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Abstract Collective behaviors in team sports result in players
forming interpersonal synergies that contribute to perfor-
mance goals. Because of the huge amount of variables that
continuously constrain players’ behavior during a game, the
way that these synergies are formed remain unclear. Our aim
was to quantify interpersonal synergies in the team sport of
Rugby Union. For that purpose we used the Uncontrolled
Manifold Hypothesis (UCM) to identify interpersonal syner-
gies that are formed between ball carrier and support player in
two-versus-one situations in Rugby Union. The inter-player
angle close to the moment of the pass was used as a perfor-
mance variable and players running lines velocities as task-
relevant elements. Interpersonal synergies (UCM values
above 1) were found in 19 out of 55 trials under analysis,
which means that on 34% of the trials, the players’ running
line velocities contribute to stabilizing the inter-player angle
close the moment of the pass. The strength of the synergy

fluctuates over time indicating the existence of a location ef-
fect during attack phases in Rugby Union. UCM analysis
shows considerable promise as a performance analysis tool
in team sports to discriminate between skilled sub-groups of
players.
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Introduction

Amajor challenge is how to describe and explain interperson-
al behavior that is grounded on the behavior of two (or more)
independent entities (e.g., players). Rugby Union is a perfor-
mance context characterized by intense physical contact be-
tween players. According to the rules of the game, defenders
are allowed to tackle attackers, pull them to the ground, and
recover ball possession for their team. Moreover, attacking
players cannot pass the ball forward with the hands, i.e., the
support players must remain behind the ball carrier acquiring a
relative position (characterized by an interpersonal angle be-
tween the players) that allows them to receive the ball while
running. In team sports such as Rugby Union a common ef-
fective tactical strategy is to manufacture ball possession sit-
uations with numerical superiority (e.g., the ball carrier and
support player against only one defender). To manufacture
such situations the players must create a functional synergy,
which occurs when components of a system behave as a
whole, contributing to the development of a specific task
(Kelso, 2009). Thus by definition synergies are context-
sensitive functional groupings of elements that are temporarily
assembled to act as a single coherent unit (Kelso, 2009). The
Uncontrolled Manifold Hypothesis (UCM) was arguably the
first elaboration to explicitly link the coordination of a multi-
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component system to the variability structure of its individual
components (Schoner, 1995).

The aim of this study was to apply the UCM as a proposed
methodology to identify and measure the influence of syner-
gies in team sports. This method has been in existence for
some time, but here we seek to apply it to a new realm (the
realm of social systems, and particularly in team sports). In
this sense it is a novel application of the UCM method.

A brief introduction to synergies

We postulate that synergies are a mechanism that supports
interpersonal coordination in team sports. A general feature
of coordination is the requirement of a mutual dependency
among system components, with a consequent compression
of degrees of freedom (d.f.) which led them to behave as
whole (Kelso, 2009; Kelso & Engstrom, 2006; Kelso, 2009;
Kugler & Turvey, 1987). Degrees of freedom (i.e., d.f.) are
structurally diverse elements of a movement system that are
free to vary. Synergies have been proposed as a solution for
the global control of a movement system, rather than to con-
trol each component as a single entity (i.e., the d.f. problem;
Bernstein, 1967). Individual components are temporarily
coupled to form a synergy and thus the control of the system
is achieved through the mutual compensation of the variability
of each component (Bernstein, 1967; Riley, Richardson,
Shockley, & Ramenzoni, 2011).

While the synergies concept was originally applied in at-
tempts to solve an intrapersonal control problem, the concept
has since been extended to interpersonal coordination.
Interpersonal coordination that occurs between people is
nested on intrapersonal synergies (e.g., bimanual, bipedal) that
orchestrate each subject’s movements (Schmidt &
Richardson, 2008). As such one can evoke the notion that
people intentionally and unintentionally coordinate with
others based on visual information couplings (Richardson,
Marsh, & Schmidt, 2005; Schmidt, Richardson, Arsenault,
& Galantucci, 2007). Interpersonal coordination can be mea-
sured by changes in interpersonal distances, mediated by dif-
ferent sources of visual information such as segmental motion
information based on another’s limb motion (to allow antici-
patory compensation), or a more global motion information
based on the rate of optical expansion due to the other’s move-
ments (Meerhoff, De Poel, & Button, 2014). Hence, visual
information (segmental and global) is the primary language
via which the Binteractive capacity^ of the system is shared,
helping to sustain each individual’s potential to couple to each
other and form a synergy.

