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Abstract In cognitive research, speed and accuracy are two
important aspects of performance. When analyzed separately,
these performance variables sometimes lead to contradictory
conclusions about the effect of a manipulation. To avoid such
conflicts, several measures that integrate speed and accuracy
have been proposed, but the added value of using such mea-
sures remains unclear. The present paper compares the relative
utility of seven integrated performance measures, namely four
variations on a binning procedure that weights response times
of correct and incorrect trials differently, and three measures
that combine averaged speed and accuracy scores. The prop-
erties of these integrated measures were explored in three sim-
ulation studies. The first study compared three binning mea-
sures and showed that one measure failed to grasp the perfor-
mance difference between two conditions. The second study
showed that the sampling distributions of the measures were
symmetric, except for a strong skewness on the rate correct
score. The third study varied the trade-off and the effect sizes
of speed and accuracy in four different combinations of size
and direction of speed and accuracy effects. These studies
highlighted some further shortcomings of the binning mea-
sures. The combination measures performed well, but linear
integration of speed and accuracy and rate correct score were
most efficient in detecting effects and accounting for a larger
proportion of the variance. The paper concludes that these
combination measures are useful provided that the speed and
accuracy data are also inspected.

Keywords Speed . Accuracy . Integrated speed-accuracy
scoring

Introduction

Research on human performance requires paradigms that in-
duce changes in performance as expressed in response time,
accuracy or both. For example, tasks involving incompatibil-
ity are typically performed slower and are often more
error-prone than tasks with compatible stimuli and/or re-
sponses (Kornblum, Hasbroucq, & Osman, 1990; MacLeod,
1991; Stroop, 1935); similarly, situations requiring task
switching lead to slower responding and/or increased error
rates (e.g., Kiesel et al., 2010; Vandierendonck, Liefooghe,
& Verbruggen, 2010). In such paradigms, the imposed varia-
tions may have different effects on response speed and accu-
racy, possibly as a result of differences in the speed-accuracy
balance.

Contradictory findings in these two important aspects of
performance might be avoided when measurements of re-
sponse time (RT) and accuracy (proportion of errors; PE) are
integrated into a single measure. Integrative measures that
have been proposed include the inverse efficiency score
(IES; Townsend & Ashby, 1978), the rate correct score
(RCS;Woltz &Was, 2006), and a Bin score, i.e., a score based
on partitioning the RTs in the data set into bins (Hughes,
Linck, Bowles, Koeth, & Bunting, 2014). Although suchmea-
sures have occasionally been used, there is no general agree-
ment about the utility of such integrated measures and their
efficiency in detecting performance differences. Bruyer and
Brysbaert (2011) applied the oldest of these measures, IES,
to published data sets and obtained mixed results. Only when
the RTs and PEs are correlated or when the proportions of
errors are rather low, did IES seem to offer some help. These
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authors advised against using IES without also inspecting RT
and PE. Similar conclusions regarding IES followed from the
study of Hughes et al. (2014). These authors applied IES, RCS
and a Bin score to some data sets and concluded that RCS and
the Bin score are more reliable than IES and the single mea-
sures of RT and PE.

The latter findings might be taken to indicate that by using
RCS or the Bin score all our problems are solved.
Unfortunately, nothing is further from the truth. In fact, not-
withstanding the good news reported by Hughes et al., some
important problems remain to be solved. First, it is surprising
that RCS was better than IES in the Hughes et al. study, be-
cause they are both a ratio of correct responses and correct RTs
(IES) or all RTs (RCS). Second, the Bin measure proposed by
Hughes et al. (2014) has two important disadvantages: (1) it
measures the performance difference between two conditions
(e.g., the switch cost or the congruency cost) so that its use is
limited to situations involving a single contrast between two
conditions; (2) also, and more importantly, when there is no
difference between the two conditions (e.g., neither RT nor PE
switch cost), the Bin score yields a positive number that is
substantially larger than zero. The present article, therefore,
rejoins the debate about integrated measures of latency and
accuracy, in order to achieve a clearer picture regarding the
utility of integrated performance measures. More specifically,
improvements on the Bin score will be considered, and as an
alternative to IES and RCS, a linear combination of RTand PE
will be proposed. Thesemeasures will be tested on the basis of
a series of Monte Carlo simulations.

Integrated measures of response time (RT)
and proportion of errors (PE)

Before considering integrated measures of speed and accuracy
in more detail, it is important to delineate the focus of such
measures. Indeed, in some tasks, typically well-learned tasks,
it may be hypothesized that speed and accuracy of perfor-
mance are driven by common or overlapping processes.
Consequently, when the response process is speeded, for ex-
ample by instructions or by the presence of a response dead-
line, responding will become more error-prone, with the oc-
currence of choking under pressure as an extreme case
(Beilock, Kulp, Holt, & Carr, 2004). However, in other tasks,
speed and accuracy relate to different underlyingmechanisms.
Categorization and concept learning tasks using well-defined
categories provide an example in point. In such a task (e.g.,
Trabasso & Bower, 1966), errors are indicative of a state of
not yet knowing the categorization rule. The occurrence of an
error signals the need to change the currently tested rule, with
the result that more intricate processing will occur after an
error than after a correct response (e.g., White, 1972).
Speeding up responding will not result in a dramatic increase

in the number of errors, but it may interfere with the processes
involved in selecting a new rule after an error. In other words,
in tasks of the latter type, integration of speed and accuracy
into a single measure would not help at all to achieve a more
stable and informative measurement of performance. For that
reason, the present scrutiny of measures that integrate speed
and accuracy scores is restricted to tasks for which it can
reasonably be hypothesized that they—at least in part—result
from shared processes.

The oldest and most frequently used measure that inte-
grates RT and PE is the inverse efficiency score, or IES
(Townsend & Ashby, 1978). Its definition is quite simple,
namely

IES ¼ RT

1−PE
ð1Þ

where RT is the subject’s average (correct) RT of the condi-
tion, and PE is the subject’s proportion of errors in the condi-
tion. As an example, if average correct RT is 500 ms, and the
proportion of errors is .10, IES will be 500/(1−.10) = 556. IES
can be considered as the RTcorrected for the amount of errors
committed.

The rate correct score or RCS (Woltz & Was, 2006) is
defined as

RCS ¼ cX
RT

ð2Þ

where c is the number of correct responses in the condition,
and the denominator refers to the sum of all RTs in the set of
trials under consideration. If there are 100 trials with 90 cor-
rect responses and the average RT is 0.500 s, RCS = 90/50 =
1.8.1 This score can be interpreted as the number of correct
responses per second of activity.

The Bin score cannot be expressed in a simple mathemat-
ical formula. Its calculation, as defined in Hughes et al.
(2014), assumes that there are two conditions, basically a con-
trol and an experimental condition (e.g., task repetition and
task switch trials to estimate the task switch cost), and is per-
formed by executing the following steps:

1. Over all participants and all trials belonging to the control
condition, calculate the average RT (RTc).

2. Over all participants and all correct trials belonging to the
experimental condition, calculate RT-RTc; sort all these
values from small to large and calculate the deciles.
Each decile constitutes a bin; these bins are numbered 1
to 10.

1 This example implicitly changes the definition of Equation 2 by taking
the proportion correct and the average RT instead of the sum of all RTs.
This also has the advantage of making the measure comparable across
conditions.
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3. For each participant, count the number of correct differ-
ence scores (RT-RTc) of the experimental condition in
each of the 10 bins (ni); also count the number of error
trials (ne) and assign them to the Bbad^ bin. The score can
then be calculated as follows:

X10
i¼1

ni � i

 !
þ ne � 20;

where i is the number of the bin (1–10); note that the bad
bin is assigned a weight (or penalty) of 20.

4. The obtained score expresses the size of the difference in
performance (accuracy and latency) between the experi-
mental and the control conditions. In the remainder of this
article, the score calculated following these steps will be
referred to as Bin-o (bin-original).

At this point, a few comments about this calculation proce-
dure are in order. First, the errors committed in the control
condition seem to be ignored, so that only the errors committed
in the experimental condition are part of the difference score.
Hence, the final score does not properly reflect the accuracy
difference between the two conditions. Second, the final score
does not only express the difference between the two condi-
tions but also the variability within the experimental condition
(not the variability within the control condition). Third, as-
sume that there is absolutely no difference in performance
between the two conditions (repetition and switch): same
mean RT, same PE, and same RT distribution. If the score
expresses the performance difference between the two condi-
tions, it should be zero (or very close to zero). In fact, the score
will still be substantial. This can be seen if at step 2, instead of
the difference between experimental correct RTs and average
control RT, the differences between the correct control RTs and
the average control RT are calculated. Because there is vari-
ability within the control condition, the final score will not be
zero, but will express this variability. Fourth, consider two
experiments, one based on 100 trials and another based on
200 trials per condition. The Bin scores obtained in the former
experiment will be much smaller than the Bin scores in the
latter experiment, because the score is not based on propor-
tions of responses but on absolute numbers of responses.

This inspection of the calculation procedure suggests that
the Bin-o score does not yield a fair estimate of the perfor-
mance difference between the two conditions. However,
based on these observations, the calculation procedure can
be adapted to provide a score with potentially better measure-
ment properties. Here, two adaptations are proposed. The first
adaptation involves the following changes:

1. At step 1, instead of taking all RTs of the control condi-
tion, include only the correct RTs to calculate the average
of the control condition.

2. At step 2, calculate the difference between all correct RTs
over all trials (both control and experimental conditions)
and sort them in ten bins.

3. At step 3, first take the participant’s RT differences of the
control condition and count the number per bin; count the
number of error trials in the control condition and assign
them to be the bad bin. Calculate the overall score as
defined in step 3 of the original procedure, and take this
as the integrated performance measure of the participant
in the control condition. Next, do the same for the exper-
imental condition. Instead of a difference score, now two
scores are obtained, one for each condition. A difference
score can be obtained by subtracting the control score
from the experimental score, but as also argued by
Hughes et al., this has a number of disadvantages
(amongst others, larger variance) and is better avoided.

This adapted procedure, which will be referred to as Bin-a
(bin adapted) addresses the first three potential drawbacks
mentioned in response to the procedure to calculate Bin-o:
the errors in the control condition are no longer ignored, the
RT variability in the control condition is accounted for, and if
the control condition and the experimental condition yield the
same or very similar scores, it is possible to infer the absence
of a difference between the two conditions. One issue remains:
if there is a difference in the number of trials between condi-
tions, the scores will not be comparable.

