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Abstract With nonnormal data, the typical confidence inter-
val of the correlation (Fisher z') may be inaccurate. The liter-
ature has been unclear as to which of several alternative
methods should be used instead, and how extreme a violation
of normality is needed to justify an alternative. ThroughMon-
te Carlo simulation, 11 confidence interval methods were
compared, including Fisher z', two Spearman rank-order
methods, the Box–Cox transformation, rank-based inverse
normal (RIN) transformation, and various bootstrap methods.
Nonnormality often distorted the Fisher z' confidence inter-
val—for example, leading to a 95 % confidence interval that
had actual coverage as low as 68%. Increasing the sample size
sometimes worsened this problem. Inaccurate Fisher z' inter-
vals could be predicted by a sample kurtosis of at least 2, an
absolute sample skewness of at least 1, or significant viola-
tions of normality hypothesis tests. Only the Spearman rank-
order and RIN transformation methods were universally ro-
bust to nonnormality. Among the bootstrap methods, an ob-
served imposed bootstrap came closest to accurate coverage,
though it often resulted in an overly long interval. The results
suggest that sample nonnormality can justify avoidance of the
Fisher z' interval in favor of a more robust alternative. R code
for the relevant methods is provided in supplementary
materials.
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Major psychological organizations and journals have recently
taken a stand on an issue in statistics: They have endorsed
more frequent use of confidence intervals (American
Psychological Association, 2010; Lindsay, 2015;
Psychological Science, 2014; Psychonomic Society, 2012).
Abiding by such endorsements should be easy, because nu-
merous resources have explained the construction of confi-
dence intervals (e.g., Cumming, 2012), especially for situa-
tions in which parametric assumptions are satisfied. Unfortu-
nately, parametric assumptions are rarely met in actual behav-
ioral data, and particularly assumptions about normality.
Normality appears to be the exception rather than the rule
(Blanca, Arnau, López-Montiel, Bono, & Bendayan, 2013;
Micceri, 1989). Violations of normality might be especially
problematic for inferences based on correlations, for which
even large sample sizes are unlikely to help (see Hawkins,
1989). In other words, one should not expect to be rescued
by the central limit theorem, at least not for the confidence
interval of a correlation. When nonnormality is present, the
typical parametric confidence interval of the correlation may
be inaccurate, and it is not clear which of several alternative
methods should be used. The goal of the present research is
to systematically compare several alternatives and determine
whether sample statistics can be used to inform the choice
among these alternatives.

The 95 % confidence interval is an interval that, if con-
structed in a large number of samples, should cover the true
population parameter in 95% of those samples. The definition
of a confidence interval may seem drab, but the advantages of
it are not. It has long been suspected that confidence intervals
can mitigate some of the well-known limitations of null
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hypothesis significance testing (see, e.g., Cohen, 1994;
Cumming & Finch, 2005; Loftus, 1996; Tryon, 2001), and
this suspicion has been supported by recent studies in statisti-
cal cognition. Confidence interval formats have been shown
to reduce the likelihood of Baccepting the null^ (Fidler &
Loftus, 2009; Hoekstra, Johnson, & Kiers, 2012), a mistake
that commonly frustrates statistics instructors. Additionally,
confidence interval formats have been shown to improve the
interpretation of multiple studies that diverge on statistical
significance but converge on effect direction (Coulson,
Healey, Fidler, & Cumming, 2010). Generally, confidence
intervals are beneficial because they shift readers’ focus to-
ward the continuous dimension of effect size rather than the
simple binary dimension of Bsignificant^ versus Bnon-
significant,^ and they highlight the idea that estimates of effect
size are always uncertain (Cumming, 2012; Fidler & Loftus,
2009; Hoekstra et al., 2012). Thus, there are advantages to using
confidence intervals, so the accurate construction of such
intervals is important.