Three layers of analysis are necessary to describe the emer-
gence of synergies: (i) at the lowest layer are the single enti-
ties, which are independent entities with no causal link be-
tween them. Independency in this sense means that the action
of one entity does not influence the action of the others (i.e.,

the atomism level from Kugler & Turvey, 1987); (ii) at the
highest layer are the task and environmental constraints which
bound each single entity’s behavior. To meet the demands
imposed by task and environmental constraints the
Bindependent^ entities must coordinate to behave as a single
unit; (iii) when this is achieved a middle layer is formed. It is
the dynamic relation between the lowest and the highest layers
that enables coordinative structures (or synergies) to be
formed (Kelso, 2009a, b; Kugler & Turvey, 1987).

Synergies and team sports an example from Rugby Union

According to coordination dynamics theory, a functional syn-
ergy is grounded on complementarity between stability and
variability (Kelso & Engstrom, 2006). Stability can be con-
ceptually defined as the system resilience to external pertur-
bations (Kelso & Engstrom, 2006), while variability is a gen-
eral feature of human movement system which affords adapt-
ability to perform in an ever-changing context (Glazier,
Wheat, Pease & Bartlett, 2006). The complementary nature
between stability and variability is what drives a system to
achieve the same task goal through different paths. Some
components of a system must vary the way they interact to
stabilize task-specific performance variables which can be
defined as a goal that ideally remains stable (Black, Riley, &
McCord, 2007). The manner in which some task-relevant el-
ements co-vary (the d.f. that participate in a task, e.g., players’
velocities, interpersonal distances, distances to goal, etc.) be-
comes crucial to stabilize specific performance variables
(Riley et al., 2011).

In order for us to apply this general theoretical concept to a
specific sports example such as Rugby Union, one significant
challenge is to identify the process by which system compo-
nents vary to stabilize task specific performance variables. An
important question is: What are the performance variables
(that need to remain stable) and task-relevant elements (that
need to vary) that contribute to this complementarity? For
instance, one performance variable that is relevant to game
play can be the relative position of two team-mates in a de-
fensive line (measured with angles or interpersonal distances
between them) that should remain relatively stable during a
phase of active play (see Passos, Araujo, Davids, Gouveia,
Milho, & Serpa, 2008).

The principle of abundance may offer a mechanism
through which the evolution of synergies in team sports can
be understood. In a system blessed with abundance, Ball the
elements (i.e., Degrees of Freedom) always participate in all
tasks, assuring both stability and flexibility of the
performance^ (Latash, Scholz, & Schoner, 2002, p. 27).
Functional synergies arise in team sports due to a huge (but
limited) set of combinations between system elements. In oth-
er words, all d.f. contribute to the formation of a synergy but
some might have more participation than others. By
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definition, a functional synergy is suited to the situation in
which it is formed (situation specific). A key aspect of syner-
gies is that they should not necessarily simply adapt to differ-
ent situations. Due to context dependency, synergies may as-
sume different functions using some of the same components
(e.g., using the legs to walk and jump) and the same function
using different components (e.g., getting closer to the try line
using different ball carriers). The timeframe over which the
synergy acts must also be considered because players’ co-
adaptive behavior becomes more relevant to success close to
decision moments (e.g., the moment of the pass) than at other
moments (Passos, Cordovil, Fernandes, & Barreiros, 2012).

The three research questions we set out to answer are: (i)
How to confirm that two independent units (such as the
players) form a synergy; (ii) How to measure the Bstrength^
of the synergy between the players; (iii) How to display
whether that candidate synergy contributes to the performance
of a task. To address these questions we assumed that interac-
tive behavior can be expressed by the players’ relative posi-
tion, measured via the angle between players, which is a co-
ordinative variable previously identified in other studies in
Rugby Union (Passos et al., 2008, 2009). The angle between
ball carrier and support player is a crucial variable which af-
fords the support player to receive a pass from the ball carrier
while running, a paramount issue to the attackers in Rugby
Union. The inter-player angle can be used to identifymoments
of stability (low variability) and also critical regions (high
variability) due to a mutual behavioral dependency between
opposing players. Within these critical regions the angle var-
iability is constrained by the relative velocity of the players
(Passos et al., 2008, 2009). To support this relation there is a
formal mathematical model of the player’s interpersonal angle
and player’s relative velocity (for further details please see
Araújo, Diniz, Passos, & Davids, 2014). Stabilizing angle
values means reducing the variance between both players’
relative positions, highlighting an affordance for passing and
receiving the ball. Hence, we hypothesized that both attacking
players adjust velocities to each other to stabilize the angle
value close to the moment of the pass. Despite the task con-
straint that the ball carrier does not (continuously) see the
support player, he/she needs to acquire a position that affords
him/her to successfully perform a pass to the support player,
and thus a reciprocal compensation can occur between them.
However, we assumed that adjustments to the support player’s
velocity are largely dependent upon changes in the ball car-
rier’s running line velocity rather than vice versa.1 In order to
investigate this hypothesis we applied the UCM (Black et al.,
2007; Latash et al., 2002; Riley et al., 2011; Scholz &
Schoner, 1999).

