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Abstract Non-symbolic stimuli (i.e., dot arrays) are common-
ly used to study numerical cognition. However, in addition to
numerosity, non-symbolic stimuli entail continuous magni-
tudes (e.g., total surface area, convex-hull, etc.) that correlate
with numerosity. Several methods for controlling for continu-
ous magnitudes have been suggested, all with the same under-
lying rationale: disassociating numerosity from continuous
magnitudes. However, the different continuous magnitudes
do not fully correlate; therefore, it is impossible to disassociate
them completely from numerosity. Moreover, relying on a spe-
cific continuous magnitude in order to create this disassociation
may end up in increasing or decreasing numerosity saliency,
pushing subjects to rely on it more or less, respectively. Here,
we put forward a taxonomy depicting the relations between the
different continuous magnitudes. We use this taxonomy to in-
troduce a new method with a complimentary Matlab toolbox

that allows disassociating numerosity from continuous magni-
tudes and equating the ratio of the continuousmagnitudes to the
ratio of the numerosity in order to balance the saliency of
numerosity and continuous magnitudes. A dot array compari-
son experiment in the subitizing range showed the utility of this
method. Equating different continuous magnitudes yielded dif-
ferent results. Importantly, equating the convex hull ratio to the
numerical ratio resulted in similar interference of numerical and
continuous magnitudes.

Keywords Non-symbolic number . Ratio effect .Matlab
toolbox

Introduction

The interplay of continuous magnitudes and numerosity in
size comparison tasks is controversial. Mainly, various ways
for controlling continuous magnitudes have led to conflicting
results (Smets, Sasanguie, Szücs, & Reynvoet, 2015). In the
current paper, we introduce a new method that enables exam-
ination of each continuous magnitude separately and mini-
mizes saliency differences.

The inseparability of numerosity and continuous
magnitudes

In the field of numerical cognition, the dominating theories pos-
tulate that humans and animals have an innate ability to perceive
andmanipulate numerosities, that is, a Bnumber sense^ (Cantlon,
Platt, & Brannon, 2009; Dehaene, 1997; Feigenson, Dehaene, &
Spelke, 2004). A prevalent method for studying the Bnumber
sense^ is to use non-symbolic stimuli, typically with arrays of
dots. The advantages of non-symbolic stimuli are manifold:
They can be used on populations that are not familiar with
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numerals, like young children, infants, and animals, and they are
not culture dependent.

However, in addition to numerosity, non-symbolic stimuli
entail continuous magnitudes (e.g., total surface area, density,
etc.) that correlate with numerosity. For example, when all dots
are presented in the same size (e.g., Chassy & Grodd, 2012) and
participants are asked to decide which group contains more dots,
ten dots have twice as much total surface area as five dots. In
such tasks, it is impossible to know if participants responded
according to the number of dots, the total area of the dots, or
used a combination of both area and numerosity.

Methods of controlling for continuous magnitudes
in numerical comparison tasks

The possible confounds of continuous magnitudes in
numerosity judgment experiments were recognized even by
those who supported the notion of a Bnumber sense.^ Piazza
and colleagues (Piazza, Izard, Pinel, Le Bihan, & Dehaene,
2004) tried to dissociate continuous magnitudes from
numerosity by eliminating the correlation between total surface
area and numerosity, thus making total surface area an uninfor-
mative cue of numerosity. Piazza et al. suggested the results
obtained under these controlled conditions should be attributed
to the processing of numerosity and not to continuous magni-
tudes. However, this method was criticized on several grounds
(Gebuis & Reynvoet, 2011; Leibovich & Henik, 2013, 2014;
Leibovich, Henik, & Salti, 2015). Mainly, disassociating a sin-
gle continuous magnitude ignores the possibility that partici-
pants might rely on several continuous magnitudes or even
switch between them (see Leibovich & Henik, 2014).

Gebuis and Reynvoet (2011, 2012b) created a code that
manipulates congruency between numerosity and one or sev-
eral continuous magnitudes. In congruent trials, the more nu-
merous array was larger on these continuous magnitudes. In
incongruent trials, the less numerous array was larger on these
continuous magnitudes. In addition, their code recorded all
continuousmagnitudes to enable statistical monitoring of their
distances. Analysis of Gebuis and Reynvoet’s stimuli showed
that the numerical and continuous magnitudes and their dis-
tances did not correlate. In numerical cognition studies, it was
well established that it is easier to differentiate between two
numerosities as their numerical distance increases (i.e., the
distance effect; Buckley & Gillman, 1974; Moyer &
Landauer, 1967).

