the power of the
test for a given set of conditions (see Fitts, 2010a and 2011b
for comparisons with other formal SSR procedures). Stopping
rules are available for sample sizes beyond those that are
available for the veSSR, such as CLAST (Botella, Ximenez,
Revuelta, & Suero, 2006; Braschi, Botella, & Suero, 2014;
Ximenez & Revuelta, 2007), but under identical conditions
CLAST is less powerful than the veSSR. Other widely avail-
able stopping rules are more appropriate for large studies such
as clinical trials.

To continue with the example of the two-sample drug test,
the researcher could conduct the test sequentially using the
vcSSR. Suppose the researcher wants to use a Type 1 error
rate of o« = .05 (two-tailed), an anticipated effect size of 1.2
pooled standard deviation units (i.e., Cohen’s d), and a desired
power of at least 80 %. The customary power analysis sug-
gests a total sample size of 24, with 12 per group. The formal
way to select a sample size model with the vcSSR is to consult
Fig. 6 in Fitts, 2010a for an independent groups ¢ test with
these parameters (alternatively, one can now consult
Supplement 1 (see Electronic Supplementary Material
(ESM); see instructions in Supplement 2). The figure suggests
a sample size model of either 6/18 or 7/21. These are the lower
and upper bounds of sample size. For the 6/18 model, testing
is begun with six subjects per group. Sample size can be added
according to the rules of the vcSSR provided the sample size
never exceeds 18 subjects per group.
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A quick-and-dirty way to estimate the starting sample size
— which often works well — is simply to take half of the total n
per group suggested by the customary power analysis (see
Supplement 2, ESM). In this case, 12/2 = 6, so the researcher
would select one of the available models beginning with six
per group, i.e., 6/12 or 6/18, and the researcher can skip the
vcSSR power curves. This is the method for selecting the
initial sample size in CLAST, and, as mentioned previously,
the veSSR s a little more powerful than CLAST under iden-
tical conditions (Supplement 2, ESM). Checking the veSSR
tables for model 6/18 with & = .05, and assuming the research-
er will add one subject per group at each iteration (n added =
1), then the lower and upper criteria for the veSSR are .0165
and .240 (see Table 1).

The researcher then begins testing with six per group and
conducts a ¢ test. If p < .0165, the experiment is stopped as
significant with & = .05. If p > .240, the researcher stops the
experiment “for futility” and retains the null hypothesis.
Otherwise, the p value is “uncertain,” and n added subjects
can be added to each group provided the total of 18 per group
for this model is not exceeded by adding the full n added
subjects. The new p value from the augmented sample size
is then tested according to the same rules. Typically, the ex-
periment stops because the null hypothesis was rejected, be-
cause the p value was in the “futile” range, or because adding
n added subjects would exceed the upper bound. In the latter
two cases, the null hypothesis is retained. The researcher is
always free to stop the experiment at any time without
rejecting the null hypothesis, because early stopping for futil-
ity can never inflate the Type I error rate (Frick, 1998).

If, instead of adding 1 per group, the researcher uses n
added = 4 per group per iteration, from Table 1 the new
criteria would be .023 and .270. Possible sample sizes would
be four, eight, 12, and 16 per group, after which the testing
would have to stop because the addition of four per group
would exceed 18. The criteria are a little less stringent (i.e.,
.023 > .0165) because there are fewer possible tests (only four
possible tests instead of 13 with n added = 1). There are many
kinds of constraints to planned experiments, and researchers
are not always able to test after each individual subject is
added. Therefore, various options for group sequential testing
are available with the vcSSR.

The ability of the published tables of the veSSR to hold «,
stable at the desired level has been validated with a between-
subject completely random ANOVA with up to 20 groups,
with either a between-subject or within-subject ¢ test, with
the Welch ¢ test, with unequal sample sizes, and with a loss
and replacement of subjects (Fitts, 2010a, b). The method has
not until now been validated with repeated measures ANOVA
except for a within-subject ¢ test with a population correlation
(rho, p) of .5.

In this paper, the vcSSR is used in large simulations to
validate the ability of the existing vc¢SSR criteria to hold «,
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stable with repeated measures ANOVA when the null hypoth-
esis is true regardless of the number of treatments or the cor-
relations between the scores. Power tables are provided for
effect sizes (Cohen’s f; Cohen, 1988) of .1 to .75, thus cover-
ing relatively small and large effects, with different numbers
of measurements per subject and different values of p. No new
sets of criteria are necessary for repeated measures ANOVA.

Limited numbers of simulations were conducted to confirm
that the same criteria of the veSSR held the «,, stable when a '
test was generated from ANOVAs to test whether the percent-
age of explained variance, Multiple R*, was different from
zero, or when a F test was generated from MANOVA tests
with multiple independent groups and two levels on a within-
subjects variable. The relation between F and x2 is discussed,
and data are presented from tests where the p value from a
Friedman x repeated measures test was used to control stop-
ping with the veSSR. These data demonstrate why the veSSR
should not be used with p values from tests that do not use the
t or F distribution.

Method
Simulations

Simulations were conducted to determine the behavior of var-
ious repeated measures models with the original criteria from
Table 2 of Fitts (2010a). Each simulation to estimate the ob-
served power was conducted 10,000 times and each simula-
tion to estimate the observed «, was conducted 40,000 times
(4 x 10,000).