The Uncontrolled Manifold (UCM) Hypothesis

By definition BThe UCM approach is a geometrical approach
that seeks to discover the structure of variance in multi-
degree-of-freedom task spaces in which all degrees of free-
dom have a common metric. The structure of variance in that
space is interpreted in terms of its meaning for task variables^
(Schoner & Scholz, 2007). In other words the UCM hypoth-
esis assumes that controlling a motor task is related to stabili-
zation of a performance variable (i.e., a task goal). When this
hypothesis is confirmed a sub-space is created, known as the
UCM, which is a geometrical Bobject^ containing all combi-
nations of task-relevant elements which lead to the same value
for a performance variable (Black et al., 2007; Klous, Danna-
dos-Santos, & Latash, 2010; Schoner & Scholz, 2007).

The main question underlying the UCM is whether move-
ment variability contains a certain variance structure correlat-
ed to the task performance (Rein & Suppl 1-M5, 2012). By
mapping the variability of supposed task-relevant elements to
the variability of a performance variable, hidden structural
features are exposed (Rein & Suppl 1-M5, 2012). Task-
relevant elements can be any quantity whose interaction is
predicted to influence the system performance outcome and
the performance variables are those which are necessary to
achieve a task (Schoner & Scholz, 2007). With the choice of
variables comes a choice of metrics. UCM requires a common
metric of the task-relevant elements for the construction of the
variance sub-space (Schoner & Scholz, 2007). According to
these authors, if for instance we choose to use an angular
velocity and an angular position as task-relevant elements,
even though they cannot be measured by the same metrics
(one being in radians per second, the other in radians) the
computation is still possible. Nevertheless, the interpretation
of such a computation does not make sense, because when we
move forward to discuss the data, it is somewhat ambiguous to
argue that there is more variance along a velocity axis than
along a position axis (Schoner & Scholz, 2007).

The inspiration to use UCM in the present work came from
Riley and colleagues who proposed that functional synergies
support the existence of interpersonal coordination in team
sports (Riley et al., 2011). Accordingly, we also applied the
proviso that only systems that demonstrate reciprocal compen-
sation among elements may be called synergies (Latash et al.,
2002). The variance along the UCM expresses a reciprocal
compensation between task-relevant elements (e.g., players’
velocities to stabilize a performance variable), whereas the var-
iance perpendicular to the UCM expresses changes the task-
relevant elements that do not contribute to stabilizing the per-
formance variable. By calculating the ratio between compen-
sated and uncompensated variance we measure the UCM and
consequently the functional synergies. The UCM is a Bcontrol
hypothesis^ about a selected performance variable whose value
the system assumes to stabilize (Latash et al., 2002, pp. 28).

1 Which raises an important and underdeveloped point in the synergy litera-
ture: how reciprocal does the compensation have to be? We acknowledge an
anonymous reviewer for raising this question.
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In summary, players reciprocal movement adjustments
characterizes coupling grounded on perceptual information
(e.g., visual) contributing to the compression of d.f. and con-
sequently stabilizing a performance variable. In team sports
players’ mutual dependency is achieved due to temporary
compressions of d.f. compensation which are the necessary
features to the emergence of functional synergies. These fea-
tures may be found in team sports players’ interactive behav-
ior, which is why we decided to analyze players interpersonal
synergies using the UCM approach.

Methods

Twenty-four national academy level Rugby Union players (14–
15 years old), participated in this study. The players were ran-
domly assigned into eight sub-groups or triads (two attackers
vs. one defender). The instructions to both attackers were BYour
goal is to avoid the defender and score a try^ and the instruction
to the defender was BYour goal is to prevent a try from being
scored.^ To limit fatigue, each triad performed only nine trials
(i.e., ball carrier, support player and defender), shifting roles on
each set of three trials. There were no restrictions concerning
either the ball carrier’s initial side position (right hand side or
left hand side) or the number of passes to be performed (Passos
et al., 2012). Only complete trials that resulted in a successful
pass to the support player and a consequent try being scored (N
= 55 out of 72) were used for data analysis.