Recent studies that used this method demonstrated that con-
tinuous magnitudes still affect participants’ performance in nu-
merical decisions. Leibovich and Henik (2014) presented partic-
ipants with pairs of dot arrays containing 5–25 dots each and
asked them to choose the group containing more dots. They
found that the ratio between the continuous magnitudes
accounted for half of the explained variance in response times.
In an electroencephalogram (EEG) study, Gebuis and Reynvoet

(2013) used repetitive presentation of the relevant magnitudes
but changed the other magnitudes (i.e., habituation paradigm)
and measured separately habituation to numerosity and to con-
tinuous magnitudes. They did not find a brain activity associated
with dishabituation to numerosity but did find one associated
with dishabituation to continuous magnitudes at lateral occipital
and parietal electrodes. Such findings challenge the notion that in
the context of numerical judgments, number is the only visual
property that is extracted from non-symbolic presentation of
quantities. However, the contribution of continuous magnitudes
should be examined meticulously.

Caveats in the existing methods

Gebuis and Reynvoet’s (2011, 2012a) attempt to monitor the
distance of continuous magnitudes suffers from some poten-
tial caveats. The measurement units of continuous magnitudes
are arbitrary (e.g., pixels, centimeters, inches, etc.). The units
of numerosity, on the other hand, are discrete and constant
(dots, in the case of dot arrays). This makes the distance be-
tween continuous magnitudes uninformative and unscaled.
The lack of suitable and generalized units prevents compatibil-
ity of the numerical and continuous values and distances. This
incompatibility could, in turn, lead to unequal saliency of the
numerical differences and the continuous magnitude differ-
ences. To illustrate, consider the case where one chooses arbi-
trary units and creates a dot array that contains five and ten dots
and, respectively, a continuous measure of 10 and 15. Although
the numerical and continuous distances are both 5, the numer-
ical ratio is 0.5 and the continuous ratio is 0.67. According to
Weber’s law (Shepard, Kilpatric, & Cunningham, 1975), their
subjective impact would be different (i.e., the numerical differ-
ence would be more salient).

The saliency problem is multifaceted. First, the saliency of the
congruency conditions can vary and affect participants’ subjec-
tive correlation. To illustrate, imagine one possible extreme case
in which the differences in the congruent condition are distribut-
ed normally around a mean, and the differences in the incongru-
ent condition are distributed around the same mean but in a U-
shape distribution. In this case, although the differences would
not correlate with numerosity, the same threshold would leave
out more cases in the U-shaped distribution. This might result in
a subjective distribution that favors the normally distributed con-
dition, in this example the congruent condition (in contrast to the
objective distribution of equal congruent and incongruent trials;
see Fig. 1). In other words, if the differences in congruent and
incongruent trials do not share the same distribution, the differ-
ences of one condition could be more salient, creating an alter-
native explanation to the congruity effect (i.e., the differences
between congruent and incongruent trials can occur not because
of automatic processing of the irrelevant dimension but because
of different saliency between the two conditions). Second, differ-
ences in saliency between numerosity and continuous
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magnitudes could account for the conflicting findings in the lit-
erature – some supporting and some opposing the notion that
continuous magnitudes contribute or even underlie numerical
judgments. If the differences between continuous magnitudes
are more salient than the differences between numerosities (i.e.,
bigger), it is plausible that participants would rely more on the
salient dimension (for similar ideas, seeMelara &Algom, 2003).