For the Pearson correlation coefficient, the default method
of constructing a confidence interval is the Fisher z' method
(Fisher, 1915, 1921). This method is sometimes referred to as
r-to-z or r-to-z' transformation. First, the Pearson correlation
coefficient is calculated as usual:

r ¼
X n

i ¼ 1
xi−x

� �
yi−y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i ¼ 1
xi−x

� �2X n

i ¼ 1
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� �2
r : ð1Þ

Then, the Fisher z' transformation of it is defined as

z
0 ¼ :5*ln

1 þ r
1−r

� �
: ð2Þ

The 95 % confidence interval for z' is

z
0 � 1:96*σz0 ; ð3Þ

where σz’ is the approximate standard error of z':

σz0 ¼ 1
. ffiffiffiffiffiffiffiffiffi

N−3
p

: ð4Þ

Finally, the upper and lower bounds of the confidence in-
terval are converted back to the r scale using the equation

r ¼
e2z

0� �
−1

e2z
0� �þ 1

: ð5Þ

For example, if r = .50 and n = 40, the 95 % confidence
interval is .22 to .70. Note that z' is a transformation of r, not of
the raw data. In other words, the Fisher z' method does not
alter the original scale of measurement for X or Y.

Nonnormality

A key assumption of the Fisher z' confidence interval method
is that X and Y have a bivariate normal distribution in the pop-
ulation. When this assumption is met, the Fisher z' method is
quite accurate, and alternative formulations for the confidence
interval usually fail to improve upon Fisher’s original method
(Fouladi & Steiger, 2008; Puth, Neuhäuser, & Ruxton, 2014).

However, when the bivariate normality assumption is not
met, there is little guidance from the methodological literature
as to how to proceed. It may be tempting to still use the Fisher
z'method, and to rely on the central limit theorem as a solution
to the nonnormality. Along these lines, one famous textbook
has suggested that Bperhaps the safest course is to require
rather larger samples in uses of this test when the assumption
of a bivariate normal population seems questionable^ (Hays,
1994, p. 650). This suggestion could be problematic for at
least two reasons. First, even in situations in which the central
limit theorem applies, and larger sample sizes allow for an
approximation of normal sampling distributions, alternative
statistics can still be more efficient and more powerful. Sec-
ond, the central limit theorem does not readily address the
problem of nonnormality when it comes to the Fisher z'meth-
od. If data are not bivariate normal, even as n approaches
infinity, the Fisher z'method can fail to converge on the proper
answer, because its asymptotic standard error is different from
the standard error used in Eq. 4 (Gayen, 1951; Hawkins,
1989). Thus, a large sample size will not necessarily address
normality violations for the Fisher z' method. Indeed, as will
be shown later, increasing sample size can sometimes worsen
the performance of this method. For this reason, when analyz-
ing correlations, nonnormality should be carefully considered
and measured.

Nonnormality is often measured through skewness and
kurtosis. Skewness refers to an asymmetry (e.g., a positive
skew often indicates a long tail to the right of a distribution).
Kurtosis refers to tail-weight (Westfall, 2014). Distributions
with positive kurtosis (e.g., t distributions) have tails heavier
than in the normal distribution, and distributions with negative
kurtosis have lighter, less influential tails. Skewness and kur-
tosis values together do not completely define all possible
types of nonnormality, because no two parameters can do so.
However, skewness and kurtosis are particularly useful char-
acteristics to focus on, because they are commonly examined
and reported by researchers. Additionally, skewness and kur-
tosis are useful because specific significance tests are associ-
ated with them for both univariate and multivariate normality
(D’Agostino, Belanger, & D’Agostino, 1990; Mardia, 1970).