The task was performed on a grass field with 5 mwidth and
22 m depth. All trials were recorded using a single video
camera at 25 Hz. TACTO v8.0 software was used to manually
digitize the displacements of the players (Cordovil et al.,
2009; Fernandes & Malta, 2007; Nema, Schweizer, von
Hoff, & Guerreiro, 2009). Players were tracked using a work-
ing point between the feet on the ground. AMATLAB routine
with Direct Linear Transformation (DLT) was used to trans-
form the virtual coordinates into real coordinates using six
calibration points representing known distances of a 22 m by
5 m playing field dimensions (Abdel-Aziz & Karara, 1971).

The first step was to select a relevant performance variable
of the two-versus-one situation in Rugby Union. The candi-
date performance variable was the players’ relative positions
approaching the moment of the pass. To measure the players’
relative position we used an angle between ball carrier and
support player, from the beginning of the trial until the mo-
ment of the pass, which was defined by the moment the ball
leaves the hand of the ball carrier (Passos et al., 2012). The
discretization in time of this angle continuously describes the
interactive behavior between ball carrier and support player.
The inter-player angle (hereinafter shown as θ) was calculated
with a vector from the support player to the ball carrier and an
imaginary horizontal line parallel to the try line (for a more
detailed description please see Passos et al., 2009). The

coordinates (x, y) of each player position on plane of the game
field are obtained from video capture data (Fig. 1).

In Fig. 1, the zero crossing point identifies the moment
when the support player was side by side with the ball carrier
(meaning that both players are at the same distance from the
try line). Positive θ values signaled that the ball carrier was
closer to the try line than the support player. All calculations
based on data captured from video were performed at 25 Hz,
corresponding to the same frequency of the video frame rate.

UCM procedure

It is necessary to present here a detailed description of how to
compute the UCM for the purposes of analysing synergies in
sports groups. As previously suggested, interpersonal coordina-
tion can be achieved by stabilizing a value of a performance
variable. For that to happen some task-relevant elements, here
defined as the ball carrier and support player running line veloc-
ities, develop compensatory movements that create variability
which is the basis to stabilize a performance variable. Plotting
the velocity of the ball carrier and the support player for each
trial will create a subspace within a state space of task-relevant
elements (e.g., players running line velocities; see Fig. 2).

The hypothesis that task-relevant elements stabilize a per-
formance variable can be empirically demonstrated by com-
puting two quantities (Black et al., 2007): (i) the variance
along the UCM (i.e., compensated variance); (ii) the variance
perpendicular to the UCM (i.e., the uncompensated variance).
The variance along the UCM expresses a reciprocal compen-
sation between player’s velocities to stabilize the performance
variable θ. Variance perpendicular to the UCM, expresses
changes in players’ velocity that do not contribute to stabiliz-
ing the performance variable θ (i.e., low θ variability values)
with values close to Boptimal.^ By calculating a ratio UCM
between compensated and uncompensated variance (i.e., var-
comp/varuncomp) we compare which of these variances is higher

Fig. 1 Diagram depicting the calculation of inter-player angle (θ)
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and consequently quantify the functional synergies. This
means that for UCM values >1, a synergy exists; and for
UCM values <1, there is no synergy.

The UCM was evaluated in time for each trial, requiring a
discretization of the model using discrete time points (t).
Correspondingly, the duration of each trial and the corre-
sponding total number of time pointsN for each trial is defined
by the moment in time when the ball carrier passes the ball,
and therefore, the time discretization of each trial is defined by
a dataset of time points t varying between frame 1 and frame
N, i.e., t=1..N.