Custom programs were designed using the C pro-
gramming language using 64-bit double precision arith-
metic (Fitts, 2010a). Data were sampled using normal
deviates generated by function gasdev() modified to
use a pseudorandom number generator based on
"Ran2()" (Press, Teukolsky, Vetterling, & Flannery,
1992). The function was seeded on the first call using
the system clock so that each sequence would be dif-
ferent. Because of the seeding and the large period of
the generator it is improbable that any long sequence of
numbers was correlated or repeated in these simulations.
Normal deviates were then transformed linearly using
the desired means and standard deviations to create the
generated samples.

Of the entire set of 16 combinations of lower/upper
bounds (sample size models) available in Fitts (2010a), 1
selected four models for testing to cover a wide range of
sample sizes, 4/18, 6/18, 8/32, and 10/40, where the first
number is the starting sample size and the second number
is the maximum sample size that will not be exceeded in
the experiment. Table 1 includes the variable criteria for
the four models used in most studies in this article

(abridged from Fitts, 2010a, Table 2). The full criteria
for all models are included in Supplement 1 (ESM).

The ranges of n added per group per iteration were 1-6 for
models 4/18 and 6/18, 1-8 for the 8/32 model, and 1-10 for the
10/40 model (see Table 1).

The standardized effect sizes (f, Cohen, 1988) used in the
simulations included 0 (null), 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, and 0.75 for
multigroup ANOVA. The f'is calculated by dividing the stan-
dard deviation of the treatment means by the pooled standard
deviation.

The four levels of & were .005, .01, .05, .10.

New to these simulations were the inclusion of multiple
correlated samples, so several values of p were tested (.0, .1,
3,.5,.7,and .9).

Independent simulations of 10,000 experiments were
conducted for each of the four models at each of the 15
effect sizes, each of the six values of p, and each of the
available levels of n added for that model. Each simu-
lated experiment was conducted per the rules of the
vcSSR. That is, the experiment was stopped if the p
value from the repeated measures ANOVA on the treat-
ments was in the significance range or in the futility
range, or if the maximum sample size was reached;
otherwise sample size was augmented according to the
selected level of n added and the ANOVA was repeated.
The program recorded the p value and sample size at
stopping, so it was possible to calculate the empirical
proportion of rejections (EPR) of the null hypothesis
and the sample size at which the null hypothesis was
rejected. When the null hypothesis concerning differ-
ences among treatment means was true in the popula-
tion (effect size 0.0), the EPR was an estimate of «, for
the repeated measures ANOVA. When the null hypoth-
esis was false, the EPR was an estimate of the power of
the test at that selected effect size and level of correla-
tion among the scores. Testing a range of effect sizes
and correlations allowed the construction of power
curves for the repeated measures ANOVA.

Generating correlated data in multiple samples

The goal was to generate correlated data among multi-
ple sets of treatments. To satisfy the assumption of
sphericity for the ANOVA with repeated measures, the
covariances among the scores should be similar. To ac-
complish this, each subject in an experiment was ran-
domly assigned a “true z-score” that was never used in
the experiments. Each new measurement for a subject
was generated by creating a regressed score from the
true z-score by multiplying the true z-score by the
square root of p and then adding a random error gen-
erated by multiplying a random normal z-score by the
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square root of 1 minus p. That is, in C pseudocode for
the ith subject:

truescore[i] = random_z() *sqrt(p);

and later for the jth new correlated variable:

newscore[i][j] = truescorel[i] + random_z() *sqrt(1—p)

An identical method was used by Corey, Dunlap, and
Burke (1998). Treatment effects of varying z-score sizes were
then added to each score of a given treatment without affecting
the correlations among the scores.

The method should generate an arbitrary number of treat-
ments, k, where the average correlation in the bivariate corre-
lation matrix for inter-treatment scores is equal to p with only
a tiny negative bias, which is attributed to the procedure of
averaging the correlations in a matrix, not to the method of
generation of correlated scores (Corey et al., 1998). The mul-
tiple R generated from such simulations should behave as
expected from the known characteristics of the unadjusted
multiple R, i.e., the multiple R should vary per the size of p
but also show bias per the number of variables in the analysis
and sample size (McNemar, 1969). The number of unique off-
diagonal correlations included in the average was k(k-1)/2,
and varied from six with four levels to 45 with 10 levels of
the treatment variable. The calculation of the Multiple R as-
sumed arbitrarily that the initial level of the treatment variable
was the dependent variable and the rest were independent
variables. Multiple R was calculated using a modification of
the Doolittle solution (McNemar, 1969). Adjusted R? was
calculated by the formula:

Ry = 1) (V1) /0

where R? is the unadjusted R* and N is the sample size.

Simulation using .05 instead of the veSSR

To illustrate how badly o, becomes inflated by sequential
sampling with repeated measures when researchers use .05
as the criterion for significance instead of the variable criteria
provided in Table 2 of Fitts (2010a), simulations were con-
ducted at the extremes of sample size and numbers of treat-
ments (four or ten treatments in either the 4/10 or the 10/40
model) using .05 as the lower criterion and .36 (Fitts, 2010a,
1998) as the upper criterion (“BAD”). These were compared
with simulations using the proper criteria of the veSSR.