The latter remark can be addressed in a further adaptation
of the calculation procedure, namely by adding a step in which
for each subject the response count per bin is converted to a
proportion per bin. No other changes are needed. This score
will be referred to as Bin-p (bin proportional).2

Thus far, the measures considered are IES, RCS, Bin-o,
Bin-a, and Bin-p. Whereas the binning scores are linear com-
binations of RT and PE measures, IES and RCS are in fact
non-linear measures; these scores are not the result of a linear
combination of RT and PE. Considering that in cognitive psy-
chology mostly statistical procedures are used that are based
on the (general) linear model, a new integrated measure is
proposed here that is based on a linear combination of RT
and PE. This linear integrated speed-accuracy score (LISAS)
is defined as:

LISAS ¼ RT j þ SRT
SPE

� PE j ð3Þ

2 In these adapted calculation procedures, the weight or penalty assigned
to the error bin remains the same as the penalty used by Hughes et al.,
namely 20. In fact, the choice of the penalty is arbitrary. Exploration with
different values of the penalty suggests that there is no optimum and that
the impact of the penalty largely depends on specific characteristics of the
sample being considered, e.g., the variability of error responses, the co-
variance between RT and PE measures, the presence of speed-accuracy
trade-offs, etc. For these reasons, the penalty was kept at 20, and this
value was used in all calculations of Bin scores in this article.
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where RTj is the participant’s mean RT in condition j, PEj is
the participant’s proportion of errors in condition j, SRT is the
participant’s overall RT standard deviation, and SPE is the par-
ticipant’s overall PE standard deviation. Weighting of the PE
with the ratio of the RT and PE standard deviations is done to
achieve a similar weight of the two components, RT and PE.
Like IES, this measure yields an estimate of RT corrected for
the number of errors. As an example, consider an average
correct RT of 500 with a standard deviation of 100, and an
error rate of .10 with a standard deviation of .05, LISAS will
be 500 + 100/.05 × .1 = 700.

The properties of these six integrated measures will be
evaluated in three studies based on Monte Carlo simulations.
The first study focuses on the alleged shortcoming of Bin-o
and the potential advantages of Bin-a and Bin-p. In a preview,
this study will confirm that Bin-o is not a useful measure.
Because selection of appropriate measures at least in part de-
pends on their distributional properties and how well these fit
the assumptions of normality often required in statistical pro-
cedures, the next study covers these distributional properties,
and was based on a large sample of artificial data. As it is well
known that the balance betweenRTand PE can be deliberately
modified by speed-accuracy trade-off strategies, Study 3 fo-
cuses on the role of speed-accuracy trade-offs in a variety of
cases with similar or different effects for RT and PE.

Study 1

In view of the alleged drawbacks and the potential to improve
measurement with the binning method, the first study was
designed to evaluate these issues. On the basis of a set of
artificial data, this study tested whether it is indeed the case
that the Bin-o measure fails to adequately and fully represent
the size of the difference between the control and experimental
conditions. As the two adaptedmeasures are proposed to over-
come these shortcomings, it may be expected that these mea-
sures efficiently capture the performance difference between
the experimental and the control condition. However, as the
Bin-o and Bin-a measures are based on absolute numbers of
observations, it is also expected that both measures would
yield different results solely due to the number of observations
or trials within the conditions. In contrast, Bin-p is based on
proportions and should not be affected by the number of ob-
servations per condition. All these different aspects were im-
plemented in a single study, by means of a design
encompassing a within-subject factor representing a compar-
ison between a control condition (which could be task repeti-
tion, congruence, easier task, etc.) and an experimental condi-
tion (task switch, incongruence, difficult task, …), and two
between-subject factors. One of the latter factors represented
the presence or absence of a performance cost, and the other
factor involved a variation of the number of trials in each of

the conditions (high versus low number of trials in both
conditions).

Method

Artificial data were generated for a 2 (Cost absent or present)
× 2 (Number of trials: high or low) × 2 (Trial type: control vs.
experimental) factorial design with repeated measures on the
last factor. For the within-subject part of the design, the fol-
lowing structural model was defined:

X i j ¼ μþ αi þ π j þ εi j ð4Þ

where μ is the overall performance mean,αi refers to trial type
(control vs. experimental), πj refers to the preferred perfor-
mance level of statistical subject j, and εij refers to the error
term. For the generation of the RT data, μ = 500, the value of
πj was sampled from a Gaussian distribution with zero-mean
and standard deviation 100, and the value ofαiwas zero in the
cost-absent condition, and −10 (control trials) or +10 (exper-
imental trials) when a cost was present. As RT data typically
have a positive skew, the error term was generated from an
exponentially modified Gaussian distribution, also known as
an ex-Gaussian distribution, which is obtained as the convo-
lution of a Gaussian and an exponential distribution
(Heathcote, Popiel, & Mewhort, 1991; Ratcliff, 1979;
Ratcliff & Murdock, 1976), which is defined as

f tjμ; σ; τð Þ ¼ 1

τ 2Πð Þ1=2
e−

σ2

2τ2
þt−μ

τ

� �
�
Z t−μð Þ=σ− σ=τð Þ

−∞
e −y2=2ð Þdy ð5Þ

where t is the time, μ and σ are parameters of the gaussian
distribution, and τ represents the mean and standard deviation
of the exponential distribution. The mean of the ex-Gaussian
distribution is μ + τ, its variance is σ2 + τ2, and its skewness is

2τ3

σ2þτ2ð Þ3=2 ; μ represents the modus of the distribution.

Ex-Gaussian distributed random numbers were generated by
taking the sum of a Gaussian distributed random value N(0,1)
and an exponentially distributed random value. The latter was
obtained from a uniformly distributed value u that was trans-
formed according to the following formula:

−ln uð Þ � τ ð6Þ
with τ = 1.5.

For the generation of the PE data, μ = .10, πj was sampled
from a Gaussian distribution with standard deviation .04, and
the value of αi was zero in the cost-absent condition and ±.05
when a cost was present. A uniformly distributed random
value between 0 and 1 was then sampled and compared to
the sum μ + αi + πj to decide whether the current response
was correct (0) or incorrect (1). In the conditions with many
trials, 260 trials were registered (130 per trial type). Only
130 trials (65 per trial type) were registered in the conditions
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with few trials. Each of the cells of the 2 × 2 between-subjects
part of the design contained 30 statistical subjects.

Results and discussion

The descriptive statistics of the obtained sample of artificial
data are displayed in Table 1. This table contains the means
and the standard deviations of RT, PE, Bin-o, Bin-a, and Bin-p
per cell of the design. As is shown in Table 1, the RT and PE
means did not differ much between the Control and
Experimental conditions in the Cost Absent conditions, and
this was also the case for the Bin-a and Bin-p means. In con-
trast, these four measures yielded performance differences be-
tween the two trial types in the Cost Present conditions. In the
Cost Absent condition, the Bin-o scores were large and only
slightly smaller than in the Cost Present conditions. An effect
of the number of trials per condition was only present in the
Bin-o and Bin-a measures. These observed trends were tested
by means of a 2 (Cost Presence) × 2 (Number of Trials) × 2
(Trial Type) ANOVA applied to each measure separately (ex-
cept for Bin-owhere the factor Trial Type was not available, as
this is a difference score). The results of these analyses are
shown in Table 2.

Three measures showed exactly the same pattern of results,
namely RT, PE, and Bin-p, with a significant main effect of
Trial Type and interaction of this factor with Cost Presence,
while none of the other effects attained significance. In other
words, for these three measures, the difference between con-
trol and experimental trials was significant, but only in the
conditions where a trial type cost was present. These measures
did not vary with the number of registered trials. The pattern
was different for Bin-a: in addition to these same two effects,
Number of Trials was significant and interactedwith these two
significant effects, thus producing a significant interaction of

Number and Trial Type and a significant triple interaction. In
other words, like RT, PE, and Bin-p, the Bin-a measure was
only sensitive to the contrast between experimental and con-
trol trials when a trial type cost was present. But in contrast to
these three measures, Bin-a was sensitive to the number of
trials resulting in higher scores in conditions with more trials
and a larger trial type cost when more trials were included.

For Bin-o, only a 2 × 2 design was applicable, and this
analysis revealed significant main effects of Cost Presence
and Number of Trials, but their interaction was not signif-
icant. This shows that Bin-o scores were larger when a cost
was present (M = 1507) than no cost was present (M =
1374). Similarly, Bin-o scores were also higher when the
number of trials was larger (M = 1951) than when it was
smaller (M = 929).

To further assess whether the combined score obtained
with the binning procedure captures the differences present
in both RT and PE measures, linear multiple regression anal-
yses were conducted with RT and PE measures as predictors
and each of the binning measures in turn as dependent vari-
able. As the binning scores are based on a sum of weighted RT
differences additively combined with weighted PE, linear re-
gression is a suitable technique for testing the relationship
between these measures and the RT and PE measures. The
RT and PE averages per trial type of all statistical subjects in
the sample were the predictors of the difference between the
experimental and control trials as measured by the binning
measures. Table 3 displays the results of these regression anal-
yses: for each bin measure (dependent variable), the t-values
associated with each predictor are displayed together with the
multiple correlation coefficient and the coefficient of
determination.

In line with the critical comments formulated in the intro-
duction regarding Bin-o, it appears that the PE of the control

Table 1 Means (standard deviations between brackets) of the measures response time (RT), proportion of errors (PE), Bin-o, Bin-a, and Bin-p as a
function of the cells of the design of the simulated 2 (Cost Presence) × 2 (Number of trials) × 2 (Trial type) factorial design in Study 1

Cost absent Cost present

Many Few Many Few

Ca E C E C E C E

RT 599 (101) 596 (100) 572 (102) 568 (101) 578 (107) 600 (108) 562 (129) 586 (130)

PE 0.105 (.035) 0.113 (.045) 0.104 (.036) 0.106 (.046) 0.053 (.046) 0.149 (.049) 0.050 (.042) 0.154 (.046)

Bin-ob 1,879 (412) 869 (198) 2,024 (394) 989 (235)

Bin-a 1,860 (452) 1,878 (412) 871 (208) 869 (198) 1,569 (431) 2,024 (393) 741 (277) 989 (235)

Bin-pc 7.15 (1.74) 7.22 (1.58) 6.70 (1.60) 6.69 (1.52) 6.03 (1.66) 7.79 (1.51) 5.70 (2.13) 7.61 (1.81)

a The letters C and E refer to the control and experimental trial types
b The Bin-o measure expresses a difference between the control and the experimental condition and has therefore only one value for the factor of Trial
type
c Note that the Bin-p averages can be derived from the Bin-a averages by dividing the latter by the number of trials (260 in the conditions with many trials
and 130 in the conditions with few trials)
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condition is indeed not related to the Bin-o score at all.
Furthermore, neither the experimental RT value nor the con-
trol RT value significantly contributes to the Bin-o difference
score in this sample. In fact, the Bin-o score depends to a large
extent on the proportion of errors committed in the experimen-
tal or difficult condition as these are heavily penalized. One
could have expected that the RT scores of the experimental
trials contributed more as their difference to the overall mean
control RT mean is taken into account in the calculation, but
this expectation was not confirmed in this analysis. To further
explore this observation, another regression analysis was per-
formed in which the RT and PE difference score between the
experimental and the control condition were used as predictors
of the binning measures. For Bin-o neither of these differences
contributed to the prediction; the multiple regression coeffi-
cient was only .08. In Bin-a (R = .90) and Bin-p (R = .99) both
cost predictors strongly contributed to the final score.