The task-relevant elements are defined by the running
line velocities of the ball carrier vBallCarrier and support
player vSupportPlayer, which are computed using the finite
difference method from the coordinates of the players’
trajectories. The corresponding vector T with dimension
n=2 for the task-relevant elements, is given at each time
point t by:

Tt ¼ vtBallCarrier
vtSupportPlayer

� �

For the performance variable defined by θ, the correspond-
ing vector p of dimension d=1, is given at each time point t by:

pt ¼ θt½ �

The reference configuration corresponds to the state of the
task-relevant elements designated as T0 and the performance
variable designated as p0 given by:

T0 ¼ v0BallCarrier
v0SupportPlayer

� �

p0 ¼ θ0
� �

The reference configuration corresponds to the task-relevant
elements and the performance variable values retrieved at the
moment of the pass backwards, such that t=N. At each time
point, linear approximations were assumed between small
changes in magnitude of the task-relevant elements and the
performance variable with respect to the reference configura-
tion. Based on a Jacobian matrix J(T0) of the system evaluated
at the reference configuration that describes how small changes
in the output of the task-relevant elements are reflected in the
magnitude of the performance variable, the corresponding lin-
ear approximation is given at each time point by:

pt−p0 ¼ J T0
� �

: Tt−T0
� �

The Jacobian matrix J(T0) is formalized as a matrix of
partial derivatives of the performance variable with respect
to the relevant task elements. In the present study, obtaining
the Jacobian of the systems is not available by differentiation
since no analytical kinematic model of the system is available
relating the performance variable and the task-relevant ele-
ments. Furthermore, the apparent output of the performance
variable may not be independently tested for each task-
relevant element to infer its contribution to the Jacobian, given
that while the players are performing the trial task it is not
feasible to independently perturb the player’s velocities and
observe the corresponding change in θ. Therefore, the esti-
mate of the Jacobian matrix was here obtained using a linear
multiple regression method based on the methodology pre-
sented by Klous et al., (2010). Considering the dimensionality
d=1 for the performance variable, n=2 for the task-relevant
elements and t=N, this method assumes the form given by:

θt−θ0
� � ¼ K1: vtBallCarrier−v

0
BallCarrier

� �þ K2: vtSupportPlayer−v
0
SupportPlayer

� 	

The required dataset for the multiple regression computa-
tion is defined by t=1,…,N, corresponding to all the time
points for each trial. The coefficients of the regression K1

and K2 obtained for each trial are arranged in a matrix that
corresponds to the Jacobian matrix such that:

J T0
� � ¼ K1 K2½ �

A critical issue is the multicollinearity of the predictor re-
gression vectors (e.g., the players running line velocities)
which may produce unreliable regression coefficients, low
robustness of the model and unreliable out-of-sample predic-
tions, making the model non-generalizable. To assess
multicollinearity, we used the variance inflation factor (VIF)
which may be calculated for each predictor by doing a linear
regression of one predictor over the other (Allison, 1999). By
obtaining the coefficient of determination r2 from that regres-
sion, the VIF was calculated as:

VI F ¼ 1= 1−r2
� �

Fig. 2 Running line velocities subspace (an example from trial data)
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The variance inflation factor estimates how much the var-
iance of a coefficient is magnified because of linear depen-
dence with other predictors, ranging from a lower bound of 1
(no magnification) and no upper bound. Higher values of VIF
reveal higher correlations among predictor variables, leading
to unreliable and unstable estimates of the regression coeffi-
cients. The UCM subspace was approximated with the null-
space of the Jacobian matrix that represents the combinations
of task-relevant elements that leave the performance variable
unaffected. The null-space is measured by i=n-d basis vectors
εi, solving the equation:

0 ¼ J T0
� �

:εi

For the present study i=n-d =2-1=1, and therefore there is
one basis vector ε1 of the null-space that was computed nu-
merically for each trial using theMATLABNull function. The
vector (Tt −T0) of the deviations of the task-relevant element
vector from the reference configuration was resolved into its
projection f∥ onto the UCM subspace and the component per-
pendicular f⊥ to the UCM subspace, as:

f ∥ ¼
Xn−d
i¼1

εTi : T
t−T0

� �� �
:εi

f ⊥ ¼ Tt−T0
� �

− f ∥

The variance in each of the subspaces varcomp and var-
uncomp normalized by the number of d.f. of the respective sub-
spaces were calculated as:

varcomp ¼ σ2
∥ ¼ 1

n−dð Þ:N
XN
i¼1

f 2∥

varuncomp ¼ σ2
⊥ ¼

1

d:N

XN
i¼1

f 2⊥

The quantification of the functional synergies is obtained
by comparing which of these variances is higher, using a ratio
UCM that evaluates the compensated variance with respect to
the uncompensated variance of the subspaces, given by:

UCM ¼ varcomp
varuncomp

In order to meaningfully interpret the UCM results, a meth-
odology was used to quantify the probability that synergies
could be created with other configurations of the performance
variable dataset. This methodology is inspired by the work of
Richardson et al. (2005), which describes the shuffled base-
lines of synchrony approach applied to the coupling between
speakers’ and listeners’ eye movements. These authors pro-
duced a randomized series distribution which is obtained by
shuffling the temporal order of the series being analyzed,

which is then used as a reference baseline or Bat chance^
occurrence. In the present work, the developed methodology
aims to define a probability of obtaining UCM>1 by a differ-
ent temporal order (line-up) of the performance variable for a
given dataset, i.e., task-relevant elements mutual and recipro-
cal adjustments may support several configurations of the per-
formance variable values (within the same range). Hence,
temporal orders of the performance variable are not required
for a synergy to exist. Using the approach from the aforemen-
tioned authors, a randomized series distribution is produced
by shuffling the temporal order of the performance variable
series for each trial dataset. This shuffling corresponds to a
surrogate series obtained by the method of Amplitude
Adjusted Fourier Transform, which attempts to preserve both
the linear structure and the amplitude distribution of the series.
Using this series and the same task relevant variables series, a
new UCM value is obtained and checked. For different seeds
for the randomized series of the same performance variable,
occurrence of both UCM>1 and UCM<1 may be observed.
Therefore, a probabilistic approach is established using nr
randomized series distributions for which the number of oc-
currences of UCM>1 are evaluated. The ratio between this
number of occurrences and the total number nr of random
series distributions used, lead to an estimate for the probability
of obtaining UCM>1. For this purpose, an initial value of nr is
set to 100 and recursively increased in integer multiples (nr =
100, 200, 300,…), leading to an evaluation of the probability
of obtaining UCM>1 for each number of random distribution
series used. The number nr of random distributions used is
established according to a stabilization criterion for the prob-
ability of obtaining UCM>1. This criterion is defined by the
slope of the linear regression between nr and the probability of
obtaining UCM>1 and is met whenever the slope is below a
specified slope limit of one degree, consequently interrupting
the recursive increase of the number of random distribution
series and setting the nr value to be used. Additionally, the
evolution of the confidence interval for the probability of
obtaining UCM>1 with 95% confidence level is evaluated
and checked for an expected lower than unit order (10 1) of
magnitude for the interval confidence range. The probability
of obtaining UCM>1 based on the attained value of nr random
distribution series is then considered for interpreting the trial
dataset value of UCM>1 being obtained based on a different
line-up of the performance variable time series. In this regard,
high values for the probability of obtaining UCM>1 in the
shuffled random distribution series suggest that the UCM>1
value for the trial dataset is obtained by a different line-up of
the performance variable, and that a task relevant adjustment
may support a synergy with a different line-up (within the
same range of values) of the performance variable dataset.
Conversely, if low values are achieved for the probability of
obtaining UCM>1 in the shuffled random distribution series,
it suggests that the UCM>1 value for the trial dataset is
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obtained only for the current line-up of the performance var-
iable dataset, and thereby that a synergy is obtained due to the
adjustment of task-relevant elements for a specific line-up of
the performance variable dataset.

Results

Numerous different θ values were found at the moment of the
pass, which led us to suggest that θ values are situation spe-
cific. This implies that one optimal angle of θ does not exist
and that players do not restrict themselves to only one coordi-
nation solution. Based on the ball carrier’s behavior, the sup-
port player should simply manage the Bdepth^ between them
aiming to have space in front that allows him to receive the
ball while increasing velocity (Biscombe & Drewett, 1998).
For UCM>1, θ can assume values between 10° and 51°, and
for UCM<1, θ can assume values between 7° and 55° (see
Table 1). This means that for any θ value between 10° and 51°
a synergy might exist or not, it depends on how players’ ve-
locities contribute to stabilize θ values.

To summarize thus far, we propose the value of θ close the
moment of the pass as a performance variable for a two-
versus-one situation in Rugby Union, which captures players’
co-adaptive behavior. Players’ running line velocities act as
task-relevant elements that seem to stabilize θ under function-
al specific values.

Multicollinearity of the predictor regression vectors was
estimated for the players running line velocities for all trials.
The VIF reveal low values close to the lower bound (1)
(mean=1.06; standard deviation=0.09),which are acceptable
for the state purpose of low correlations among predictor var-
iables, leading to reliable and stable estimates of regression
coefficients.

UCM results

Concerning θ values close to the moment of the pass, the data
revealed that 19 out of 55 trials display UCM values >1,
which means that 34% of the trials confirm the existence of
an UCM. Therefore, a functional synergy is grounded on the
adjustments on the running line velocities between ball carrier
and support player that stabilize θ values close the moment of

the pass. The remaining 36 trials (65%) display UCM values
<1 which suggests that players’ velocities are stabilizing other
performance variables, but not θ values close to themoment of
the pass (Fig. 3).