Simulation using veSSR with multiple correlation
Closely akin to the repeated measures ANOVA is the use of

the F-test to determine significance of the coefficient of deter-
mination of a multiple correlation, R?. Because the veSSR
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works with the F distribution itself instead of one single meth-
od of generating an F statistic, the veSSR method should be
useful in controlling sample size with multiple correlation. To
test this hypothesis, I generated new simulations of multiple
correlations, using the same method as for generating data for
repeated measures ANOVA, except that the p values used with
the stopping rules were those obtained from a F-test of the null
hypothesis that R* = 0.

Multiple correlation is sensitive to the number of predictor
variables relative to the number of subjects, so I used only the
larger 6/18, 8/32 and 10/40 vcSSR models with either three or
five predictor variables. This equates to four or six levels of
the treatment variable in repeated measures ANOVA, with the
first generated measurement taken arbitrarily as the criterion
and the remaining measurements as independent variables.
These two models were tested 10,000 times at each combina-
tion of six levels of p (.0, .1, .3, .5, .7, .9) and all available
levels of n added (see Table 1). For each model with three or
five predictors, data were generated for the number of subjects
at the lower bound, and a p value for the significance of
Multiple R* was generated. The rules of the veSSR were used
on the p value either to stop the experiment or to add subjects
per the value of n added. The EPR at each level of p was used
to determine either the observed «, or the power of the test to
reject the null hypothesis. The average number of subjects
required to reject the null hypothesis at each level of p and n
added was determined.

Simulation using veSSR with MANOVA

Simulations of MANOVA employed the same four veSSR
sample size models as for the repeated measures ANOVA.
The experimental design included one within-subjects vari-
able with two levels and four, six, eight, or 20 independent
groups. The Wilks’ Lambda was calculated and converted to
an approximate F statistic using the formula of Rao (1973, p.
556). The p values from the F tests were then saved and used
with the veSSR stopping rules as sample size was added to the
various groups at all of the available levels of n added (see
Table 1). Simulations included different values of p (0.0, 0.3,
0.5, 0.7, 0.9) and several effect sizes for the between-groups
component in addition to the null hypothesis of no difference
among any of the means. The mean differences for the within-
subjects component was always 0. The EPR under the null
hypothesis (Type I errors) and power to reject the null hypoth-
esis based on the F test of Wilks’ Lambda were recorded.

Friedman x2 test

F(df1, df2) is a ratio of two independent chi square variables
divided by their degrees of freedom, (x*/df1)/ (x*»/df2). With
infinite degrees of freedom in the denominator, F equals just
the numerator, le/dfl. This implies that the vcSSR criteria,
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which were developed using p values from F tests, should
come close to working well with p values from x* tests if
the sample size is very large. To test this hypothesis, and to
determine whether the vcSSR can be used with a p from a
Friedman x? test, I simulated the veSSR with eight sample
size models of varying sizes using the p values from
Friedman x? tests to control stopping. The method was iden-
tical to simulations with repeated measures ANOVA except
that the p value from the nonparametric test was used to con-
trol stopping. Each level of n added for each model was sim-
ulated 40,000 times when the null hypothesis of no differences
among the treatment means was true. Type I errors and de-
grees of freedom at stopping were recorded.

Results

Supplement 3 (ESM) includes a characterization of the
methodology to generate multivariate correlated data in
my custom C programs. The data demonstrate that the
methods are adequate.

Validation of vcSSR with repeated measures ANOVA

For the vcSSR criteria to be valid and useful with repeated
measures ANOVA, the existing criteria should yield an «,
very close to the nominal « (i.e., .005, .01, .05, or .10) when
the null hypothesis is true. When the null hypothesis is false
the veSSR method should yield significance with smaller
sample sizes on average assuming an optimal sample size
model has been selected.

Type I errors with repeated measures ANOVA

The observed «, under conditions of the four tested models
(4/18, 6/18, 8/32, 10/40) at four levels of o (.005, .01,
.05,.10) and six levels of p (.0, .1, .3, .5, .7, .9) are presented
in Fig. 1. The data are averaged over the available levels of n
added, which had no effect on «,, so each mean in the figure is
based on 60,000 to 100,000 simulated experiments. The groups
of six symbols at each level of treatment represent the different
values of p increasing from left to right. The observed rates of
Type I errors fit well with the nominal values of « in all models.
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Model 4/18

Model 6/18

(o)

Observed o

.05

o
—

.005

sy
o

.05

.01

.005

—veese0—Sesgfs— SeofesCodgfe——

p=.01,3 5709

eyt ——Geetiy —Sgtggy —Sutese —
——eeRage—GySety—Sg0teg — 000 —

——oagaty——aghes® —o¥g® —gaege0

——ogmty——wetes® —erfes —geetee
. egotop  Gofgu®  Goa%s  egtesd

Model 8/32

s euytty——Sagatt—aefag—

ot gaeity SR8ty ——¢tiey —

T_m | ' I |

Model 10/40

——Sosefe——ofigfay —S0000y —esen

T T

4 6 8 10

4 6 8 10

Treatments per Subject

Fig.1. The observed rate of Type I errors («,) of the four models
of the vcSSR used in the simulations as a function of the number
of treatments per subject and p. The existing criteria published in

Fitts (2010a) worked well to hold «, stable, and these were not
affected by the number of treatments or by the p used in the
simulated ANOVAs
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Simulation using .05 instead of the veSSR