This first study fully corroborates the alleged shortcomings
of Bin-o as an integrated measure of performance. The Bin-o

measure does not validly combine RTand PE information and
therefore it should never be used. The adaptations implement-
ed in Bin-a and Bin-p, on the contrary, seem to work. Both
measures validly combine RTand PE scores, but Bin-a suffers
from the drawback that its value varies with the number of
observations. By taking proportions of observations instead of
absolute numbers, Bin-p seems to capture well the two per-
formance components without any of the drawbacks observed
with the two other binning variants.

On the basis of the findings in this first study, the Bin-o
measure was excluded from any further evaluations. It should
be noted further that if the number of trials in the conditions is
kept constant, no distinction between Bin-a and Bin-p is pos-
sible because it can be shown that in every condition Bin-p
equals Bin-a divided by the number of trials in the condition.
For that reason, as the following studies in the paper did not
vary the number of observations per condition, Bin-a and
Bin-p were treated as the same measure. Its utility was further
examined together with the three other integrated measures.
Because most statistical methods that are used in data analysis
are based on particular assumptions about the distribution of
the measurements being analyzed, the next study examined
the major characteristics of the probability distribution of the
four remaining integrated measures.

Study 2

It is well known that both RT and PE measures show devia-
tions from the normal distribution; within samples obtained
from one or more subjects (i.e., the sample distribution) RTs
are usually positively skewed and the shape of the PE distri-
bution tends to vary with the average percentage of errors.
When these measures are combined to form an integrated
measure, it is possible that the integration results in even stron-
ger deviations from the normal distribution. In order to

Table 2 Results of the analyses of variance applied to the measures
response time (RT), proportion of errors (PE), Bin-o, Bin-a, and Bin-p in
Study 1 on the basis of a 2 × 2 × 2 factorial design. The table displays the

value of the F-test, its probability level, and the effect size expressed in
partial eta-squared

Effects RT PE Bin-o Bin-a Bin-p

F p ηp
2 F p ηp

2 F p ηp
2 F p ηp

2 F p ηp
2

Cost Presence (A) <1 >.9 0.0 <1 >.4 0.0 4.89 0.05 0.04 <1 >.5 0.0 <1 >.6 0.0

Number (B) 1.07 >.3 0.01 <1 >.8 0.0 288.9 0.001 0.71 237.8 0.001 0.67 1.45 >.2 0.01

Trial Type (C) 90.5 0.001 0.44 329.4 0.001 0.74 363.1 0.001 0.76 330.9 0.001 0.74

A x B <1 >.75 0.0 <1 >.7 0.0 <1 >.8 0.0 <1 >.5 0.0 <1 >.6 0.0

A x C 170.5 0.001 0.60 271.8 0.001 0.79 330.2 0.001 0.74 310.5 0.001 0.73

B x C <1 >.7 0.0 <1 <.9 0.0 36.1 0.001 0.24 <1 >.7 0.0

A x B x C <1 >.5 0.0 1.2 >.25 0.01 24.6 0.001 0.18 1.37 >.2 0.01

NoteAll F-values have 1 and 116 degrees of freedom. As the Bin-o measure yields a single score for the effect of Trial Type, the design was reduced to a
2 × 2 between-subject design

Table 3 Results of the regression analyses with response time (RT) and
proportion of errors (PE) scores on control and experimental trials as
predictors of the cost scored by the binning measures: t-values, and
coefficient of determination (R2)

RT-C RT-E PE-C PE-E R2

Bin-o 0.51 0.38 0.01 2.80 0.35

Bin-a −3.64 3.50 −11.52 12.89 0.82

Bin-p −13.69 12.92 −41.58 46.37 0.98

Note The columns RT-C, RT-E, PE-C, PE-E contain the t-values (df =
115) of, respectively, RT in control, RT in experimental, PE in control,
and PE in experimental trials as predictors of the cost observed on the
measures in the rows (for Bin-o, the binning score; for Bin-a and Bin-p
the difference of these scores in the control and experimental trials). The
probability of all reported t-values was < .001, except for the t-values with
respect to the Bin-o score, where only the PE-E predictor reached signif-
icance (p < .01)

658 Behav Res (2017) 49:653–673



examine the properties of the four remaining measures, two
artificial data sets were generated on the basis of the model
described in Equation 4. Because it is possible that the results
differ with the direction of the effects, two subsets were pro-
duced, one with larger RT and larger PE in the experimental
than in the control condition (effects in same direction) and
one with RT and PE effects in opposing directions, namely
larger RT and smaller PE in the experimental than in the con-
trol condition.

Method

Two data sets of 1,000 samples based on 20 statistical subjects
were generated on the basis of Equation 4 with 250 observa-
tions in the control condition and 250 observations in the
experimental condition. In one data set the RT and PE effects
were in the same direction with longer RTs and more errors in
the experimental condition; in the other data set, the RTs were
also longer in the experimental condition, while the PEs were
larger in the control condition. For generating the RT data, αi

was ±10, μ was 500 and πj was sampled from a normal dis-
tribution with zero mean and a standard deviation of 100.
Random error (σε) was sampled from an ex-Gaussian distri-
bution based on the sum of a Gaussian distributed value N(0,
1) and an exponentially distributed value with τ = 1.5; the
obtained value was then multiplied by the standard deviation
of the RT error distribution (100). Thus an RT value was
produced for each trial.

For the PE data, αi was ±.0145, πj was sampled from a
normal distribution with zero mean and a standard deviation
of .04. Because at the trial level errors are absent (0) or present
(1), the generated value was compared to a uniformly distrib-
uted random number to decide whether the trial was correct or
not. The RT and PE values for αi were selected in such a way
that the obtained effect sizes for the RT and PE variables were
on average about equal.

Results and discussion

Mean, standard deviation, and skewness were calculated for
each measure separately per condition within each of the sam-
ples of both data sets.Within both data sets, the values of these
statistics varied over the samples. Averages of these statistics
over the 1,000 samples in each data set yield an estimate of
these statistics in the sample of samples (i.e., the sampling
distribution). These averaged results are shown in Table 4.
However, the question addressed in this study concerns the
sample distributions and, in particular, the skewness of each
measure in the samples. Therefore, Table 4 also displays the
95 % confidence interval (CI) of the skewness over all the
samples.

Table 4 shows that the skewness of the sample RT distri-
butions varied from strongly negative to strongly positive,

with an average near to zero, in both data sets. Due to averag-
ing the RTs per subject, the RT distribution becomes more
symmetric at the level of the sample, conforming to the central
limit theorem. Instead of simply adding all the RTs, the
Vincent adding procedure (for more details see Heathcote
et al., 1991; Ratcliff, 1979) could have been used. However,
as this is not a common practice, the standardmethodology for
aggregating data was used in these simulations.

Within the data set with effects in the same direction, in
each sample and for each measure the means differed between
the two conditions. Within the data set with opposing effects,
clear differences were present for correct RT and all RTs, PE,
and the Binmeasures, but not for IES, RCS, and LISAS. In the
latter three measures, the opposing effects seemed to balance
each other out.

A first noteworthy observation concerns the absence of
clear differences between the standard deviations of the inte-
grated measures across the two samples. In other words,
whether the composing effects go in the same direction or in
opposite directions does not matter much for the standard
deviations of the integrated measures. The other noteworthy
observation relates to the variations in skewness of the distri-
bution of the different measures. As already indicated, for RT,
skewness varied widely over the samples, but was on average
rather close to zero (little or no skewness). The PE distribution
was positively skewed to similar extents in both data sets, with
more samples showing positive skew than samples showing
negative skew; overall, the deviation from zero was rather
small. Within the integrated measures, skewness was close
to zero for Bin-p, IES, and LISAS. Finally, RCS was more
strongly positively skewed in both samples, with a small pro-
portion of the samples showing some degree of negative
skewness and the majority of samples showing large to very
large degrees of positive skewness. Closer inspection of the
data revealed that the cases with small or even negative skew-
ness in RCS were obtained from samples with very strong
positive RT skewness.3 Figure 1 shows the shape of the dis-
tributions for each of the measures and confirms the presence
of some asymmetry in RCS and PE.

It may seem surprising that even with small deviations
from symmetry in the RT and PE measures, RCS is the only
integrated measure showing an important degree of skewness.
In fact, this feature is inherent in the way RCS is calculated,
namely as the ratio of the proportion of correct responses to
the response time. A simple example can clarify this. Consider
three cases with the same proportion correct responses, name-
ly 0.9 and with RTs of 0.6, 0.7, and 0.8 s; the respective RCS
values are 1.5, 1.29, and 1.13. Although the RT difference

3 Explorations with larger values of τ and with inclusion of an
ex-Gaussian distribution for sampling the value of πj have shown that
samples with negatively skewed RT distributions are likely to occur. As
far as RCS is concerned, a positive skewness only occurred in conjunc-
tion with negative skewness of the RT distribution.

Behav Res (2017) 49:653–673 659



steps have the same size (0.1), the steps from the smaller to the
larger RCS values increase (0.16 for the step from the smallest
to the central value and 0.21 for the next step). This example
shows that with increasing RCS values the spread between the
values increases even though no such difference in spread is
present in RTand PE (or 1-PE). That the positive skew in RCS
is related to the calculation is also confirmed by the fact that
the distribution of 1/IES is positively skewed while the distri-
bution of IES is not.

Irrespective of whether the integrated effects are in the
same or in opposing directions, the overall means (as can
easily be inferred from Table 4) and the standard deviations
of the integrated measures are not affected much. Only with
respect to skewness did some variations occur across the dif-
ferent measures. Of the two basic measures, only PE showed
some small positive skewness, and like the RT measure, all
integrated measures, except RCS, yielded a skewness close to
zero. The RCS measure, in contrast, showed a stronger posi-
tive skewness.

An additional consideration concerns the binning mea-
sures: due to the way these measures are calculated, their
properties are dependent on the complete sample because all
the observations in the sample are used to define the bins, from
which the scores per subject are derived. The latter property
constitutes an important potential drawback for these mea-
sures, because the score of a particular subject in the context

of one sample may be strongly different from the score based
on the same performance but calculated in the context of an-
other sample. Evidently, this should never be the case, because
statistical applications assume that subjects are sampled and
scored independently from one another.