It is well-known that kurtosis affects the Pearson correla-
tion coefficient, but the impact of skewness is not as clear.
Early work showed that, when the correlation was high, even
a small change in kurtosis could have a large impact on the
variance of r, and this held true even for larger sample sizes
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(Haldane, 1949). Since then, several researchers have empha-
sized kurtosis (Bishara & Hittner, 2015; Bonett & Wright,
2000; Duncan & Layard, 1973), and some have even sug-
gested that kurtosis is more important than skewness
(DeCarlo, 1997; Gayen, 1951; Mardia, Kent, & Bibby,
1979, pp. 148–149). Indeed, even when skewness is zero,
Monte Carlo studies have shown that high kurtosis can inflate
Type I and II error rates (Bishara & Hittner, 2012; Edgell &
Noon, 1984; Hayes, 1996; Puth et al., 2014), increase bias
(Bishara & Hittner, 2015; Zimmerman, Zumbo, & Williams,
2003), and reduce the coverage rates of confidence intervals
(Puth et al., 2014). Thus, kurtosis clearly has an effect, but
controlling for that, what is the effect of skewness? Compar-
isons of kurtosis and skewness are complicated by the fact that
kurtosis is bounded below by skewness, and so extremely
skewed distributions will necessarily have high kurtosis. To
determine whether skewness has effects in addition to those of
kurtosis, both skewness and kurtosis would need to be orthog-
onally manipulated, something that has yet to be done in this
literature.

Raw data transformation methods

The earlier described Fisher z' method involved transforma-
tion of the sampling distribution of the correlation, but what if
the raw data were also transformed? In other words, one ap-
proach to nonnormality in raw X and Y variables is to trans-
form them directly and then proceed as usual, calculating the
Pearson correlation and using the Fisher z' to construct the
confidence interval. After any raw data transformation, the
correlation no longer represents a linear relationship on the
original scales of measurement. However, raw data transfor-
mation methods can still be useful. The correlation still indi-
cates the strength and direction of the monotonic relation-
ship—that is, the more general relationship that X tends to
increase as Y increases or to increase as Y decreases. Charac-
terizing this monotonic relationship is often sufficient, be-
cause many theories in psychology lack the specificity to pre-
dict a linear relationship. Additionally, even when theories do
have such specificity, the measurements might not (Blanton &
Jaccard, 2006). Thus, raw data transformation methods can
often be useful. Four such raw data transformation methods
are considered here: twomethods for the Spearman rank-order
transformation, a Box–Cox transformation, and a more gen-
eral, rank-based inverse normal (RIN) transformation.

The Spearman rank-order correlation—commonly used for
ordinal variables and for some nonlinear relationships—is al-
so recommended as an alternative to the Pearson correlation
when normality is violated (e.g., Field, 2000; Pagano &
Gauvreau, 2000; Rosner, 1995; Triola, 2010). The Spearman
rank-order correlation can be thought of as a Pearson correla-
tion following transformation into a flat distribution of ranks

(i.e., the histogram of the ranks will be flat so long as there are
no ties). Because the ranks of X and Y are flat, an alternative
variance term is needed for the Fisher z' statistic. We consider
the two most popular variance terms, one by Fieller, Hartley,
and Pearson (1957) and one by Bonett and Wright (2000),
referred to here as SpearmanF and SpearmanBW, respectively.
These confidence intervals have been extensively compared to
several alternatives for ordinal data (Ruscio, 2008; Woods,
2007). It is less clear, though, how these methods fare relative
to alternatives when using the Spearman correlation as a so-
lution to nonnormality in continuous data. At least in bivariate
normal data, SpearmanF and SpearmanBW have been shown to
be approximately accurate. The 95 % confidence interval usu-
ally has approximately .95 coverage, except with extreme
values of ρ, in which case the coverage probability has dipped
as low as .90 with SpearmanF (Puth, Neuhäuser, & Ruxton,
2015; Rosner & Glynn, 2007). Given that the ranks are unaf-
fected by monotonic transformations of the data, these bivar-
iate normal results should generalize to simulated nonnormal
data, and both Spearman methods should produce good cov-
erage in most cases.

Nonlinear data transformations, such as the log transform,
can sometimes convert nonnormal data to approximately nor-
mal data. In order to consider several such transformations
simultaneously, it is useful to examine the performance of
the Box–Cox transformation family (Box & Cox, 1964). This
family has a free parameter, and depending on the parameter’s
value, the transformation can become equivalent to or an ap-
proximation of several other familiar transformations, includ-
ing the logarithmic, square-root, and inverse transformations.
Because of this flexibility, the Box–Cox transformation can
approximately normalize a wide variety of skewed distribu-
tions, though it is less successful when applied to symmetric
nonnormal distributions (e.g., extreme kurtosis but no skew).
For the purpose of constructing a confidence interval of the
correlation, the X and Y variables can be Box–Cox trans-
formed in an attempt to approximately normalize them, and
then the Fisher z' method can be used as usual.