Figure 2 illustrates the “BAD” method of sequential
sampling when sample size is added and tested each
time at the nominal level of «, in this case .05, instead
of using the correct criteria from the veSSR Tables. In
this figure, the data were averaged across all six levels
of p, which did not affect «, so the means are based
on 60,000 completed experiments where the experiment
was stopped because p was less than or equal to .05,
because p was greater than .36, or because the maxi-
mum number of subjects had been used (18 or 40 de-
pending on the model). This procedure mimics the prac-
tice used by many researchers who are unaware of the
inflation of alpha with sequential testing: they stop
when they achieve a significant result, when the p value
is so high that they believe additional subjects will not
help, or when the experiment has already consumed so
many subjects that the effect is no longer worth pursu-
ing. This higher probability of rejection of a true null
hypothesis leads to the increased publication of false-
positive results, confusion in the literature, and a loss
of effort and resources in unsuccessful replications. By
contrast, in Fig. 2, the criteria of the vcSSR hold «,
stable at .05 across sample size models and levels of »
added. The o, was unaffected by the number of treat-
ments included in the experiments, so it was the number
of tests, not the number of treatments, that inflated o,
with the BAD method.

Power with repeated measures ANOVA

The power of the veSSR with repeated measures ANOVA
to reject the null hypothesis at different effect sizes and
different levels of p at the .05 level of significance are
given in Fig. 3 for four and six treatments and in Fig. 4
for eight and ten treatments per subject. The curves can be
used to select an appropriate sample size model for a
repeated measures experiment given an estimate of the
overall effect size and the p. As anticipated, higher levels
of correlation among the variables increased power, and
power also varied with the number of levels of the treat-
ment variable, so different curves were necessary for the
different numbers of treatments.

Sample size comparison of veSSR with fixed stopping rule

Figure 5 illustrates the average savings in sample size
when using the veSSR instead of the FSR with an equiv-
alent amount of power and the same effect size. Sample
size calculations for the FSR employed the program
G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner,
2007). The 10/40 model with ten treatments is used in
the illustration, so the model obligates the use of at least
ten subjects. The average number of subjects is always
less with the vcSSR than with the FSR except in those
simulations with both large effect sizes and very high
correlations between the scores.

Sequential Sampling with .05 Criterion

—@—— BAD4 Tx4/18
-------- O~ BAD10Tx 4/18
——-wv—— BAD4 Tx10/40
—--—-—-- BAD 10 Tx 10/40
— & — VCSSR4Tx4/18
— —O—— VvcSSR 10 Tx 4/18
— —4—— VvcSSR 4 Tx 10/40
—O——  VveSSR 10 Tx 10/40

0.25
0.20
50
B 015 BAD
=
[0
(2]
Ke)
O 0.10-
VCSSR
0.05 —
0.00 ; ;
0 2 4

Fig. 2. Effect of sequential sampling on Type I errors using lower/upper
criteria of .05/.36 (“BAD”) in contrast to the values obtained for the
vcSSR in Fitts (2010a). Every opportunity to add sample size increases
the Type I error rate, and smaller values of n added allow more additions
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6 8 10 12

n added

to the sample size than larger values before reaching the maximum value.
The inflation of o, was also affected by the sample size model but not by
the number of treatments (Tx) in the model. The veSSR always held «,
stable at .05
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Fig. 3. Power of the vc¢SSR for repeated measures ANOVA at the .05 level with four or six treatments in the four models used in the experiment. Power

varies as a function of the sample size model, the p, and the size of the effect

Comparison of veSSR power between-subjects
and within-subjects

Figure 6 illustrates the sample size at the rejection of the
false null hypothesis as a function of the population effect
size f and the mean observed power. Included are both the
repeated measures simulations reported here with p = .0
and these same four models previously reported in
between-subjects simulations with the vcSSR in Fitts
(2010a, b). The relative efficiency of the repeated measures
simulations even at their worst level of power (i.e., p = .0)
is evident. As with a power analysis using the FSR, the
power of the repeated measures ANOVA with p = .0 and N
subjects per experiment is almost identical to the power of
the between-subjects ANOVA with N subjects per group
when the number of between-subjects groups equals the
number of within-subjects treatments (see drop lines to
the effect size-power axis in the figures). Between-subject
power curves are already available for 16 vcSSR sample

size models (Fitts, 2010a, b) and they can be used to cal-
culate the minimum power of repeated measures designs
(i.e., assuming p = .0). Correlations above 0 will provide
more power.

Simulation using veSSR with multiple correlation

Figure 7 illustrates power and sample size of the vcSSR
with multiple correlation at the .05 level with either three
or five predictors and the 6/18, 8/32, or 10/40 models. The
EPR under the null hypothesis, an estimate of «,, is given
for a p value of .0, and power is estimated for other values
of p. The data were averaged across levels of n added, so
they represent the means of 60,000 to 100,000 experiments.
Most notably for the present study, the «, was close to the
nominal «, .05. The maximum (i.e., worst) values of the
five observed «, at the four levels of « were .00549,
.01073, .05229, and .10784.

@ Springer



1996

Behav Res (2018) 50:1988-2003

8 Treatments a=.05.

Power

06
04 Vv

02 %

|

|

|

|
DD DO

mauwununn

o, wunN©

0.0
1.0

4/18
0.8

Power
-0
oo

0.2 ;E//!