The suggested method

In this paper we propose a new approach for controlling contin-
uous magnitudes that would minimize the problem of arbitrary
units and allow controlling for saliency. We also supply a com-
plementary code (the code can be downloaded here: http://in.
bgu.ac.il/en/Labs/CNL/Lab%20Wiki/Scripts.aspx). According
to Weber’s law, the difference in intensity needed to distinguish
between two stimuli is proportional to the intensities of the
stimuli. For example, it is known that participants’ ability to
discriminate between two dot arrays or two symbolic numbers
(Arabic digits) varies as a function of the ratio (smaller divided
by larger number) of the two numerosities (Leibovich & Henik,
2013; Moyer & Landauer, 1967); responses to pairs with higher
numerical ratios (e.g., 6 and 8, ratio of 0.75) are slower and less
accurate than responses to pairs with lower numerical ratios (e.g.,
2 and 8, ratio of 0.25). Differentiation in other continua such as
space, loudness of pitch, etc., also follow Weber’s law (Cantlon
et al., 2009; Moyer & Landauer, 1967). For this reason, we
equated the ratio of the continuous magnitudes to the numerical
ratio of dot arrays.

We consider the five continuous magnitudes that are used in
the literature: Total circumference – sum of all perimeters (see
Formula 1); average diameter – average diameter size of dots in
an array (see Formula 2); total surface area – sum of the area
occupied by the dots (see Formula 3); convex hull – the area
extended by the dots, which is approximated by polygons and
calculated accordingly (see Formula 4); and density – how close
together the dots are (see Formula 5). Note that even when com-
paring ratios, although all of the continuous magnitudes could be

manipulated separately from numerosity, they are inseparable
from each other. To this end, we put forward a taxonomy that
would shed light on the mathematical properties and relations of
the continuous magnitudes.

The continuous magnitudes can be divided into two groups
(Fig. 2): The intrinsic features group and the extrinsic feature
group. The intrinsic group describes features that can be cal-
culated for each individual dot, such as the diameter, its cir-
cumference, and area. The intrinsic group has two sub-types
of magnitudes: The first sub-type includes magnitudes in
which the radii are to the first power (i.e., have an exponent
of 1): total circumference and average diameter (they are a
linear transformation of one another; Formulas 1–2). The sec-
ond sub-type includes magnitudes in which the radii are to the
second power (i.e., have an exponent of 2): total surface area
(Formula 3). The second group describes the extrinsic
features, that is, features that can only be calculated on an
array of dots. These extrinsic features take into account not
only the size of each item (radius square) but also their loca-
tion. This group of features includes the area of the convex
hull and density, which are negatively correlated with each
other (Formulas 4–5).

These different mathematical characteristics of each group
have methodological implications. They demonstrate that when
numerosities are not equal, it is impossible to equate the ratio of
all the continuous magnitudes to the ratio of the numerosity. To

illustrate, we define numerosity ratio as N ¼ N1
N2

, the total cir-

cumference ratio asC ¼ C1
C2
, etc. If the total circumference ratioC

is equal to the numerosity ratio N then the average diameter ratio

A is defined as A ¼ C1N2
N1C2

¼ C
N ¼ 1. This implies A ≠N. nless the

two numerosities are equal, i.e., N = 1). Similarly, if the average
diameter ratio A is equal to the numerosity ratio N, then

C ¼ A1N1
A2N2

¼ N2, where C ≠N. Therefore, the code we present

will compare the ratio of one selected continuous magnitude
from each group at a time to the numerical ratio. This is in
contrast with previous reports that were characterized by attempts
to control several variables simultaneously. In addition, we will

Fig. 1 Example of how the congruency conditions can differ in saliency.
In this example, the congruent condition is normally distributed and the
incongruent condition has a U-shape distribution. For a similar threshold

between the two conditions, more cases would be left out of the incon-
gruent condition
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use congruency conditions to disassociate numerosity and the
chosen continuous magnitudes (CCM).

In the following section, we will describe the way different
continuous ratios are equated to the numerical ratio. We will also
demonstrate the utility of our method with a simple non-
symbolic comparison task. The main aim of this demonstration
is a proof of concept, showing that equating the ratio of different
continuous magnitudes to the numerical ratio would yield differ-
ential interference to the numerical and continuous tasks. We
chose to conduct this in the subitizing range (i.e., 2–4) as
numerosities in this range are considered to be processed auto-
matically and therefore a differential effect in this range would be
least expected.

Code algorithm

The rational underlying this code is to equate the continuous
magnitude ratio between two sets of dots to their numerical ratio.
We relate to a single continuous magnitude at a time.