In order to test whether it would be practical to calculate
bin-scores using only the RT and PE scores of the individual,
the Bin-p scores for the two samples were calculated using
only the data available per statistical subject. The findings are
shown in Table 4 on the row labeled Bin-i (Bin-p, with
individual-based scoring) and in Fig. 1 in the panel labeled
Bin-i. Clearly, the averages were quite similar to those based
on the complete sample and the standard deviations were much
smaller. However, the individual-based scores yielded a small
positive skewness (also visible in the slightly longer rightward
tail in Fig. 1). To further explore the similarity between the
individual-based and sample-based measures, product–mo-
ment correlations were calculated between the two sets of

Table 4 Averages of the means, standard deviations, and skewness values and 95% confidence interval of the skewness values of response time (RT),
proportion of errors (PE) Bin-p, IES, RCS, and LISAS in the control and the experimental condition in the two data sets of Study 2

Same direction effects Opposing direction effects

M SD Skewness M SD Skewness

0.025 M 0.975 0.025 M 0.975

Correct RT Ca 640 100 −0.967 −0.001 1.076 640 100 −0.961 0.024 1.076

E 660 100 −1.021 −0.004 1.101 660 100 −0.973 0.020 1.074

All RT C 640 99 −0.974 0.001 1.052 640 100 −0.971 0.023 1.084

E 660 99 −1.011 −0.005 1.134 660 100 −0.981 0.017 1.073

PE C 0.086 0.043 −0.618 0.218 1.180 0.116 0.045 −0.827 0.165 1.144

E 0.116 0.044 −0.776 0.141 1.097 0.087 0.043 −0.707 0.194 1.190

Bin-p C 6.61 1.49 −0.870 −0.036 0.832 7.05 1.45 −0.880 −0.013 0.876

E 7.30 1.45 −0.981 −0.111 0.794 6.89 1.48 −0.914 −0.068 0.821

Bin-ib C 6.57 0.64 −0.647 0.204 1.157 7.00 0.67 −0.735 0.153 1.145

E 7.31 0.65 −0.827 0.125 1.087 6.90 0.63 −0.731 0.180 1.109

IES C 702 115 −0.926 0.062 1.127 726 119 −0.912 0.108 1.193

E 748 120 −0.918 0.063 1.148 724 115 −0.975 0.095 1.116

RCS C 1.47 0.26 −0.385 0.754 2.246 1.42 0.25 −0.394 0.709 2.373

E 1.37 0.24 −0.416 0.738 2.229 1.42 0.24 −0.443 0.693 2.291

LISAS C 689 102 −0.979 −0.008 1.063 709 101 −0.977 0.027 1.035

E 728 102 −1.038 −0.012 1.111 710 102 −1.090 0.016 1.067

a The letters C and E refer to control and experimental conditions, respectively
b Bin-i refers to the Bin-p measure calculated on the data of one single subject instead of the data available in the complete sample

�Fig. 1 Histograms of the distributions of all the measures in the control
condition of the data set with effects in the same direction based on all the
observations in the 1,000 samples of the data set. Each bar in the
histogram shows the frequency (scaled per 1,000) in intervals of 0.5
standard deviations; the central bar (0) displays observations in the
interval 0.5 standard deviation below and above the mean. The
distributions in the other experimental condition and in both conditions
of the other data are almost identical, and are therefore not displayed
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scores over the entire sample. The correlations were very sim-
ilar: .431 for effects in the same direction, .430 for effects in the
opposing direction (p < .001). This suggests that there may be
some promise in the usage of individual-based Bin scores,
although it is not clear to which extent the individual-based
scores are more noisy than the sample-based scores. In order
to further explore these characteristics, the Bin-i measure was
also included in the following studies.

In conclusion, Study 2 shows that the integrated measures
closely approach the normal distribution. In the present study,
RCS showed a rather strong positive skewness over the range
of samples available. That may be a drawback in particular
applications, but this is no reason to exclude this measure from
the evaluation performed in the following two studies. As this
skewness which is situated at the level of the sampling distri-
bution was restricted to samples with a rather strong negative
RT skewness, there is no impediment to the usage of the RCS
measure as long as the distributions of RT, PE, and RCS are
checked for symmetry. In fact, it is safe to perform these
checks for any measure that is being used.

Study 3

After the assessment of the distributional properties of the
integrated measures, the next study addresses the central ques-
tion regarding the potential advantages of using integrated
measures. This concerns two questions. First, is each of the
integrated measures capable of detecting significant effects
when RT and/or PE effects are present but vary in strength,
and if so how good is this detection performance? Second, do
the integrated measures account for a larger proportion of the
variance than each of the composing measures do, and if so, to
which extent? Importantly, some integrated measures of per-
formance may bemore sensitive to variations in the balance of
the two components, RT and PE. For that reason
speed-accuracy trade-off (SAT), effect size of the
experimental-control contrast in RT and PE, and the direction
of the RT and PE effects were varied over four Monte Carlo
simulations: one with RTand PE effects in the same direction,
one with no PE effects, one without RT effects, and one with
RT and PE effects in opposing directions. The inclusion of the
variation of the speed-accuracy trade-off strategy (trading
speed for accuracy, no trade-off, or trading accuracy for
speed) also has the additional advantage that the degree of
covariance between speed and accuracy is varied.

Method

Artificial data were generated for a within-subject factor con-
trasting a control (or easy) and an experimental (or difficult)
condition. The data were generated on the basis of the same
structural model as in Studies 1 and 2 (see Equation 4). This

within-subject factor was combined with a between-subject
factor with three levels representing variations in the
speed-accuracy trade-off strategy. The three trade-off strate-
gies were: trade speed for accuracy, balanced speed and accu-
racy, and trade accuracy for speed. In the balanced condition,
the structural model was applied independently to both mea-
sures resulting in near-zero correlation between RT and PE.
Trading speed for accuracy was achieved by increasing the RT
and decreasing PE after an error, while gradually reversing
this effect after a correct answer. As short RTs occur less often
with errors, this augments the correlation between RT and PE.
Trading accuracy for speed was achieved in a similar way by
increasing PE and decreasing RT after a correct answer, while
gradually reversing this effect after an error. As incorrect an-
swers are less often associated with longer RTs, this also leads
to a positive correlation between RT and PE.

Thus, the complete design involved a 3 (SAT:
speed-accuracy trade-off) × 2 (Trial Type) factorial combina-
tion with repeated measures on the last factor. The
between-subject factor representing the three trade-off strate-
gies was not expected to interact with the within-subject fac-
tor, because the strategies were applied irrespective of the trial
type and are thus expected to have the same effects with the
two trial types.

This 3 × 2 design was used in each of the four simulations
that varied the RT and PE effects. These simulations involved
1,000 samples each. Every sample contained ten statistical
subjects per SAT condition; each condition involved ten
blocks of 65 trials (the first trial of each block was not included
in the data analyses). In each statistical subject, the effect size
implemented was sampled from a pre-specified range for the
within-subject factor as specified in the structural model of
Equation 4 (see Table 5 for details). In one simulation (Case
A) the RT and PE effects occurred in the same direction; the
second simulation (Case B) had variable RTeffect sizes but no
PE effects; the third simulation (Case C) contained variable
PE effect sizes but no RT effects; the fourth and final

Table 5 Effect size parameters used in the simulations of Study 3

Parameter Label RT PE

μ 500 0.10

αi Trial type 40 0.06

πj Subject 50 0.15

σε
2 Error variance 19,600 0.05

Note Except for μ and σε
2, the values specify the maximum absolute value

the parameter could take. In every statistical subject, a value between 0
and the value given in the table was randomly selected from a Gaussian
distribution for πj, and from a uniform distribution for αi. To satisfy the
assumptions of a fixed effects model that ∑αi= 0, the sampled (positive)
value was used for one level and the negative of the value was used for the
other level. RT data were sampled from an ex-Gaussian distribution as in
Studies 1 and 2
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simulation (Case D) included RT and PE effects in opposing
directions. The distribution of the effect sizes used in each
simulation case are shown in Table 6.

Results and discussion

Descriptive statistics

Before looking into the results relevant to the present research
question, the data are summarized. The means and standard
deviations of the sampling distributions collected in each of
the four simulation cases are displayed in Tables 7, 8, 9, and
10 for the four variations in RT/PE effects (Cases A–D). These
tables show the (correct) RT data and PE data, as well as the
means and standard deviations of the integrated measures
(Bin-p, Bin-i, IES, RCS, and LISAS). These tables show that
the SATconditions had the intended effects on both RTand PE
with longer RTs and lower PEs than the neutral or balanced
condition when speed was traded for accuracy. Likewise, RT
was shorter and PE was larger than in the neutral condition
when accuracy was traded for speed. The effect of Trial type
was also clearly present but variable over the four simulation

cases. For all five integrated measures, the tables show that in
the four simulation cases, the averages were consistent with an
effect of Trial Type, but the size of the difference between
control and experimental condition varied over the four cases.
Correlations between RT and PE varied between .56 and .67
(p < .001) in the trade-speed conditions, between .16 and .25
(p < .001) in the trade-accuracy conditions, and between −.03
and .02 (p > .33) in the neutral conditions.

In each of the 1,000 samples of the four simulation cases,
the 3 (SAT) × 2 (Trial Type) design was subjected to analyses
of variance. All these analyses were performed separately for
each measure because the measures use different metrics.
Table 11 displays the average effect size (partial eta-squared)
related to Trial type for each of the integrated measures in all
four simulation cases. The table shows that the effect sizes for
RT and PE were quite similar in Cases A and D, while the PE
effect size was near zero in Case B, and the effect size of RT
was near zero in Case C. This confirms that the scheme used
for the data generation worked fine. Interestingly, the average
effect sizes of all the integrated measures were larger than
those of both RT and PE when these effects were in the same
direction ( Case A), while they were lower than the largest
effect size of either RT or PE in the other three cases. More
specifically, the effect sizes of the integrated measures were
lower than the effect size of the only effective component
measure in the cases where only one component varied (RT
in Case B and PE in Case C). It is also worthwhile to note that
in Case D the integrated measures still succeeded in achieving
some explanatory power, although it could be expected that in
the case with opposite RT and PE effects, these effects would
balance each other out.