0.0

00 01 02 03 04 05 06 07 0800 01 02 03 04 05 06 07 08

Cohen's f Effect Size

Fig. 4. Power of the vcSSR for repeated measures ANOVA at the .05 level with eight or ten treatments in the four models used in the experiment

Simulation using veSSR with MANOVA

As demonstrated in Fig. 8, the previously published values
of the vcSSR worked well to control Type I errors during
simulated experiments using MANOVA with sequential
sampling. MANOVA simulations were conducted 10,000
times each using four veSSR models with five levels of p
on the within-subjects variable, four group sizes on the
between-groups variable, and from six to ten levels of n
added when the null hypothesis of no differences among
any of the means was true. The results did not vary sys-
tematically with the level of n added, and 1 have averaged
the values across six to ten levels of n added in Fig. 8 so
that each point represents from 60,000 to 100,000 simu-
lated experiments with the null hypothesis true. Clusters of
five points represent the respective levels of p in the sim-
ulations. All four tested models of the vcSSR controlled
Type I errors close to the nominal level of « regardless of
the number of groups or the correlation of the within-
subjects levels.
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Figure 9 illustrates the EPRs for the MANOVA analyses,
including a repetition of the Type I error rates at effect size 0
and power for effect sizes .35, .55, and .75 for the between-
subject variables. The p was varied for the within-subject var-
iable, and the results from different correlations are displayed
in the figure in increasing order from left to right for each
sample size model at each effect size. The values are offset
slightly to avoid overlapping symbols. The relation between
the intercorrelations of dependent variables and power is com-
plex in MANOVA, and the negative relationship was expected
(Cole, Maxwell, Arvey, & Salas, 1994). The data demonstrate
the usefulness of the different models at different effect sizes
and group sizes.

Friedman x2 test

Figure 10 illustrates the theoretical relationship between
F(df1, df2) and x*(dfl) in the top curves. The x*(3)=7.82
and x*(9)=16.92 were selected because they are the critical
values for «=.05 with 3 and 9 degrees of freedom (df), and .05
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Fig. 5. Sample size savings when using the vcSSR in the 10/40 model
with ten treatments compared with the Fixed Stopping Rule using an a
priori power analysis to generate the same power as the veSSR. In this

is the lower limit of the probabilities of F(3, df2)=2.60 or F(9,
df2)=1.88 as df2 approaches o. The bottom curves illustrate
the «, of Friedman simulations using vcSSR criteria with
either 3 or 9 df averaged over all levels of n added for each
of eight sample size models plotted as a function of what
would be the average df2 in a repeated measures ANOVA of
the same data at the time the Type I error was made. The data
are consistent with .05 as an upper limit of «, as the df2
increase within the range of sample sizes currently available
for the veSSR. In no case for these existing veSSR models,
however, was the obtained &, acceptably close to a constant o
= .05 so that the vc¢SSR could reliably be used to control
stopping in a Friedman test at that . Use of Friedman in this
way would increase Type II errors.

Effect of n added on EPR and sample size

Often in several publications on the vcSSR I included all
available levels of n added in the development of the power
curves and sample size, but I then averaged over all available
levels of n added when presenting the data in graphs and
tables. The rationale for the averaging was to save journal
space by not describing a variable that provides little new
information. While it is true that I have detected no important
systematic effect of n added on the rate of Type I errors or

06 o
Pop\"\a“o“

0.8

model, an effect size of 0.3 produces about 80 % or greater power at all
levels of correlation (see Fig. 5), and a sample size model with a smaller
lower bound would be used for all larger effect sizes

power, there is a small systematic effect of n added on the
ultimate sample size at the time of rejection of the null hypoth-
esis. Figure 10 demonstrates potential effects of n added on
the empirical proportion of rejections (EPR) and the sample
size at the rejection of the null hypothesis for the four sample
size models used throughout all original studies in publica-
tions on the veSSR (Fitts, 2010a, b, current article). The re-
sults are averaged over all statistical models (between-subjects
and repeated-measures ANOVA and MANOVA), all levels of
correlation, all effect sizes including the null hypothesis, and
all numbers of groups or treatments at the .05 level of signif-
icance. There was an equal contribution of all variables to each
model, and the results illustrate a general tendency for an
increase in sample size at the maximum level of n added
(six, eight, or ten) compared with an n added of 1. The vari-
ability in EPR had no systematic trend related to level of n
added and the variability tended to decrease with an increase
in the sample size model. Not surprisingly, larger sample size
models provided more power but also used more subjects on
average.

Supplement 1 (ESM) is a comma delimited text file con-
taining the raw EPR and sample size for all normative data
collected for between-groups or repeated-measures ANOVA
or MANOVA in three publications (Fitts, 2010a, b, current
article). The file is suitable for import into a spreadsheet or
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Fig. 6. Comparison veSSR with between-subjects (from Fitts, 2010a, b)
and within-subjects (this paper) designs with four groups or treatments.
Sample size is illustrated as a function of effect size and observed power
when p = .0 for repeated measures in the four sample size models tested.

database. The top row is the header row including the proce-
dures — BetAOV (between-subjects ANOVA or ¢ test),
RepAOV (repeated measures ANOVA or ¢ test) or
MANOVA - the number of independent groups, the number
of correlated or repeated treatments, the p, the «, the level of n
added, the effect size as Cohen’s d or f, the lower and upper
bounds of the sample size model, the lower and upper criteria
from the veSSR table, the EPR, and the n per group at the
rejection of the null hypothesis in simulations. Supplement 2
(ESM) is a document that explains how to use the power

curves or the database to select an optimal veSSR model for
an experiment.