N1, N2 is the number of dots in each set.
The radii of the dots in the first set will be r1, r2…The radii

of the dots in the second set will be s1, s2…We consider the
following continuous measures:

Total circumference : C1 ¼ 2π
X N1

i¼1
ri ; C2

¼ 2π
X N2

i¼1
si ð1Þ

Average diameter : A1 ¼ 2

N 1

X N1

i¼1
ri ¼ C1

πN1
; A2

¼ C2

πN 2
ð2Þ

Total surface area : S1 ¼ π
X N1

i¼1
r2i ; S2 ¼ π

X N2

i¼1
s2i ð3Þ

Area of convex hull : H1; H2 ð4Þ

(custom computation of area according to the specific poly-
gon created by the dots)

Density : D1 ¼ S1
H1

; D2 ¼ S2
H2

ð5Þ

For the computation in (4), the pixels that make up each dot
were first approximated by a polygon with the method
circleToPolygon from the package geom2d by David Legland
(http://www.mathworks.com/matlabcentral/fileexchange/7844-
geom2d). Next, the area of the convex hull surrounding all
polygons was computed with the Matlab convhull method.

The code randomly assigns radii and locations to the dots in
each array according to a user pre-defined range of
numerosities and radii (the range of numerosities is limited
only by the area on screen). In order to equate the ratio of
the CCM to the numerical ratio, the code compresses
(shrinks) the array that is larger on the CCM, to the desired
ratio. In the congruent condition, the ratio of the CCM is equal
to the numerical ratio:

congruent ¼ N 1

N 2
¼ CCM 1

CCM 2
ð6Þ

In the incongruent condition, the ratio of the CCM is in-
verse to the numerical ratio:

incongruent ¼ N 1

N 2
¼ CCM 2

CCM 1
ð7Þ

The congruency of the rest of the continuous magnitudes
can be defined by the user. The code documents the ratios
between each continuous magnitude in the two to-be-
compared arrays, to enable statistical monitoring. For conve-
nience, the documented ratios will be calculated by the smaller
array (of the magnitude in question) divided by the larger array,
so values closer to 1 indicate high similarity (e.g., eight and ten
dots will yield the ratio 0.8, indicating 80 % similarity), and
values closer to 0 indicate low similarity (e.g., two and ten dots
will yield the ratio 0.2, indicating 20 % similarity).

For simple notation, we assume in the following that the
array denoted by N2,CCM2 is the array with the larger CCM ,
that is, the array that is being rescaled by the compression
factor.

The compression for comparing the ratio of average diam-
eter and total surface area was performed in the following
manner for the congruent condition:

Congruent Compression Factor ¼ N2*CCM 1

N1*CCM 2
ð8Þ

Fig. 2 Division of the continuous magnitudes. Intrinsic magnitudes refer
to magnitudes that can be calculated on each individual dot. Extrinsic
magnitudes refer to magnitudes that can only be calculated on an array
of dots. r = radius
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For the incongruent condition:

Incongruent Compression Factor ¼ N1*CCM 1

N2*CCM 2
ð9Þ

The compression for comparing the ratio of convex hull
was performed in the following manner for the congruent
condition:

Congruent Compression Factor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2*CCM 1

N 1*CCM 2

r
ð10Þ

For the incongruent condition:

Incongruent Compression Factor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1*CCM 1

N 2*CCM 2

r
ð11Þ

If the CCM is an intrinsic magnitude, the radii are subjected
to compression. If the CCM is an extrinsic magnitude, in
addition to the compression of the radii, the centers of the dots
gather closer together by multiplying their coordinates by the
compression factor.

Behavioral experiment

In order to test the effect of equating the ratio of different
continuous magnitudes, we created stimuli that were fully
congruent or incongruent. In other words, in a congruent stim-
ulus, the ratio of the CCM was equal to the numerical ratio,
and the remaining continuous magnitudes were also congru-
ent (but not necessarily in the same ratio). In an incongruent
stimulus, the ratio of the CCM was inverse to the numerical
ratio, and the remaining continuous magnitudes were incon-
gruent (but not necessarily in the exact inverse ratio). We
created three sets of stimuli; in each set a different continuous
magnitude was equated – average diameter, total surface area,
and convex hull. Since all stimuli were fully congruent or
incongruent, the effects found could not be attributed to dif-
ferent levels of congruency (i.e., different number of continu-
ous magnitudes that are congruent with number in different
stimuli). Instead, they should be attributed to differences in
saliency created from manipulating different continuous
magnitudes.