An even more general approach to transformation can be
found in RIN transformation, which is quite old, though some-
what obscure in psychology. The minor variations in this pro-
cedure have led to several names for the transformation, in-
cluding normal scores (Fisher & Yates, 1938), Blom transfor-
mation (Blom, 1958), van der Waerden transformation (van
der Waerden, 1952), and rankit transformation (Bliss, 1967;
for a review, see Beasley, Erickson, & Allison, 2009). RIN
transformation involves three steps. First, a variable is con-
verted to ranks. Second, the ranks are converted to a 0-to-1
scale using a linear function. Finally, this distribution is trans-
formed via the inverse of the normal cumulative distribution
function (i.e., via probit transformation). The result is an ap-
proximately normal distribution regardless of the original
shape of the data, so long as ties are infrequent and n is not
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too small. For correlations with nonnormal data, RIN trans-
formation has been shown to increase power (Bishara &
Hittner, 2012; Puth et al., 2014), and also to reduce the bias
and error of the point estimate (Bishara & Hittner, 2015). If
RIN transformation is applied to the X and Yvariables prior to
use of the Fisher z' confidence interval, the confidence interval
could likewise be more accurate; the marginal distributions
will be approximately normal, though of course there is no
guarantee that bivariate normality will be satisfied.

Bootstrap methods

In cases in which a linear relationship on the original scale is
important, perhaps the most promising methods are those in-
volving the bootstrap (Efron, 1979). Bootstrap methods in-
volve resampling with replacement from the observed data,
and so do not require assumptions about bivariate normality.

For correlations, a common approach is the nonparametric
bivariate bootstrap (Lunneborg, 1985). In this approach, n
pairs of data are randomly sampled with replacement (i.e.,
some rows of data might be sampled more than once). The
Pearson correlation in this bootstrap sample is recorded. This
procedure is repeated thousands of times, recording the new
correlation each time. The distribution of the recorded corre-
lations then provides an estimate of the sampling distribution
of r. To construct the 95 % confidence interval, the 2.5th
percentile of the recorded rs forms the lower bound, and the
97.5th percentile forms the upper bound. In addition to the
unadjusted method described above, two adjusted measures
are also considered here: an asymptotic adjustment (AA) and
bias correction with acceleration (BCa). Previous research
suggested that none of these approaches provides a perfect
solution to the problem of nonnormality with correlated data.
These methods can slightly inflate Type I error (Beasley et al.,
2007; Bishara & Hittner, 2012; Lee & Rodgers, 1998;
Rasmussen, 1987; Strube, 1988). Additionally, their 95 %
confidence intervals can have actual coverage rates that range
from 91 % to 99 % (Puth et al., 2014, 2015). However, if the
data are extremely nonnormal and the population correlation
is nonzero, bootstrap methods can at least be more accurate
than the Fisher z' (e.g., Puth et al., 2014).

Given these inadequacies of the nonparametric bootstrap, it
is important to consider a variation developed specifically for
nonnormal data. Perhaps the most promising such variation is
the observed imposed bootstrap (Beasley et al., 2007). In this
bootstrap method, the sampling frame is created not from the n
original pairs of X and Y, but rather from all possible pairs (n2)
of X and Y. The possible pairs are then rotated to recreate the
originally observed r value, and then the bootstrap method
proceeds as usual, with pairs sampled with replacement, the
new r recorded, and so on. This approach allows for a much
larger sampling frame, and hence a smoother bootstrap

distribution, than the traditional nonparametric bootstrap.
Beasley and colleagues (2007) examined this method for null
hypothesis testing and showed that it could achieve good con-
trol over Type I error rates, particularly when data were
nonnormal. A natural extension of their approach would be
to use the observed imposed bootstrap distribution of r to
generate confidence intervals. As with the nonparametric
bootstrap, for the observed imposed bootstrap, we considered
confidence intervals from unadjusted percentiles, AA, and
BCa.