Probability of getting a UCM>1 with a different
configuration of performance variable dataset

A quartile-based scale was used for the analysis of the proba-
bility values of getting an UCM>1. For the trial dataset with the
UCM>1, results revealed that only two out of 19 trials display a
probability below 25%, which suggest that on these two trials
the UCM values did not support a different configuration of the
performance variable dataset. For eight out of 19 trials, the
probability of getting an UCM>1 were between 25% and
50% (suggesting a moderate probability that the trial dataset
with UCM>1 support different configurations of the perfor-
mance variable dataset). For six out of 19 trials the probability
of getting an UCM>1 were between 50% and 75% (a strong
probability that different configurations of the performance var-
iable values were supported). Finally, for three out of 19 trials
the probability of getting an UCM>1 was above 75% (a very
strong probability that different configurations of the perfor-
mance variable values were supported) (Fig. 4).

Figure 5 displays two representative data trials where a
synergy exists expressed through the relative positions of the
three players (i.e., ball carrier, support player, and defender).
There are two features worth noting: First, the maintenance of
interpersonal distance between ball carrier and support player
throughout each trial. Second, the decrease in interpersonal
distance between ball carrier and defender which highlight
how the actions of these two opposing players contrive to
release the support player to receive the ball and run free
towards the try line (Fig. 5).

Figure captions: Black filled line represents the ball carrier
trajectory; black dashed line represents the support player tra-
jectory; the gray line represents the defender trajectory

Discussion

In Rugby Union, the ball carrier and the support player’s rel-
ative position can form a synergy to enable them to beat a
defender and advance to the try line in a two-versus-one situ-
ation. To describe this relative position we used an interplayer
angle defined as θ. However, descriptive statistics of θ (see
Table 1) are insufficient to identify whether a synergy of
targeted task-relevant elements exists in order to stabilize a
specific performance variable. Instead, the UCM approach is
a suitable tool to measure functional synergies in team sports
because it can describe how the relation between two task-
relevant elements (i.e., players’ running lines velocity) stabi-
lizes a specific performance variable (i.e., θ values close the

Table 1 θ values close the moment of the pass

UCM>1 UCM<1

θ Mean 26°+/-10 25°+/-16

θ Max 51° 55°

θ Min 10° 7°

θ Range 41° 47°
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moment of the pass). Despite this novel use of the UCM
approach in relation to interactive behavior in team sports
other applications of the procedure do exist, the work of
Fusaroli and colleagues on linguistic coordination is a suitable
example (Fusaroli et al., 2012; Fusaroli, Raczaszek-Leonardi,
& Tylen, 2014). Thus, we may suggest that in social systems
(as team sports) as long as a reciprocal compensation exists
between two task-relevant elements (that use compatible met-
rics), then UCM can be used.

An important stage was to calculate the probability of getting
an UCM>1 with a different configuration of the performance
variable dataset. Results revealed that only on two trials the
probability of getting an UCM>1 was not supported on a differ-
ent configuration of the performance variable dataset. This

probability data sustains the hypothesis that the player’s veloc-
ities reciprocally adjust to stabilize only one configuration of the
interpersonal angle values at the moment of the pass. For eight
(out of 19) trials results revealed a moderate probability that the
UCM>1 support a different configuration of the interpersonal
angle dataset. Above 75% there was a strong probability that the
formed synergy based on different configurations of the perfor-
mance variable dataset. These findings indicate that the same
adjustment on the player’s running lines velocities may stabilize
other configurations of data set within the same range of values
which reinforces the notion that there is a range of θ values to
form a synergy not a specific configuration of θ values. We may
conclude that synergies in team sports interactive behavior do
not require a temporal order of the performance variable to exist.

We also set out to analyze the coupling strength between
trials of the formed synergies. Black and colleagues assume
that there is a direct relation between coupling strength and the
strength of a synergy (captured with UCM values) (Black
et al., 2007). Following this reasoning our results reveal dif-
ferent coupling strengths exist within the dataset. In fact, three
different levels of coupling strength can be classified based on
the average (x ) and standard deviation (SD) of the UCM
values (Table 2). The upper limit values for each level, are
correspondingly defined by the average x = 3.1 ≈ 3, average
plus one standard deviation xþ 1:SD = 4.9 ≈ 5 and average
plus two standard deviation xþ 2:SD = 6.8 ≈ 7.