Method

Participants Seventy-one participants (average age: 24.54
years) completed the experiment. The CCM for 24 partici-
pants (eight males) was average diameter, for 21 participants
(five males) it was total surface area and for 26 participants (13
males) it was convex hull.

Stimuli The stimuli were dot arrays created with the code. We
created three sets of stimuli; in each set a different continuous
magnitude was equated – average diameter, total surface area
and convex hull. All stimuli were in the subitizing range (i.e.,
<5, excluding 1) so there were 12 types of stimuli for each
CCM (i.e., arrays with the following number of dots in the
congruent and incongruent conditions): 2–4, 4–2, 2–3, 3–2,
3–4, 4–3. For examples of the stimuli, see Fig. 3A.

Procedure The procedure was based on that of Leibovich
et al. (Leibovich, Henik, & Salti, 2015). Each trial began with
a green fixation point presented on a black screen with a white
line bisecting it vertically for 500 ms. The black bisected
screen remained in view for 1,000 ms and then the stimulus
appeared for 700 ms. Participants could respond either when
viewing the stimuli or up to 1,100 ms after the stimuli disap-
peared (see Fig. 3B).

The CCM was manipulated between participants. Namely,
one group of participants performed the tasks where the CCM
was average diameter, another group performed the tasks
where the CCMwas total surface area, and for the third group,
the CCM was the convex hull. Each participant preformed
two tasks: a numerical task, where participants had to choose
(as fast as possible while avoiding errors) the array containing
more dots, and a continuous task, where participants had to
choose (as fast as possible while avoiding errors) the array
containing more white (the dots were white on a black back-
ground). The order in which the tasks were administered was
counterbalanced. Responses were given by pressing the Bq^
key for the left array and the Bp^ key for the right array. Each
task began with six practice trials in which participants were
given feedback. After the practice block, each task was com-
posed of four blocks of 60 trials each. Altogether, there were
240 trials for each task and 480 trials for the whole experi-
ment, with an equal proportion of congruent and incongruent
trials. All participants (in each group) were presented the same
set of stimuli. Response times (RTs) and accuracy were
recorded.

Results

Error rates as a dependent measure All analyses were con-
ducted with the program Statistica (version 12). A 3-way anal-
ysis of variance (ANOVA) was conducted with CCM (aver-
age diameter / total surface area / convex hull) as between
subject variables, and task (continuous / numerical) and con-
gruency (congruent / incongruent) as independent within sub-
ject variables. CCM affected error rates, F (2, 68) = 14.29, p <
.001, ηg

2 =.31; when the CCM was convex hull, error rates
were significantly lower in comparison to when average di-
ameter or total surface area were the CCM, F (1, 68) = 27.87,
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p < .001, ηg
2 =.47. Error rates were similar when average di-

ameter and total surface were the CCMs, F < 1.
Task also affected error rates, F (1, 68) = 110.66, p < .001,

ηg
2 =.37. Namely, error rates were generally higher for the
numerical task than for the continuous task. Congruity also
affected error rates, F (1, 68) = 103.26, p < .001, ηg

2 =.38.
Namely, congruent trials were more accurate than incongruent
trials were.

The 3-way interaction between CCM, task and congruency
was significant, F (2, 68) = 34.36, p < .001, ηg

2 =.13. For the
average diameter and total surface area, the congruency effect
was bigger in the continuous task,F (1, 68) = 132.77, p < .001,
ηg
2 =.23, and F (1, 68) = 8.73, p < .01, ηg

2 =.02, respectively.
For the convex hull, the 2-way interaction between task and
congruency was not significant, F < 1.