The present study

The purpose of the present study was to compare the accura-
cies of the various types of 95 % confidence intervals of the
correlation in the context of nonnormal continuous data. There
are several major differences between this study and previous
work. First, we examined a wider array of confidence interval
methods than previous studies have (e.g., Puth et al., 2014).
Specifically, we examined 11 confidence interval methods:
Fisher z', two variants of Spearman confidence intervals,
Box–Cox transformation, RIN transformation, three nonpara-
metric bootstraps (unadjusted percentiles, AA, and BCa), and
likewise, three observed imposed bootstraps. Such a compar-
ison, along with the R code provided for each method (see
Supplementary Materials A), could help researchers who are
trying to choose and use such methods. Second, we examined
the relative effectiveness of the observed imposed bootstrap
for confidence intervals. This method has previously been
examined only with hypothesis testing (Beasley et al.,
2007), but because it was more accurate than other correlation
bootstrap methods, it may also fare well with confidence in-
tervals. Its performance relative to transformation methods is
generally unknown. Third, we orthogonally manipulated
skewness and kurtosis, at least to the extent that was mathe-
matically possible, so that the effects of the two could be
disentangled. Previous examinations of nonnormality with
the correlation coefficient have compared different distribu-
tions (e.g., normal, chi-squared, etc.), but in doing so, changes
in skewness were confounded with changes in kurtosis (e.g.,
Bishara & Hittner, 2012; Hayes, 1996; Kowalski, 1972; Puth
et al., 2014). Finally, we examined the usefulness of sample
information—sample skewness, kurtosis, and tests of sample
nonnormality—in determining whether the default parametric
methodwould be accurate. Sample information is important to
consider because the shape of the population is often unknown
to a researcher, and also because it is unclear how extremely
nonnormal the sample must be in order to justify the use of
alternative methods.

There is no known way of accomplishing this comparison
through a formal proof, at least not for finite sample sizes, and
so Monte Carlo simulations had to be used. The primary
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dependent measure of interest was coverage probability,
which should be approximately .95 if the 95 % confidence
interval is accurate. Among confidence intervals that achieve
this, a shorter confidence interval is more precise, and thus
preferable to a longer one. To represent the wide array of
nonnormality in actual data sets (Blanca et al., 2013;
Micceri, 1989), our simulations involved a systematic manip-
ulation of realistic values of population skewness and kurtosis.
To assess the generality of the results, over 900 scenarios were
examined.

Method

Scenario design

Overall, the factorial design consisted of 46 skewness/kurtosis
combinations, two shape combinations, five sample sizes, and
two population correlations. This design resulted in a total of
920 scenarios.

To define skewness and kurtosis, first, define the kth central
moment in the population as

μk ¼ E x−μð Þk
h i

; ð6Þ

where μ with no subscript is the population mean. The popu-
lation skewness is

γ1 ¼
μ3

σ3
; ð7Þ

where σ is the population standard deviation. The population
kurtosis is

γ2 ¼
μ4

σ4
−3: ð8Þ

Note that the population kurtosis is defined here with a
constant of –3 so that, for a normal distribution, γ1 = γ2 = 0.

To inform the choice of our simulated skewness and kur-
tosis values, two published reviews of these values in actual
data sets were considered. The first review covered 440
datasets in psychology and education withmeasures of knowl-
edge, perception, and opinion (Micceri, 1989). The second
review covered 693 datasets, mostly with measures of cogni-
tive ability and personality (Blanca et al., 2013). Summarizing
across these two reviews, estimated skewness values ranged
from –2.5 to +2.3, and perhaps went even higher; Micceri
categorized 17 % of datasets in a category that had skewness
greater than 2, but he did not report the maximum skewness.
Estimated kurtosis ranged from –1.9 to +37.4. To be on the
safe side, we simulated skewness and kurtosis values slightly
beyond these ranges, where possible.