Discussion

In previous papers (Fitts, 2010a, b, 2011b) I suggested that the
criteria of the veSSR might be used with any ¢ or F test be-
cause it works with the F distribution rather than any particu-
lar method of generating an F. The present data confirm that
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The comparative efficiency of repeated measures is evident. Use of a
given sample size model with repeated measures and p = .0 produced

the same power at each effect size as the corresponding between-subjects
design (see drop lines)

the same variable criteria published in Fitts (2010a) effectively
control «, very close to the nominal level of « in repeated
measures ANOVA across a wide range of sample sizes, effect
sizes, numbers of treatments, and p. In a second challenge, the
vcSSR was used to control sample size in a F'test of a multiple
correlation R? with three or five predictor variables, and here,
also, the o, was held at the nominal level. In a third test, the
vcSSR effectively controlled o, when used with a MANOVA
that was analyzed by calculating a Wilks’ lambda and then
transforming it to an approximate F value to get the p. Finally,
the relationship between F and x° produced predictable results
when using the veSSR criteria with a Friedman x? test, a
nonparametric analog of the repeated measures ANOVA, in-
stead of a F test, but the observed Type I error rates were too
low to allow the use of veSSR to control stopping with a
Friedman or other nonparametric or x* test without inflating
Type II errors. I recommend using the veSSR with sequential
sampling whenever the decision to stop is based on a p value
from a ¢ test or F test and the sample size is within the range
provided in the veSSR Tables (Fitts, 2010a). Use of the veSSR
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Fig. 7. Empirical proportion of rejections (EPR) and sample size of the
veSSR with multiple correlation at the .05 level with either three or five
predictors and three sample size models. The EPR estimates «,, under the
null hypothesis when p = .0, and estimates power for other values of p.
The data were averaged across levels of n added. Most notably, the o,
was very close to the nominal «, .05, in these models of the veSSR

will control Type I error rates at the nominal level and may
consume fewer subjects than the FSR with equal power.

The sample size savings in Fig. 5 represent a maximum,
because 10/40 is the largest available sample size model. Note
that this model can never use fewer than ten subjects, so sam-
ple size models with lower initial sample sizes should be used
instead of the 10/40 model when the effect size and correlation
are both high. According to Fig. 4 for power with ten treat-
ments, the 10/40 model provides about 80 % power at any
level of correlation when the effect size is 0.3, so smaller
models would probably be used for any larger effect sizes.
At an effect size of 0.3 in the 10/40 model, the vcSSR uses
an average of 15 subjects when p = .0 and ten subjects when p
= .9. These contrast with 30 and 15 subjects, respectively,
required by the FSR with equal power. Thus, this model of
the veSSR can use from 33 % to 50 % fewer subjects than the
FSR at a useful level of power.

The principal message of Fig. 2 using the “BAD” method
of sequential sampling is that repeated testing with a criterion
of .05 does not merely have a “chance” of increasing Type I

errors, it does always increase Type I errors in simulations to a
replicable degree. When the null hypothesis is true, the more
times sample size is added to a simulated experiment, the
greater the increase in observed Type I errors. The inflation
of o, is worst when 7n added is one subject per iteration be-
cause this allows the addition of sample size — and opportuni-
ties for additional Type I errors — many times before the max-
imum sample size is reached. Larger values of n added (i.e.,
“group” sequential sampling) provide fewer opportunities to
add Type I errors before the maximum sample size is reached.
Nevertheless, the observed o, with the BAD method is always
considerably larger than «. The o, was also affected by the
sample size model for the same reason: there are more oppor-
tunities to add sample size when the maximum is 40 than
when the maximum is 18. By contrast, the criteria of the
vcSSR always held o, stable at .05 across sample size models
and all levels of n added.

The value of the upper criterion, .36 in the BAD case, has
much less influence than the lower criterion, .05, in determin-
ing the number of Type I errors (Fitts, 2010a). A variation in
the upper criterion was used only to “fine tune” the resulting
&, in my original simulations so that it would be very close to
the nominal « Therefore, the magnitude of the inflation of «,
was not an artifact of my choice of upper bound.

Figure 6 illustrates comparisons between previously-
published completely random between-groups designs (data
from Fitts, 2010a, b) and the present repeated measures de-
signs with the four veSSR sample size models tested. The
sample size at the rejection of the null hypothesis is plotted
as a function of the imposed effect size and the observed
power. The magnitude of the savings in sample size from a
repeated measures design is evident even with zero correla-
tion. The observed power generated by each model of the
vcSSR is the same given either a between-subjects design or
arepeated measures design (see the drop lines to the x-y axis).
Thus, power curves presented in my previous papers can be
used to calculate the minimum power of a repeated measures
analysis by assuming the population p = .0. Alternatively, the
power curves for p = .0 in the present paper may be used for
completely random designs (the effect sizes between 0.1 and
0.35 are new).