RTas a dependent measure For the RT analysis, error trials
were removed. Table 1 presents the error rates in the different
conditions. In addition, trials over or under 3 standard devia-
tions (in RT) for each subject in each condition were removed
as well. These trials represented less than 2 % of the trials.
Mean RTs of correct trials in each condition for each partici-
pant were analyzed with CCM (average diameter / total sur-
face area / convex hull) and order of tasks (continuous-numer-
ical / numerical-continuous) as between-subject variables, and
task (continuous / numerical) and congruency (congruent /
incongruent) as independent within-subject variables in a 4-
way analysis of variance (ANOVA). We found a main effect
for task. Task affected RT, F (1, 67) = 17.848, p < .001, ηg

2 =
.04, namely, the numerical task was faster than the continuous
task. Congruity also affected RT, F (1, 67) = 104.310, p <
.001, ηg

2 = .02. As expected, congruent trials were faster than
incongruent trials. We did not find a main effect for CCM, F
(1, 67) = 2.25, p = .11, or for order, F < 1. However, the
interaction between task and order was significant so that
when the continuous task was first the numerical task was

faster, but when the numerical task was first there was no
difference, F (1, 67) = 6.97, p = .01, ηg

2 = .02. The task and
CCM interaction was significant, F (2, 67) = 4.58, p = .014, ηg

2

= .02. Further analysis revealed that when the CCM was av-
erage diameter or total surface area, the numerical task was
faster than the continuous task, F (1, 67) = 4.66, p = .03, ηg

2 =
.01, and F (1, 67) = 20.02, p < .001, ηg

2 = .05, respectively.
However, when the CCM was convex hull, there was no dif-
ference between the tasks, F < 1 (see Fig. 4). The 3-way
interaction between CCM, task and congruency was signifi-
cant, F (2, 67) = 26.3, p < .001, ηg

2 = .005 (see Fig. 4). When
the CCM was average diameter, numerosity interfered more
than the continuous magnitudes did, that is, the difference in
RT between congruent and incongruent trials was bigger in
the continuous task than in the numerical task, F (1, 67) =
68.12, p < .001, ηg

2 = .006. When the CCM was total surface
area or convex hull, the interference was the same, F < 1).

Discussion

In order to evaluate the benefits of the suggested method, let
us start with summarizing the main results of the conducted
experiment. First, we found that despite the fact that all sets of
stimuli were fully congruent / incongruent, the results differed

Table 1 Error rates in all conditions

Continuous Task Numerical Task

Congruent Incongruent Congruent Incongruent

Chosen continuous magnitude

Average
diameter

0.02 0.36 0.04 0.07

Total surface area 0.12 0.25 0.02 0.06

Convex hull 0.04 0.07 0.03 0.06

Fig. 3 (A) Examples of congruent and incongruent stimuli for the three chosen continuous magnitudes: average diameter, total surface area and convex
hull. (B) An example of a trial in the experiment
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according to the CCM. Second, our results suggest that in the
subitizing range, a range of numerosities in which numbers
are perceived very fast and accurately (Revkin, Piazza, Izard,
Cohen, & Dehaene, 2008; Watson, Maylor, & Bruce, 2007),
comparing the ratio of the convex hull equated the difficulty of
the numerical and continuous tasks. When tasks are equally
difficult, it is apparent that the interference of numerosity and
continuous magnitudes are similar.

The finding that continuous magnitudes interfere in the
subitizing range serves as strong evidence for the notion that
continuous magnitudes play a role in numerical comparisons.
Numerosities in the subitizing range are processed quickly and
accurately; accordingly, they are considered automatic
(Feigenson et al., 2004). In a recent fMRI (functional magnetic
resonance imaging) study, we showed the impact of continuous
magnitudes in the subitizing range (Leibovich et al., 2015).
Stimuli were produced with the code of Gebuis and Reynvoet
(2012b) and subjects performed two tasks: a numerical task and
a continuous task (similar to the research herein). On the be-
havioral level, continuous magnitudes interfered regardless of
the task order; however, numerosity interfered only when the
numerical task was first. Our results tone down the assertion
that continuous magnitudes overpower numerosity. We show
that when the numerical and continuous tasks are equally sa-
lient, the congruency effects are similar and not affected by
context. Our results reveal that saliency, among other things,
determines the context. In other words, it is plausible that higher
saliency of the continuous properties drove the context effect.

Our experiment examined the effect of equating saliency of
numerical and continuous ratios in the subitizing range. We used
the subitizing range because it is considered to be a range in
which numerosity is processed automatically and thus effects
of continuous variables might not be expected. Importantly, we
also performed a series of experiments with numerosities ranging
from 5–30. In these experiments, we used the code presented in
the current article to generate stimuli. The results were similar to

those reported here. These experiments show once again the
importance of equating different continuous magnitudes, and
how they modulate behavior when using different numerosities.
We discuss these results and their theoretical implications else-
where (Katzin, Leibovich, Henik, & Salti, in preparation).