Efficiency of RT and PE integration

By comparing significant effects in RT and PE on the one
hand, and an integrated measure on the other hand, it is pos-
sible to assess how well the integrated measure is capable of
detecting an effect, given that the effect is present with some

Table 6 Confidence interval and median of the absolute value of the
effect sizes sampled for response time (RT) and proportion of errors (PE)
in the four simulation cases in Study 3

RT effect size PE effect size

0.025 0.50 0.975 0.025 0.50 0.975

Case A 0.99 20.03 38.56 0.002 0.032 0.058

Case B 0.78 20.75 39.04 0 0 0

Case C 0 0 0 0.001 0.032 0.059

Case D 0.998 21.24 39.08 0.002 0.032 0.059

Note The table displays the 95 % percent confidence interval of the effect
sizes sampled for the data generation in the four simulation cases. The
values given are the points in the distribution with a probability of .025, .5
(median), and .975

Table 7 Means (standard deviations between brackets) of the sampling
distributions based on 1,000 samples for response time (RT), proportion
of errors (PE) Bin-p, Bin-i, inverse efficiency score (IES), rate correct

score (RCS), and linear integrated speed-accuracy score (LISAS) in the
simulation case with RT and PE effects in the same direction (case A)

Trade speed Neutral Trade accuracy

Control Experimental Control Experimental Control Experimental

RT 751 (27) 795 (27) 691 (20) 731 (21) 421 (21) 460 (21)

PE .076 (.031) .121 (.037) .104 (.038) .149 (.042) .178 (.044) .234 (.047)

Bin-p 7.63 (0.55) 8.53 (0.60) 7.35 (0.57) 8.34 (0.61) 6.22 (0.73) 7.40 (0.77)

Bin-i 6.39 (0.48) 7.42 (0.54) 6.77 (0.57) 7.85 (0.62) 7.87 (0.65) 9.05 (0.67)

IES 828 (58) 929 (72) 787 (46) 882 (58) 530 (48) 629 (62)

RCS 1.22 (.08) 1.11 (.08) 1.30 (.07) 1.17 (.07) 1.95 (.15) 1.67 (.13)

LISAS 825 (44) 903 (46) 757 (29) 833 (31) 538 (34) 613 (34)
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strength in the RT and PE measures. As the size of each effect
in RT and PE varies over the samples, it may be expected that
as the effect size of RT and PE in the sample considered
increases, the probability for an integrated measure to detect
the effect also increases. This capability to detect effects as
significant given effects of a particular size in the RT and PE
data, will be referred to as the detection efficiency, which can
be defined as

E ¼ Ni

Ne
ð7Þ

where E is the efficiency of detection, Ne is the number of
samples in which the RT and PE measures find an effect of
some size e, and Ni is the number of samples in which the
integrated measure detects a significant effect. The degree of
efficiency is expected to increase with the strength of the re-
lationship, i.e., the effect size present in RTand PE. Five levels
of effect size for RT and PE were defined using partial
eta-squared (ηp

2) by partitioning the samples into five subsets.
The first level contains the samples in which both effect sizes
were smaller than .2 (this is the only level where nonsignifi-
cant effects could occur). The second level contains the sam-
ples in which both effect sizes were smaller than .4 after ex-
cluding the samples of level 1. Similarly, levels 3, 4, and 5
contain the samples with both effect sizes smaller than, respec-
tively, .6, .8, and 1.0, after excluding the samples already
assigned to the previous levels. As an example, when in a
particular sample the effect size for RT is .42 and the effect
size for PE .24, this sample will be assigned to level 3 (both
are too large for level 1, only the PE effect satisfies the crite-
rion for level 2, but both satisfy the criterion for level 3). The
number of samples at each level and the average effect size
over both measures in each sample are displayed in Table 12
for each of the four simulation cases. This table shows that the
average effect size increases as the level increases. As can be
expected from the example given, the averages tend to be
lower than the nominal limits used to define the partitioning

because the effect sizes of PE and RT are randomly sampled.
The detection efficiency of the integrated measures was

calculated for each of these effect size levels by taking the
ratio of the number of samples in which the integrated mea-
sure detected a significant effect (p < .05)4 and the number of
samples included at that level in line with Equation 7. Figure 2
displays the detection efficiency of the five integrated mea-
sures in the study as a function of the effect size levels of the
between-subject effect for each of the four simulation cases.

The pattern of findings was very similar across the four
cases (the four panels of Fig. 2). Most striking is the observa-
tion that the trend of the Bin-i measures deviated from the
trend displayed by the other measures: in contrast to the other
integrated measures the trend for Bin-i detection efficiency
was to decrease with the level of the RT and PE effect size.
As can be seen in Tables 7, 8, 9, and 10, the Bin-i averages
tended to be larger in Trade-accuracy than in the Trade-speed
condition of the SATmanipulation, suggesting that the gain in
accuracy compensated the loss of speed, but the gain in speed
did not seem to compensate the loss in accuracy in this inte-
grated measure. As this measure is calculated on the basis of
bins derived from the individual’s data, the end result may be
less reliable than the end result obtained in the Bin-p measure,
which is derived from sample-based bins. Interestingly, Bin-p,
IES, and RCS showed an increased probability of detecting a
significant SAT effect as its effect size in RT and PE increased
whereas LISAS showed 100 % detection of the effect at each
effect size level. It is also noteworthy that LISAS, RCS, and
IES were able to detect the effect with an overall probability of
1.00, 0.99, and 0.96, respectively, but Bin-p was far less effi-
cient (overall probability less than .30). It thus seems that the
Bin measures were not very efficient at detecting the
between-subject effect. Overall, the Bin-p detection

Table 8 Means (standard deviations between brackets) of the sampling
distributions based on 1,000 samples for response time (RT), proportion
of errors (PE) Bin-p, Bin-i, inverse efficiency score (IES), rate correct

score (RCS), and linear integrated speed-accuracy score (LISAS) in the
simulation case with RT but no PE effects (case B)

Trade speed Neutral Trade accuracy

Control Experimental Control Experimental Control Experimental

RT 754 (26) 794 (27) 689 (21) 730 (21) 419 (20) 459 (21)

PE .098 (.032) .099 (.032) .124 (.038) .124 (.038) .203 (.042) .203 (.042)

Bin-p 7.90 (0.56) 8.27 (0.53) 7.61 (0.57) 8.00 (0.55) 6.63 (0.71) 6.90 (0.70)

Bin-i 6.69 (0.49) 7.12 (0.46) 7.05 (0.57) 7.50 (0.55) 8.23 (0.64) 8.62 (0.61)

IES 856 (61) 901 (62) 805 (49) 852 (50) 548 (48) 599 (52)

RCS 1.20 (.08) 1.14 (.07) 1.28 (.07) 1.21 (.06) 1.91 (.15) 1.74 (.13)

LISAS 842 (44) 883 (44) 771 (30) 811 (29) 552 (32) 592 (33)

4 In fact, only effect sizes smaller than .14 (for F values with 1 degree of
freedom in the numerator, namely Trial type) or .20 (for F values with 2
degrees of freedom in the numerator, namely SATand its interaction with
Trial type) were nonsignificant.
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probabilities were quite low, and the Bin-i detection rates
dropped as the RT and PE effect size increased. IES, RCS,
and LISAS were very efficient as they detected almost all the
effects at all levels of effect size. Moreover, note that the
pattern as well as the level of performance was the same in
the four simulation cases for all the measures.

The detection efficiency of the five integrated measures
with respect to the within-subject effect is shown in Fig. 3.
In panel A (simulation Case A: RT and PE effects in the same
direction), the detection efficiency of all five measures in-
creased with the effect size level of RT and PE, and almost
perfect detection performance was reached (.98–.99) as levels
1 and 2 contained only few cases. Panel B (simulation Case B:
only RT effects) shows that the detection capability for each
measure also increased with the effect size of RT and PE.
However, large differences were observed among the mea-
sures. The best performance was achieved by LISAS (overall
.83), RCS (.82), and IES (.78), while Bin-p (.71) and Bin-i
(.75) attained lower levels but were still very efficient. For all
measures, performance increased monotonically with effect
size level. In Panel C (simulation Case C: only PE effects)

all measures attained a high level of performance from level
3 on (at least .90). The spread between the curves was large at
level 2. In this simulation case, overall best performance was
achieved by Bin-p (.87) and Bin-i (.86), followed by LISAS
(.83), IES (.80), and RCS (.78). All five measures attained a
detection efficiency above .50 from level 2 on, except RCS
(.48 at level 2). In Panel D (simulation Case D: opposing RT
and PE effects), the pattern was quite different in shape from
the three other panels with some crossing-over of the lines in
the graph and a non-monotonic trend for all the measures,
except RCS and LISAS. Averaged over all measures, detec-
tion rate was not higher at level 5 than at level 4. At these two
levels, all five measures performed quite well (.60 detection or
more), and achievedmedium detection performance at level 3.
Average detection rates were very close together with the
highest score for Bin-p (.57 overall) followed by Bin-i (.54),
and LISAS (.51); RCS (.47) and IES (.46) attained the poorest
average. Given that in this particular case the RT and PE ef-
fects were in opposing directions, it may be considered that
the performance of all five measures was at a remarkably good
level.

Table 9 Means (standard deviations between brackets) of the sampling
distributions based on 1,000 samples for response time (RT), proportion
of errors (PE) Bin-p, Bin-i, inverse efficiency score (IES), rate correct

score (RCS), and linear integrated speed-accuracy score (LISAS) in the
simulation case with PE but no RT effects (case C)

Trade speed Neutral Trade accuracy

Control Experimental Control Experimental Control Experimental

RT 772 (23) 776 (23) 710 (17) 710 (17) 439 (18) 440 (18)

PE .077 (.029) .123 (.037) .102 (.037) .149 (.041) .173 (.044) .231 (.048)

Bin-p 7.84 (0.49) 8.39 (0.59) 7.51 (0.55) 8.15 (0.60) 6.28 (0.74) 7.20 (0.79)

Bin-i 6.62 (0.42) 7.23 (0.53) 6.96 (0.54) 7.63 (0.60) 8.01 (0.64) 8.81 (0.69)

IES 852 (53) 909 (68) 807 (45) 858 (54) 551 (47) 599 (58)

RCS 1.19 (.07) 1.14 (.07) 1.27 (.06) 1.21 (.07) 1.88 (.14) 1.76 (.15)

LISAS 846 (40) 884 (44) 774 (27) 813 (29) 553 (33) 591 (33)

Table 10 Means (standard deviations between brackets) of the sampling
distributions based on 1,000 samples for response time (RT), proportion of
errors (PE) Bin-p, Bin-i, inverse efficiency score (IES), rate correct score

(RCS), and linear integrated speed-accuracy score (LISAS) in the
simulation case with RT and PE effects in opposing directions (case D)

Trade speed Neutral Trade accuracy

Control Experimental Control Experimental Control Experimental

RT 755 (25) 791 (25) 690 (21) 731 (20) 419 (21) 459 (20)

PE .121 (.035) .075 (.030) .150 (.041) .103 (.035) .235 (.047) .176 (.042)

Bin-p 8.17 (0.58) 7.98 (0.50) 7.98 (0.61) 7.70 (0.53) 7.14 (0.79) 6.46 (0.70)

Bin-i 6.99 (0.52) 6.80 (0.44) 7.43 (0.62) 7.19 (0.52) 8.67 (0.70) 8.24 (0.61)

IES 882 (65) 870 (57) 834 (55) 830 (46) 574 (57) 577 (48)

RCS 1.18 (.08) 1.16 (.07) 1.24 (.07) 1.23 (.06) 1.84 (.16) 1.79 (.13)

LISAS 863 (44) 865 (41) 794 (31) 795 (29) 573 (34) 575 (33)
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Proportion of explained variance

Apart from knowing that the integrated measures are efficient
in detecting an effect when an effect is present in one or both
composing measures, it is also important to know whether an
integrated measure accounts for a larger amount of the vari-
ance than each of the composing measures do. This was in-
vestigated by assessing the proportion of samples in which the
effect size associatedwith Trial typewas larger than the largest
effect size of RTor PE. Table 13 displays these proportions for
the five integrated measures in each simulation case. The table
shows that, except for IES, the integrated measures achieved
this in .48 (RCS) to .62 (LISAS) of the samples when the RT
and PE effects were in the same direction. In the other simu-
lation cases, the integrated measures rarely attained a higher
effect size than RT and PE (up to .16 in Case B for LISAS; up

to .29 in Case C for Bin-p; and not higher than .025 in Case D
again for Bin-p). In other words, when only one of the two
components had an effect (either RTor PE, Cases B and C) the
integrated measures did not frequently achieve a much higher
effect size than that single component, but when the effects
were in opposite directions, the integrated measures very rare-
ly achieved a higher effect size than the components did. It is
nevertheless remarkable that the binning measures performed
extremely well in Case C as well with respect to the proportion
of samples in which a higher effect size than RT and PE was
obtained as in the detection efficiency scores (Fig. 3). In com-
binationwith a rather poor performance in Case B, this may be
attributed to the high penalty which is applied to errors in the
binning measures, thus creating a bias towards detection of
PE-related effects.