The veSSR was not originally designed for multiple cor-
relation studies that require large sample sizes, but we see
in Fig. 7 that it can apply with the largest sample size
models when p is large. It did not make sense to test the
smaller sample size models where the sample size could
equal the number of predictor variables. The principal dem-
onstration of the study was that the veSSR criteria worked
to control o, with a different method of generating a F
statistic. One of the models that is potentially useful is
the 10/40 model at a population p = .7 (Fig. 7, filled
squares). The null hypothesis that R* = 0 was rejected on
average with about 15 total subjects with five predictors at
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Fig. 8. The observed rate of Type I errors (o) with MANOVA using
four models of the vcSSR as a function of the number of groups in the
design and the p between two levels of a single within-subject variable.
Wilks” Lambda was calculated and transformed to an approximate F
statistic, and the observed rate of Type I errors was calculated from the

~80 % power and with about 14 total subjects with three
predictors at ~90 % power. The required sample size of the
FSR at equal numbers of predictors and power is 20 in
both cases. An approach like the veSSR could save sub-
jects in multiple correlation studies.

Finding significance with multiple correlation with smaller
values of p would require new variable criteria to be generated
for sample size models with higher bounds. For example, a
20/40 model would probably provide much better power for
moderate correlations than a 10/40 model because fewer Type
II errors would be made when the sample size was equal to the
lower bound.

The vcSSR can be used in experiments where an ordinary
repeated measures ANOVA or mixed model is appropriate,
even in higher order designs with crossed repeated measures
factors, as long as the experiment will be stopped based on a
single p value from the ANOVA table (discussed in Fitts,
2011b). Other p values in the complex analysis can be
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collected p values when the null hypothesis of no difference among the
means of the groups or treatments was true. The existing criteria
published in Fitts (2010a) worked well to hold «, stable, and these
were not affected by the number of groups or by the p used between
the dependent measures

evaluated at the regular value of «, such as .05, because they
are not used in the decision to stop the experiment. For valid
results from the veSSR in ANOVA, the researcher must track
the p value of only one effect. This can be any main effect, an
interaction effect, or even a planned contrast among two or
more means (Fitts, 2010a, 2011b). For example, tracking a p
value from a global F in a multi-group experiment may pre-
maturely lead to early stopping when two control groups are
different (e.g., a positive vs. a negative control), but a planned
comparison can track when the difference of interest becomes
significant. The veSSR may not be appropriate in experiments
where sample size is difficult to add, such as longitudinal
studies lasting months.

The present simulations were designed to obey all assump-
tions and requirements of the statistical tests employed, such as
normal, homogeneous distributions and equal covariances be-
tween the various treatments. The veSSR can suffer the same
deviations from the relevant F distribution as the usual ANOVA
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effect sizes, 0, .35, .55, or .75 for the between-subjects variables. The
within-subject population effect size was always 0. Type I errors are as
given in Fig. 8. All other points represent power. Decreasing power with
increasing p is typical for this model of MANOVA
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Fig. 10. Theoretical relation of F and x> (above .05) and observed rate
of Type I errors, o, (below .05), when p values from Friedman x? tests
are used to control sample size in the vcSSR instead of the p values
from F tests. The probability of a x*(dfl) is a limiting value of the
probability of F(dfl, df2) as df2 approaches oo (upper curves). The
criteria for the .05 level were used in simulations with eight sample
size models of the vcSSR with either four or ten treatments. The

abscissa is the number of degrees of freedom (df2) that would appear
in the denominator of a F test of the same data based on the average
total sample size at the time the Hy was rejected when making the Type
I error. The o of the veSSR (.05) appears to be a limit of the Type 1
error rate for the x test as df2 increases. No &, was acceptably close to
.05 to allow the reliable use of the vcSSR to control stopping with the
Friedman test without inflating Type II errors
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when assumptions are violated, such as grossly heterogeneous
variances in the between-groups case (Fitts, 2010b). Caution is
advised when using the vcSSR with such data. See Everitt
(1995), Keselman, Algina, and Kowalchuk (2001), and
Oberfeld and Franke (2013) for reviews of various repeated
measures or MANOVA designs and for problems with repeated
measures designs, such as a deviation from sphericity. If a test
for non-sphericity indicates that a correction to the degrees of
freedom is required for the repeated measures ANOVA, the p
value after the correction should be used to stop the experiment.

A repeated measures design is very efficient compared with
a between-groups design, but researchers should be aware of
when the repetition of the treatment itself will affect the out-
come (e.g., habituation, operant learning, drug tolerance, etc.),
and take precautions to eliminate these effects when necessary
(e.g., washout). For example, certain procedures may be stan-
dard for evaluating sensitization to pain or allodynia, but using
these tests repeatedly many times on the same subjects may
result in habituation that can obscure a treatment effect
(Hannaman, Fitts, Doss, Weinstein, & Bryant, 2016). If the
effect of repeated treatments is unknown, suitable control
groups should be employed.

I used Cohen’s f'as a measure of effect size so the simula-
tions would be directly comparable to my previously collected
data with completely random designs (see Fig. 6). Other mea-
sures of the size of effect for repeated measures can take into
account the magnitude of the correlations instead of just the
spread among the means (Bakeman, 2005).