The main thrust of this paper is to study numerical cognition
in a controlled environment. The current method is an evolution
of previous and important work aimed at dissociating continuous
and numerical magnitudes (Gebuis & Reynvoet, 2011, 2012b;
Halberda, Mazzocco, & Feigenson, 2008; Piazza et al., 2004).
We compared the ratio of continuous magnitudes with the nu-
merical ratio to confront the problem of saliency of one congru-
ency condition over another, and saliency of continuous magni-
tudes over numerosity (and vice versa).

Recently, DeWind and colleagues (DeWind, Adams, Platt,
& Brannon, 2015) published an insightful paper in which they
pointed out the importance of ratio when controlling for con-
tinuous magnitudes. They created an estimate of the Weber
fraction that was clean of continuous effects and was a better
estimate of numerical acuity. To this end, they defined three
magnitudes: numerosity, size, and spacing. They provided a
code that could calculate these measures from existing arrays.
Size and spacing were artificial measures composed mathe-
matically to achieve orthogonality. These artificial measures,
although allowing isolation of continuous magnitudes from
numerosity as a whole, do not allow characterization of the
interactions between specific continuous magnitudes and
numerosity. DeWind’s method can be applied only on arrays
that are homogenous, that is, where all dots are of the same
size. The orthogonality of size and spacing would be breached
otherwise. Finally, they measured the continuous magnitudes
and did not manipulate them. Our method is more accessible
in the sense that it operates on the native space and is less
restricted. While in the past the intercorrelations of continuous
magnitudes were considered an obstacle, we employed them
to our benefit. Comparing one continuous magnitude at a time
enables examination of the continuous measure on which par-
ticipants rely on. This enables going from quantitative explora-
tion, namely, how much a continuous magnitude contributes to
numerical perception, to asking how does it contribute. To illus-
trate, if participants rely on density, it insinuates that location of
the dots is important for numerical perception and supports the
notion of individuation (Dehaene & Changeux, 1993). On the
other hand, if convex hull is the prominent attribute on which
participants rely, then individuation is less likely to be a part of
the cognitive process of numerical perception.

Other than comparing saliency, our method has several
other methodological advantages. Congruency between
numerosity and continuous magnitudes is a spectrum that
can span from one continuous magnitude up to five congruent
continuous magnitudes (or more than the five continuous fac-
tors we depicted). The code we provide enables the experi-
menter to regulate the degree of congruency. In this

Fig. 4 Response time (RT) results for the three chosen continuous mag-
nitudes (CCM: average diameter, total surface, and convex hull) for each
task (continuous and numerical)
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experiment, we used full congruency to increase the odds of
there being no subjective correlation and to show that congru-
ency alone is not enough. Nonetheless, full congruency entails
an ecological shortfall. For example, density and convex hull
are negatively correlated, and by forcing them to be congru-
ent, it creates a situation that is seldom present in real-life
situations. These correlations between continuous magnitudes
should be considered when creating stimuli.

The code allows flexibility in other domains as well. For
example, the code is set to equate the ratio of the CCM to the
ratio of the numerosities, but this is not a must. Users can
define the ratio they want to use. For example, one could
use this code to see the effect of ratio of the CCM on the
interference. The ratio can be changed gradually (or other-
wise) to create a psychophysical curve and see the impact of
continuous magnitudes on numerical processing. In addition,
the code currently created stimuli for the comparison task. The
user can, with slight changes, alter the code to create stimuli
for other tasks like priming and habituation.

In designing this code, we strived to have minimum restric-
tions and interventions creating the stimuli. The only restric-
tion that is built-in in the code is that we do not allow the dots
to touch one another. Other than that, the size and location of
the dots are random within a predetermined range. This was
done in order to avoid unnecessary correlations.

To conclude, the suggested method and the complimentary
code allow generating non-symbolic stimuli for numerical
tasks. The method emphasizes the importance of equating
the saliency of numerical and continuous magnitudes and
opens new venues for future research.
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