Summary

The present study varied the size and the direction of the
effects of RT and PE while keeping the average effect sizes
of these measures in balance. The efficiency of the integrated
measures at detecting the RTand PE effects present was tested
both at the level of the SAT manipulation (between subjects)
and the difficulty of the task (within subjects). With respect to
the SAT manipulation, the binning measures by and large
failed to detect the very strong RT and PE effects, while the
other integrated measures performed excellently (see Fig. 2).
In contrast, all measures performed excellently in the detec-
tion of the within-subject effects in simulation Case A. They
all detected an effect in more than 98% of the samples and the
obtained effect sizes were larger than the RT and PE effects in
about half of the cases, except for IES (Table 13). Efficiency
dropped dramatically but was still very goodwhen only one of

Table 11 Average (standard deviations within brackets) effect size (ηp
2)

of Trial type obtained with response time (RT), proportion of errors (PE)
Bin-p, Bin-i, inverse efficiency score (IES), rate correct score (RCS), and
linear integrated speed-accuracy score (LISAS) in each of the four
simulation cases (A-D) of Study 3

Case A Case B Case C Case D

RT .67 (.28) .65 (.30) .04 (.05) .64 (.30)

PE .58 (.25) .03 (.05) .59 (.26) .60 (.24)

Bin-p .75 (.18) .39 (.25) .57 (.26) .39 (.26)

Bin-i .77 (.17) .46 (.27) .55 (.25) .36 (.25)

IES .69 (.17) .50 (.28) .43 (.22) .30 (.24)

RCS .76 (.18) .54 (.27) .45 (.25) .32 (.25)

LISAS .79 (.16) .59 (.30) .50 (.25) .36 (.27)

Note Case A has RT and PE effects in the same direction, B has no PE
effects, C has no RT effects, and D has RT and PE effects in opposing
directions

Table 12 Average effect size (ηp
2) of response time (RT) and proportion of errors (PE) effects at each of the five effect size levels, and number of

samples (between brackets) at each level in Study 3

1 2 3 4 5

Case A Between .0 (0) .0 (0) .0 (0) .49 (48) .53 (952)

Within .07 (15) .21 (28) .38 (71) .57 (346) .73 (540)

Interaction .07 (829) .17 (161) .25 (10) .0 (0) .0 (0)

Case B Between .0 (0) .0 (0) .0 (0) .49 (47) .52 (953)

Within .05 (143) .17 (86) .28 (101) .37 (201) .46 (469)

Interaction .06 (905) .16 (93) .21 (2) .0 (0) .0 (0)

Case C Between .0 (0) .0 (0) .0 (0) .48 (58) .52 (942)

Within .05 (128) .17 (87) .28 (140) .38 (498) .45 (147)

Interaction .06 (827) .17 (168) .30 (5) .0 (0) .0 (0)

Case D Between .0 (0) .0 (0) .0 (0) .49 (43) .53 (957)

Within .07 (20) .22 (31) .37 (66) .57 (341) .72 (542)

Interaction .07 (815) .17 (179) .28 (6) .0 (0) .0 (0)

Note The numbers between brackets add up to 1,000 for all the effects
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the basic effects RTor PE was present; the frequency of larger
effect sizes than those of either RTor PE were far less frequent
but still substantial for RCS and LISAS in Case B (only RT)
and for Bin-p, Bin-I, and LISAS in Case C (only PE). Finally,
in Case D (opposing effects), detection efficiency was more
variable, especially at higher RT and PE effect levels, and
rarely ever an integrated measure achieved a larger effect size
than RT and PE. Nevertheless, even in the latter case, most of
the measures obtained quite good detection efficiency at the
higher RT/PE effect sizes. It is possible, though, that this rath-
er good performance is due to the fact that the effect sizes
varied from sample to sample in such a way that a weak RT
effect may be combined with a strong PE effect in the other
direction or vice versa.

General discussion

Many experimental paradigms in cognitive psychology rely
on both speed and accuracy of performance. To the extent that
speed and accuracy are the result of common or overlapping

processes, these paradigms could benefit from the availability
of valid performance measures that integrate speed and accu-
racy aspects of performance. Following up on recent research
about the advantages of such integrated measures, and in par-
ticular the binning measure proposed by Hughes et al. (2014),
the present paper investigated the usefulness of some mea-
sures that integrate speed and accuracy of performance into
one single score. Several integrated measures were compared
in three studies, namely four measures based on the binning
procedure, Bin-o (the original binning procedure proposed by
Hughes et al.), Bin-a (an adapted version avoiding some of the
potential shortcomings of Bin-o), Bin-p (a further adaptation
based on proportions rather than absolute numbers), and Bin-i
(the same as Bin-p but based on a binning of the subject’s own
data only), and three measures that combine RTand PE scores
in a more direct way, namely IES (Equation 1; Townsend &
Ashby, 1978), RCS (Equation 2; Woltz & Was, 2006), and a
new linear combination labeled LISAS (Equation 3). All stud-
ies used artificially generated data to evaluate the usefulness
of these measures under strictly controlled conditions. All the
data were generated on the basis of a simple model based on a

Fig. 2 Probability of detecting the between-subject effect of speed-
accuracy trade-off (SAT) by each of the integrated measures as a
function of the effect size of the response time (RT) and proportion of
errors (PE) effect in the four simulated cases (A: RT and PE effects in the

same direction; B: no PE effects; C: no RT effects, and D: effects in
opposing directions). Five levels of effect size (ηp

2) were distinguished
as explained in the text. As all the RT and PE effect sizes were at levels
4 and 5, only these levels are shown in the graph
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within-subject factor representing the comparison of a control
and an experimental condition.

Properties of integrated measures: General summary

Table 14 summarizes the main findings. The table contains the
answers to a series of simple yes/no questions about each
integrated measure. The first question concerns the validity
of the measures: do the measures provide a score based on

information from both components, RT and PE? Although
IES, RCS, and LISAS quite transparently combine RT and
PE information, the question was raised because of a number
of considerations that were provoked by the rather complex
calculation procedure used for the binning measures. Study 1,
which was designed to clarify this issue, showed that the
Bin-o measure indeed lacks validity as only RT and PE infor-
mation from the experimental condition is used to calculate a
difference score between the control and the experimental
condition. As a consequence, Bin-o is not capable of detecting
the absence of a difference between the two conditions and if a
difference exists the measure expresses only the occurrence of
errors and the variability in speed within the experimental
condition.5 Hence, Bin-o is not a valid measure. It is remark-
able that Hughes et al. (2014) report several studies without
testing the construct validity of the measure. Study 1 also
showed that the other binning measures did not suffer from
these shortcomings and can basically be considered as

Fig. 3 Probability of detecting the within-subject effects by each of the
integrated measures as a function of the effect size of the response time
(RT) and proportion of errors (PE) effect in each of the simulated cases

(A: same direction effects for RT and PE; B: no PE effects; C: no RT
effects; and D: opposing effects). Five levels of effect size (ηp

2) were
distinguished, as explained in the text

Table 13 Proportion of samples in which the integrated measures
obtained a larger effect size for the factor control versus experimental
condition than the maximum shown by the composing response time
(RT) and proportion of errors (PE) measures

Case A Case B Case C Case D

Bin-p 0.487 0.039 0.287 0.024

Bin-i 0.553 0.058 0.195 0.014

IES 0.154 0.047 0.032 0.004

RCS 0.480 0.134 0.076 0.008

LISAS 0.619 0.160 0.126 0.015

5 This may have implications for a correct interpretation of the results
obtained in studies that use this particular integrated measure (Draheim,
Hicks, & Engle, 2016).
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measures that combine RT and PE into a score that validly
represents both components. However, Study 1 also showed
that like Bin-o, the Bin-a measure varies with the number of
trials in the experiment, which impedes fair comparisons
across experiments or conditions with unequal numbers of
trials. Fortunately, the usage of Bin-a can be avoided: in con-
ditions with equal numbers the Bin-a scores vary linearly with
the Bin-p scores which are based on the same data, except that
the calculation is based on proportions rather than absolute
numbers. For that reason, Bin-a was not further included in
the present studies. Moreover, given that Bin-p captures the
same information without limiting the comparability of the
obtained scoring, Bin-a should be avoided as well.

The second question mentioned in Table 14 relates to the
statistical properties of the (sampling) distributions of the re-
maining measures, i.e., after exclusion of Bin-o and Bin-a.
Study 2 showed that overall mean, standard deviation, and
skewness of the sampling distributions of RT, PE, and the
integrated measures did not vary much between a variation
with RT and PE effects in the same direction and a variation
with RTand PE effects in opposing directions. This study also
showed that the degree of skewness of all measures widely
varied over the samples, with a bias toward positive skewness
for RCS especially in samples with low positive and negative
skew in the RT distribution. Although the asymmetry in the
RCS distribution may be a matter of concern when it does
occur, it is not a sufficient basis to completely reject this mea-
sure. Depending on the sample at hand, deviations from sym-
metry may occur in all measures.

In relation to the occurrence of asymmetry in the distribu-
tions of RCS and occasionally in some of the other measures,
one could consider the possibility of always checking the
skewness in the sample at hand. Unfortunately, the skewness
measure is quite sensitive to outliers and is in general only
stable when it is calculated on a very large number of obser-
vations. Hence, estimates of the degree of skewness in sam-
ples of the size usually taken in cognitive research may be
expected to be rather unreliable, and consequently there is
not much need for concern, except for samples that yield
clearly asymmetric distributions.