The data reveal that just over half of the trials (ten out of 19
UCM trials) display a synergy between support player and ball
carrier at the moment of the pass with strength of coupling
below the average UCM values. Notably, seven trials display
a synergy with UCM values above average plus one standard
deviation which may be suggested as a Bstrong^ coupling.

Fig. 3 UCM values for θ close to the moment of the pass

Fig. 4 Probability of getting a UCM>1 with a different configurations of
the performance variable values
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These results suggest that if differences exist in the UCM
values for the different trials, it is also possible that these dif-
ferences occur along a trial, meaning that UCM values may
change in different moments of the same trial. Black and col-
leagues also reveal differences in the UCM values for different
moments (i.e., initial, middle, final) of a rhythmic cycle move-
ment (Black et al., 2007). Hence, UCMvalues might change on
different time scales, from short and very fast adjustments that
occur on each frame of a trial (i.e., 4 ms) but also adjustments
that occur on long and slow scales due to learning effects.

Another factor which also should be considered in further
research with the UCM on social interactions is the player’s
expertise level. We suggest different expertise levels may pro-
vide different UCM values for the same task. One major dif-
ference in expertise levels is the perceptual attunement which is
the ability to rely on the most information variables to decide
and act (Fajen, Riley, & Turvey, 2009). Learning effects (over
long and slow time scales) provide a convergence of the most
relevant information variables and consequently an increase in
the accuracy of perceptual attunement on interpersonal coordi-
nation tasks (e.g., as a two-vs.-one in RugbyUnion) whichmay
be the support to form synergies between players. A major
issue in a two-versus-one situation in rugby is that the support
player aims to have space in front that allows him to receive the
ball while running, requiring him to manage the Bdepth^ be-
tween himself and the ball carrier. The Bdepth^ between players
is managed due to fine adjustments in players running line
velocities. Adjustments in the support player running lines ve-
locities are supported by visual information provided by the
ball carrier behavior (Black et al., 2007; Schmidt, Bienvenu,
Fitzpatrick, & Amazeen, 1998). The strength of an interperson-
al coordination synergy is supported by visual information,
which means that adjustments in running line velocities are
shaped by the visual information provided by players’ relative
position. Due to practice players may be more fine-tuned to the
visual information regarding changes in the other behavior,
which provide prospective information that support co-

adaptive behaviors than for the information regarding a specific
position as the exact moment to perform and receive the pass
(Fajen, 2005; Fajen et al., 2009).

Social interactions as team sports are complex, meaning that
system behavior is influenced by several variables. Thus the
main issue when applying the UCM approach to social systems
as team sports concerns identification of criteria that can be used
to select the performance variables as well as the task-relevant
elements. However, this constraint affords opportunities to test
other performance variables and other task-relevant elements. In
the present study we delimited our analysis to only one perfor-
mance solution (i.e., when a pass occurred and a try was
scored); however, there are numerous other performance solu-
tions that could and do typically occur when small group dyads
are formed (e.g., when a ball carrier fakes a pass and dummies
to beat the defender themselves). How other performance solu-
tions impact upon the emergence or decay of synergies between
players will be a fruitful topic to future research.

Another important issue for further application of this ap-
proach in team sports is the location effect. Black and col-
leagues stated that variability along the UCMwas not uniform
across an entire cycle of an interlimb task of moving two
hands rhythmically, which means that the strength of the syn-
ergymay vary within the movement cycle (Black et al., 2007).
We think that the same might happen for a task where two
players need to co-adapt to succeed. The non-linear feature of
interpersonal coordination tasks may constrain variability
along the UCM across an entire trial. This lack of uniformity

Fig. 5 Players trajectories (x, y) approaching the moment of the pass

Table 2 Classification of coupling strength of rugby synergies

Below x
1<UCM<3

Between x and xþ 1:SD
3<UCM<5

Between xþ 1:SD
and xþ 2:SD
5<UCM<7

10 trials 7 trials 2 trials
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leads us to suggest the following issues for further investiga-
tion: (i) task-relevant elements stabilize one performance var-
iable but with fluctuations in the synergy strength (i.e., UCM
values) across the trial; (ii) task-relevant elements may stabi-
lize different (i.e., two or more) performance variables, that is,
in some part of the trial the task-relevant elements may con-
tribute to stabilize θ values, but in other parts of the trial the
same task-relevant elements stabilize other performance vari-
ables (e.g., players interpersonal distances).
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