In addition to repeated measures ANOVA, multiple corre-
lation, and MANOVA, I tested the rate of observed Type I
errors when using the criteria of the veSSR to control sample
size in simulations of Friedman x? tests with & = .05 to test the
hypothesis that .05 is a limiting value as sample size increases.
The hypothesis was confirmed, but in no case did the veSSR
control the rate of Type I errors at an acceptably close value to
.05. T do not recommend using the vcSSR Tables to control
sample sizes with tests that do not use the ¢ or F' distributions,
such as the Mann-Whitney-Wilcoxon test, the Wilcoxon
dependent-samples test, the Kruskal-Wallis test, or the
Friedman test. Variable criteria specific to the 16 original sam-
ple size models to hold Type I errors constant for these tests
are available by writing to the author. The published veSSR
Tables (Fitts, 2010a) will hold Type I errors constant only with
statistics that use a ¢ or F distribution, or with a statistic that
can be converted to F (e.g., Wilks’ lambda).

Some readers may be interested in why the veSSR behaves
the way it does with the Friedman test. With infinite degrees of
freedom in the denominator, F’ equals the numerator of a ratio
of two independent x2 variables, le/df 1, and the p values of F'
and x? are accordingly equal. For example, with 3 df, the value
of X2 that leaves .05 in the tail of the distribution is 7.82, and
the value of F(3, o) that leaves .05 in the tail is 7.82/3 = 2.60.
This implies that the veSSR, if it works with all F tests, should
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work well to control Type I errors in a test using a single X7,
such as the Friedman test, if the sample sizes are very large.
Unfortunately, very large sample size models are not available
for the vcSSR, but the data in Fig. 10 are certainly suggestive
that .05 is a limiting upper value for the rate of Type I errors
across the range of df2 currently available. However, the «,
values were not acceptably close to .05 to use the vcSSR to
control stopping in actual experiments. New tables could be
constructed with larger sample sizes to control stopping during
sequential sampling in experiments with any x? test, or, pref-
erably, a mathematical solution could be found so that the
variable criteria could be predicted from a formula for any
arbitrary set of lower and upper bounds, «, and n added.
Why are the lower curves in Fig. 10 shaped the way they
are? The Friedman tests in this study would ordinarily be com-
pared with the relevant critical value of x> for the .05 level.
However, with the veSSR the critical value is not always F =
7.82/3 =2.60 for 3 df or /' = 16.92/9 = 1.88 for 9 df. Instead,
the criteria of the veSSR assume different df2 levels and adjust
the criteria for p downward, in a more conservative direction,
for smaller sample sizes (i.e., fewer df2). This allows fewer
rejections with the p values from the X tests as the sample size
decreases. Furthermore, at very small sample sizes the x* dis-
tribution stops being an accurate model for the actual p values
of the Friedman test and users would need to consult a table of
exact values. I did not use those tables in the simulations.
Data from all available normative simulations (those used
to determine Type I error rates and power curves without
deviations from the assumptions of ANOVA) of four sample
size models in three publications were used to analyze the
effect of n added on the average EPR and average sample size
at the rejection of the null hypothesis across all ANOVA and
MANOVA models tested so far (Fitts, 2010a, b, current
article). Data were included for all levels of correlations and
group, treatment, and effect sizes at the .05 level so that the
result is a “main effect” of n added across all normative sim-
ulations. The results in Fig. 11 confirm my assumption that the
EPR was largely unaffected by the level of n added. The
results also confirm that a minimization of sample size on
average is achieved best with small values of n added, because
the addition of large numbers of subjects to each group at each
iteration make it harder to stop at the optimal sample size
when the p value first becomes less than the lower criterion.
There are different constraints to the designs of various exper-
iments, and for logistical or other reasons researchers cannot
always test after every individual subject. When a researcher
must use a large n added, it is still worthwhile to use the
vcSSR. Even with large n added the sample size will be small-
er on average than the FSR (Fitts, 2010a), and the veSSR will
control the rate of Type I errors. It is important to adhere to the
selected n added throughout the experiment to be certain that
the Type I error rate remains at the nominal value. Fortunately,
the procedure is robust to such events as missing data or the
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Fig. 11. The influence of n added on the empirical proportion of
rejections (EPR) of the null hypothesis and the sample size, N, at the
time of the rejection of the null hypothesis in four sample size models
that were used in all normative studies of ANOVA or MANOVA in
three publications. The results are averaged for the .05 level of
significance across all levels of correlations, effect sizes including the
null hypothesis, and for all numbers of groups or treatments. Within
each sample size model, the sample size is greater at the maximum »n
added (six, eight, or ten) than at an n added of 1. Larger sizes of n
added can make it impossible to stop the experiment at the absolute
optimal sample size

replacement of lost data up to 40 % of sample size (Fitts,
2010b). Replacement subjects can be provided in subsequent
iterations in groups of n added until the upper bound is
reached. These events affect power more than Type I errors.

Investigators who need to determine power for « levels other
than .05, or who are interested in more detailed information on
sample sizes required in various statistical or sample size
models, should consult Supplement 1 (ESM), which contains
all normative data at the finest level of granularity (about 71,000
records). For example, the power and average sample size at
each individual level of n added is given in Supplement 1 (i.e.,
information that is not available in the figures). Supplement 2
(ESM) is a help file that shows how to filter the database to
easily find information for any experimental circumstance.
Supplement 1 provides the complete criteria for all 16 existing
sample size models of the veSSR without consulting other pub-
lications. There is a unique pair of criteria for each of four levels
of o at each level of n added for each of 16 sample size models
(472 total pairs of criteria). Using a database application to filter
the data on those variables will easily reveal the complete set of
criteria, and it will also aid in selecting the appropriate model
based on the desired power of the test.
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