The three next questions displayed in Table 14 were tested
in Study 3 and they concern two important properties of inte-
grated measures, namely: (1) to what extent do they recover
the effects present in the component measures, and (2) do they
account for more of the variance than each of the components
and to what extent? These two properties correspond to the
detection efficiency of these measures (Equation 7) and to the
degree to which they account for more of the variance than the
component measures do. Two of the questions in Table 14
address detection efficiency. The first of these questions con-
cerns the efficiency with which the control-experimental con-
trast is detected conditional on the presence of a contrast effect
in RT and/or PE. The table shows that all five integrated mea-
sures are quite successful in this respect. Indeed Fig. 3 shows
that irrespective of whether the RT and PE effects are in the
same or opposing directions, or whether one of these effects is
absent, all the integrated measures report an integrated effect
and the likelihood of detection generally increases with the
size of the effect in the components, except for large PE and
RT effect sizes in opposing directions. Although all the mea-
sures pass this test, some of the measures are more efficient
than others, but which ones are more efficient depends on a
number of factors. I will return to this point later in this
General discussion.

The second efficiency question concerns how well the in-
tegrated measures detect contrasts in variables orthogonal to
the main contrast. In Study 3, this concerned the variations in
trade-off strategy. This factor had really big effects in RT and
PE, and only IES, RCS, and LISASwere capable of extracting
this information. The two binning measures (Bin-p and Bin-i)
dramatically failed to do so (Fig. 2).

The second desirable property of integrated measures con-
cerns its added value, namely the extent to which more of the
variance is accounted for than by the component measures.
Table 14 shows the answers in the column labeled BAdded
Value?^ When the RT and PE effects were in the same direc-
tion, the integrated measures, except IES, were very efficient
in accounting for an even bigger amount of the variance than
the maximum achieved by the components. In all the other
cases, the integrated measures were less successful. In cases
with opposing RT and PE effects, the integrated measures
rarely ever accounted for a larger proportion of the variance

Table 14 Summary of the findings of the seven integrated measures
studied in the present paper: response time (RT), proportion of errors (PE)
Bin-p, Bin-i, inverse efficiency score (IES), rate correct score (RCS), and
linear integrated speed-accuracy score (LISAS)

Measure Valid? Symmetric? Contrast
efficient?

Other
efficient?

Added
value?

Balance?

Bin-o − NA NA NA NA NA

Bin-a 0 NA NA NA NA NA

Bin-p + + + − + −
Bin-i + + + − + −
IES + + + + − +

RCS + − + + + +

LISAS + + + + + +

The body of the table summarizes the properties regarding validity of the
measure (Valid?), whether the sampling distribution is symmetric rather
than skewed (Symmetric?), whether the measure efficiently detects a
contrast when it is present in RT and PE (Contrast efficient?), whether
the measure efficiently detects an effect in a variable outside the contrast
(Other efficient?), whether the measure accounts for a larger part of the
variance than the components (Added value?), and whether the two com-
ponents are integrated in a balanced way (Balance?). Each cell contains
either a minus sign (property not present), a plus sign (property present), a
zero (property only partly present), or the indication BNA^ (not
applicable)
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than the components. In the cases where only one of the two
components had an effect, the integrated measures accounted
for a larger part of the variance than the effective component
in a rather small part of the samples, except for the binning
measures in the case with only a PE effect. This exception can
probably be accounted for by assuming that these measures
assign a larger weight to the PE component, which is directly
related to the next question.

The final issue addressed in Table 14 concerns the question
whether the two components, RT and PE, are represented in a
balanced way in the integrated measures. In particular in the
cases with unbalanced and opposing effects, Study 3 provided
some indications that the binning measures are more sensitive
to the PE than to the RT effect, probably because of the high
penalty applied to errors.

Potential limitations of the present studies

Before drawing any conclusions from this comparative over-
view of the properties of the diverse integrated measures, it is
important to first discuss the potential limitations of the pres-
ent simulations. Two issues may be of importance: the ade-
quacy of using Monte Carlo simulations, and the adequacy of
the present methodology.

The main issue at stake here is whether it is appropriate to
use Monte Carlo simulations rather than reanalyzing relevant
existing data. Monte Carlo simulation has several advantages
over the usage of existing data. First, it is possible to obtain
large numbers of samples without too much effort. Second,
the samples can all be replications of the same basic design.
Third, the simplest possible design can be used so that the data
are not obscured by other factors that could result in strategic
adaptations in real subjects. For all these reasons, the present
paper completely relies on simulations.

A related concern is whether the most adequate choices
have been made for the present studies. The main question
addressed in the present paper concerns the utility of integrat-
ed measures of speed and accuracy. The simplest design in
which this can be implemented is by using a contrast between
a control and an experimental condition which differ from
each in speed and/or accuracy. The model in Equation 4 de-
fines this simple situation. In order to achieve as much realism
as possible it was further assumed that subjects differ from
each other in their personal speed and accuracy (πj) in
Equation 4. In order to check on strategic effects of
speed-accuracy trade-off, Study 3 also included trade-off strat-
egy as a factor.

One design choice which may raise some concern relates to
the decision to ensure that the PE and RTeffect sizes were of a
comparable size. One could indeed object that in practice it
will never occur that opposing RT and PE effects will be
equally strong, and that exactly in these imbalanced cases an
integrated measure may be useful to obtain a clear picture of

the basic findings. Nevertheless, if an integrated measure is
biased towards one of the components, how would it be pos-
sible to detect this bias if the same component has also a
stronger effect size in the sample. Hence, usage of a design
in which RT and PE effects were as much possible in balance
is the best way to find out about biased weighting of the
components.

Utility of the integrated measures

Keeping in mind the summary of the findings thus far and the
considerations regarding potential limitations of the present
series of simulations, it is now time to turn to the main issue
that motivated the present study, namely the question
concerning the utility of using integrated speed-accuracy mea-
sures. It should already be clear by now that there is no simple
yes/no answer to the question whether the usage of such mea-
sures has advantages. Several factors may play a moderating
role. The factors that will be considered concern the implicit
bias of integrated measures, the utility of integrating speed and
accuracy when they have opposing effects, the utility when
only one of the components yields clear effects, and the utility
when the effects reinforce each other. In the elaboration of
each of these conditions it is not only useful to try to come
to a general answer, in most cases it will also be useful to
check whether some measures are more suitable for the spe-
cific condition under discussion.

Does it matter whether an integrated measure is biased
towards one of the components? Assume for the sake of the
argument that it does not matter whether an integrated mea-
sure is biased towards one of the components, and that there
exists a measure M that validly integrates RT and PE perfor-
mance into a single measure. Further assume that this measure
is biased towards PE. If the PE effect is rather weak in the
sample, the chance that M shows a significant effect would be
rather small and the study would be bound to conclude that in
this case, there is no integrated effect of speed and accuracy.
On the contrary, if the PE effect in the study is rather strong,
the study would be likely to conclude the opposite. Next,
consider the possibility that M is biased towards RT: if the
RT effect is weak, the measure is likely not to detect an inte-
grated effect, whereas if the RT effect in the study is strong,
this measure would be likely to detect an integrated
speed-accuracy effect. In other words, if one does not know
with some degree of certainty what the implicit weights of the
measure are, it is difficult to trust any of the effects detected by
the measure when the opposing effects are not in balance.

What could the researcher do then? In fact, there are only
two options. The first option is that the researcher of such a
study decides on the weights given to the two components RT
and PE. As long as this is not an arbitrary choice but a well
motivated choice based on theoretical considerations, this
could be acceptable to the scientific community. The second
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option, and in my view the best one, is to give equal weight to
the two components, RT and PE.

Is such a control over the weights of the components pos-
sible? In the three direct measures it is. For example in IES, it
is possible to multiply the numerator of Equation 1 by a factor
k (k > 0) so as to give a smaller (k < 1) or a larger weight (k >
1) to the RT component. Similar operations are possible for
RCS and LISAS. Can this also be done for the binning mea-
sures? As the Bin-p and Bin-i scores are obtained as the sum
of the proportion of RT differences in each of the ten bins on
the one hand and the proportion of errors weighted by 20 on
the other hand, a change in the weight assigned to the propor-
tion of errors should do the trick. However, in order to do this
properly, it is necessary to find the Bneutral^ point, i.e., the
value at which the RT and the PE component are given equal
weight. If such a neutral point exists, it is possible to find it in
the context of a simulation study covering a large set of sam-
ples. Unfortunately, this value would probably depend on the
combination(s) of RT and PE effect size used in the simula-
tion. The result would therefore not be generalizable to other
situations. Hence, each researcher who wishes to use a Bin
measure and prefers to control the weight balance, would first
have to run a simulation to find out about the neutral point. It
can be done, but it is not very practical. Consequently, it seems
that only the integrated measures based on a mathematically
transparent combination of the two components leave room
for the researcher to change the relative weights assigned to
the two components.

Thus far, it can be concluded that it is important to know
about the bias implicitly present in the integrated measure if it
is to be useful. Yet, the question remains whether integrated
measures can be useful when the effects of speed and accuracy
are contradictory. It can be argued that in such a situation, the
most important information is available in the RT and PE
effects themselves, and that an integration of these two
sources of information can only bemeaningful if there is some
theoretical or empirical basis to calculate a weighted average
of the two components or if that is not possible to make an
integration that gives equal weight to their effects (not neces-
sarily to the components themselves). This opposing effect
situation is probably the most important one that can be en-
countered. Clearly, a neat conclusion will only be possible if,
on the one hand, there is some difference in effect sizes in the
sample and this difference can be trusted, and on the other
hand, a fair integrated measure is applied.

In situations where only one of the two components has a
clear and reliable effect, an integration of the two components
may be useful, especially if it helps to account for a larger
proportion of the variance. In the simulations of Study 3, the
design ensured that the RT or PE effects were effectively zero
in the population from which the artificial data were sampled.
In practice, this translates to situations where there is a signif-
icant RT effect joined with a nonsignificant PE effect, or vice

versa, a significant PE effect joined with a nonsignificant RT
effect. These are two interesting, but quite different cases,
which are therefore discussed separately.

First consider the situation with nonsignificant PE effects.
Is the usage of an integrated speed-accuracy measure useful in
such a situation? In research with paradigms were the focus is
usually on RT measures (because they have better statistical
properties than PE measures), most researchers will not care
much about such outcomes. In particular, researchers will not
bother about nonsignificant PE effects if the means are in the
expected direction but are not significantly different. The fact
that the researchers have no knowledge of a suitable measure
to integrate both effects so as to achieve a more solid statistical
conclusion may be at the basis of the choices being made.
Indeed, until recently only one integrated measure was more
widely known, namely IES. As the present article shows, to-
day, there are at least five measures from which a choice can
be made. Could or should this make a difference? The present
paper shows that some of these measures are useful in this
particular context. Study 3 showed that in such situations,
detection efficiency was high for LISAS (83 % overall) and
RCS (82 %), and that these measures also accounted for more
variance than the components in 16 % and 13 %, respectively,
of the samples. These two measures are obviously useful in
situations with weak PE effects, bearing in mind that the RCS
distribution may be skewed.

The situation with nonsignificant RT effects is quite differ-
ent. Many researchers will prefer not to trust the absence of
any robust RT effects and will be reluctant to conclude any-
thing from significant PE effects. Again usage of an integrated
measure may be considered here. However, in view of the
possibility that some measures give more weight to PE than
to RT information, it is possible that an integrated measure
will not be able to extend the information beyond the signif-
icant PE effect. This suspicion is strengthened by the finding
(see Panel C of Fig. 3) that the more biased measures (Bin-p
and Bin-i) achieve the best detection rates. However, also in
these situations, LISAS and RCS, and to a lesser extent IES,
hold some promise. All three measures attained a sufficiently
high detection efficiency (83%, 78%, and 80%, respectively)
while accounting for more of the variance in some of the
samples (13 % for LISAS and RCS; 8 % for IES). Hence, to
the extent that the RT effects are not really zero as in the
present simulations, but have some weak significant effects,
it might be worthwhile to consider the usage of one of these
three integrated measures which do not show strong biases
towards one of the components.

The results of Study 3 show that the integrated measures in
general perform best in situations where the RTand PE effects
are clearly present and point in the same direction. This is also
the kind of situation in which researchers, in general, do not
feel the need to use integrated measures. After all, this kind of
situation raises few concerns because both RT and PE have
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effects that support the same conclusion. Yet, this is exactly
the situation in which the integrated measures attained the
highest levels of detection efficiency and accounted for more
of the variance in a high proportion of all samples. It is also the
kind of situation in which the potential biases towards one or
the other component are least obvious and are least likely to
lead to incorrect conclusions. In fact, all five integrated mea-
sures detected the effects in almost 100 % of the samples, and
they accounted for more of the variance than the component
measures in about 50 % of the samples, except for IES which
was successful in only 15 % of the samples, while LISAS did
so in more than 60 % of the samples. Once more, it seems that
some of the integrated measures may be helpful to reach un-
ambiguous conclusions more often than is possible with sep-
arate RT and PE measures. It should be stressed, though, that
in this kind of situation too, some of the measures are more
useful.

In consideration of all the issues discussed thus far and
of the summary of the findings schematized in Table 14, it
seems fair to conclude that there are several reasons to
avoid the usage of the binning measures. First, they require
a quite elaborate calculation procedure. Second, the bin-
ning measures result in an imbalanced combination of PE
and RT variation, which can only be rectified by extensive
additional calculations. Third, when the design in which
they are used also contains other factors in addition to the
main contrast, it is quite likely that they will fail to detect
even large effects associated with these other factors.
Fourth, as mentioned at the occasion of Study 2, the
Bin-p measure requires the data from the complete sample
which raises some doubts about the independence of the
scores per subject. However, this can be avoided by using
Bin-i instead, but the stability of this measure will require
large numbers of trials per condition.

Thus only IES, RCS, and LISAS are left for further con-
sideration. These three measures are all valid, and allow the
researcher to vary the weights assigned to the speed and ac-
curacy components in calculating the measure. Nevertheless,
these three measures differ from each other in the efficiency
with which they can recover effects present in the two com-
ponents and the extent to which they can account for more of
the systematic variance than the component RT and PE mea-
sures can. Table 14 indicates that IES would best be avoided
because it rather infrequently succeeds in accounting for a
larger proportion of the variance than the RT and PE mea-
sures account for. The findings of Study 3 further show that
LISAS better recovers the experimental-control contrast as
well as the effect of a factor orthogonal to this contrast than
RCS does. In turn, RCS has a higher detection efficiency
than IES. In sum, if one wants to maximize the chances of
finding a reliable integrated speed-accuracy effect, there
are better choices than IES, even though IES is a valid
measure and the results obtained by using IES are expected

to be trustworthy. To the extent that skewness of the distri-
bution is considered to be a contraindication, the RCS mea-
sure should be avoided.

The present simulations do not only support suggestions
about which integrated measures are more efficient than the
others, by varying the direction of the RT and PE effects,
information is also obtained about the situations in which
integrated measures may or may not be useful. The introduc-
tion already explained that not all experiments that involve
speed and accuracy can take advantage from integrated speed
and accuracy performance scoring. When there is no reason to
assume that speed and accuracy are driven by the same or by
overlapping processes, it would seem counterproductive to
use integrated speed-accuracy scores. For example, when test-
ing the hypothesis that in dual-task situations the speed of
performance is slowed due to the coordination of the two
tasks, while errors are produced when the capacity limit for
processing information is exceeded, integrated measures are
better not considered. In contrast, when it is warranted to
assume that speed and accuracy have a common basis, inte-
grated scoring may be considered. However, the results of
Study 3 show that the decision to use such measurements
requires an inspection of the speed and accuracy data. More
than an advice (as formulated by Bruyer &Brysbaert, 2011), it
is in fact a necessity. When RT and PE effects are observed to
be in the same direction, much can be gained by using one of
the better integrated measures. Even when only one of the two
effects attains significance and the differences point in the
same direction, usage of integrated measures may still be ad-
vantageous. However, when the PE and RT effects are in op-
posing directions and they are of equal strength, not much is to
be gained from the usage of integrated measures. Therefore, it
is a necessity to always test the component effects, RTand PE,
before calling on integrated scoring.

Conclusion

When speed and accuracy rely on common processes and
when the effects of speed and error rate are showing differ-
ences in the same direction, the measures that directly inte-
grate RT and PE can be useful. However, it remains necessary
to always first test the direction of the RT and PE effects.
Under these conditions, two measures, namely LISAS and
RCS, are likely to be advantageous by yielding an integrated
effect size that recovers the information present in both com-
ponent measures and that accounts for a larger proportion of
the variance than these component measures do. Usage of IES
in these circumstances will not lead to invalid results, but the
likelihood of being advantageous is much smaller. For many
reasons explained in this article, the binning measures are
better avoided.

672 Behav Res (2017) 49:653–673



References

Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004). More on the
fragility of performance: Choking under pressure in mathematical
problem solving. Journal of Experimental Psychology: General,
133(4), 584–600. doi:10.1037/0096-3445.133.4.584

Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in
cognitive psychology: Is the inverse efficiency score (IES) a better
dependent variable than the mean reaction time (RT) and the per-
centage of errors (PE)? Psychologica Belgica, 51(1), 5–13.

Draheim, C., Hicks, K. L., & Engle, R. W. (2016). Combining reaction
time and ccuracy: The relationship between working memory ca-
pacity and task switching as a case example. Perspectives on
Psychological Science, 11(1), 133–155. doi:10.1177/
1745691615596990

Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991). Analysis of
response-time distribution: An example using the Stroop task.
Psychological Bulletin, 109(2), 340–347. doi:10.1037/0033-2909.
109.2.340

Hughes, M. M., Linck, J. A., Bowles, A. R., Koeth, J. T., & Bunting, M.
F. (2014). Alternatives to switch-cost scoring in the task-switching
paradigm: Their reliability and increased validity. Behavior
Research Methods, 46(3), 702–721. doi:10.3758/s13428-013-
0411-5

Kiesel, A., Steinhauser, M.,Wendt, M., Falkenstein, M., Jost, K., Philipp,
A. M., & Koch, I. (2010). Control and interference in task
switching—A review. Psychological Bulletin, 136(5), 849–874.
doi:10.1037/a0019842

Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap:
Cognitive basis for stimulus–response compatibility: A model and

taxonomy. Psychological Review, 97(2), 253–270. doi:10.1037/
0033-295x.97.2.253

MacLeod, C. M. (1991). Half a century of research on the Stroop effect:
An integrative review. Psychological Bulletin, 109(2), 163–203.
doi:10.1037/0033-2909.109.2.163

Ratcliff, R. (1979). Group reaction-time distributions and an analysis of
distribution statistics. Psychological Bulletin, 86(3), 446–461. doi:
10.1037/0033-2909.86.3.446

Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition
memory. Psychological Review, 83(3), 190–214. doi:10.1037//
0033-295x.83.3.190

Stroop, J. R. (1935). Studies of inteference in serial verbal reactions.
Journal of Experimental Psychology, 18, 643–662.

Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in
simple processing systems. In J. N. J. Castellan & F. Restle (Eds.),
Cognitive theory (Vol. 3, pp. 199–239). New York: Lawrence
Erlbaum Associates.

Trabasso, T., & Bower, G. H. (1966). Presolution dimensional shifts in
concept identification: A test of the sampling with replacement ax-
iom in all-or-none models. Journal of Mathematical Psychology, 3,
163–173. doi:10.1016/0022-2496(66)90009-5

Vandierendonck, A., Liefooghe, B., & Verbruggen, G. (2010). Task
switching: Interplay of reconfiguration and interference control.
Psychological Bulletin, 136(4), 601–626. doi:10.1037/a0019791

White, R. M. (1972). Relationship of performance in concept identifica-
tion problems to type of pretraining problem and response-
contingent feedback intervals. Journal of Experimental
Psychology, 94, 132–140. doi:10.1037/h0032804

Woltz, D. J., & Was, C. A. (2006). Availability of related long-term
memory during and after attention focus in working memory.
Memory & Cognition, 34(3), 668–684. doi:10.3758/bf03193587

Behav Res (2017) 49:653–673 673

http://dx.doi.org/10.1037/0096-3445.133.4.584
http://dx.doi.org/10.1177/1745691615596990
http://dx.doi.org/10.1177/1745691615596990
http://dx.doi.org/10.1037/0033-2909.109.2.340
http://dx.doi.org/10.1037/0033-2909.109.2.340
http://dx.doi.org/10.3758/s13428-013-0411-5
http://dx.doi.org/10.3758/s13428-013-0411-5
http://dx.doi.org/10.1037/a0019842
http://dx.doi.org/10.1037/0033-295x.97.2.253
http://dx.doi.org/10.1037/0033-295x.97.2.253
http://dx.doi.org/10.1037/0033-2909.109.2.163
http://dx.doi.org/10.1037/0033-2909.86.3.446
http://dx.doi.org/10.1037//0033-295x.83.3.190
http://dx.doi.org/10.1037//0033-295x.83.3.190
http://dx.doi.org/10.1016/0022-2496(66)90009-5
http://dx.doi.org/10.1037/a0019791
http://dx.doi.org/10.1037/h0032804
http://dx.doi.org/10.3758/bf03193587

	A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure
	Abstract
	Introduction
	Integrated measures of response time (RT) and proportion of errors (PE)
	Study 1
	Method
	Results and discussion

	Study 2
	Method
	Results and discussion

	Study 3
	Method
	Results and discussion
	Descriptive statistics
	Efficiency of RT and PE integration
	Proportion of explained variance
	Summary


	General discussion
	Properties of integrated measures: General summary
	Potential limitations of the present studies
	Utility of the integrated measures

	Conclusion
	References