The scenarios included nine values of population skewness
(γ1 = –4, –3, –2, –1, 0, 1, 2, 3, 4), and ten of population

kurtosis (γ2 = –1, 0, 2, 4, 6, 8, 10, 20, 30, 40). Figure 1a shows
the specific combinations that were simulated. Many combi-
nations of skewness and kurtosis were mathematically impos-
sible, because the lower bound of kurtosis is determined by
the squared skewness:

γ2≥γ1
2−2; ð9Þ

a boundary illustrated by the U-shaped curve in Fig. 1a. An
additional constraint is that it becomes increasingly difficult to
simulate nonnormal correlated data as the U-shaped boundary
is approached (Headrick, 2010). Hence, 46 combinations of
skewness and kurtosis were simulated, each represented by a
letter or small square in Fig. 1a. Figure 1b–f show illustrative
examples for select combinations of skewness and kurtosis.

We examined two types of distribution shape combi-
nations: Either both X and Y had the same distribution
shape, or only X was nonnormal and Y was normal.
(Note that the bivariate normality assumption was satis-
fied here when both X and Y were normal. That is, not
only were they marginally normal, but also all possible
linear combinations of them were normal.) In order to
understand the effect of sample size, we included five
different samples sizes: n = 10, 20, 40, 80, and 160. To
consider both zero and nonzero population correlations,
two population correlation coefficients were used: ρ = 0
and .5.

Dependent measures

Coverage probability The observed coverage probability
was the number of simulations in which a confidence
interval covered the corresponding population parameter,
divided by the total number of simulations. The popula-
tion parameter of interest was Pearson’s ρ for the Fisher z'
and bootstrap methods. Raw data transformation methods
required comparison to an appropriate population param-
eter for the respective transformation. For example, the
Spearman confidence intervals should cover the popula-
tion Spearman’s ρ, which need not be equal to the popu-
lation Pearson ρ that was set in the simulation. To esti-
mate population parameters for the transformation ap-
proaches, within each scenario, a pseudo-population was
generated with size N = 1,000,000. The estimated popu-
lation parameter for Spearman confidence intervals was
the rank-order correlation in this pseudo-population. The
same strategy was taken with the Box–Cox and RIN
transformations, for which the population parameter was
estimated as the Pearson correlation of the pseudo-
population following the Box–Cox and RIN transforma-
tions, respectively. For the interested reader, these param-
eters can be found in Supplementary Materials B.
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Confidence interval length The confidence interval length
was defined as the confidence interval’s upper bound minus
lower bound in a particular simulation.

Sample skewness and kurtosis Let the kth central moment of
the sample be defined as

mk ¼ 1

n

Xn

i ¼ 1

xi−x
� �k

: ð10Þ

The unadjusted measures of sample skewness and kurtosis
are typically defined as g1 and g2, respectively:

g1 ¼
m3

m2ð Þ3
.

2

; ð11Þ

g2 ¼
m4

m2ð Þ2−3: ð12Þ

When measured in small samples, the absolute skewness
and kurtosis tend to be downward-biased. To mitigate this
problem, g1 and g2 are adjusted on the basis of the sample
size, resulting in G1 (adjusted sample skewness) and G2

(adjusted sample kurtosis):

G1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n−1ð Þp
n−2

g1; ð13Þ

G2 ¼ n−1
n−2ð Þ n−3ð Þ n þ 1ð Þg2 þ 6f g: ð14Þ

In normal data,G1 andG2 are unbiased. In nonnormal data,
they tend to be less biased than g1 and g2 (Joanes & Gill,
1998). Note that G1 and G2 are not the only possible adjusted
measures, but they are perhaps the most popular and are used
by default in several software packages, such as SPSS and
Excel (Joanes & Gill, 1998). R code forG1 andG2 is provided
in Supplementary Materials A, along with R code for other
aspects of the method that may be useful to other researchers.

Tests of normality based on sample information To test
nonnormality on the basis of the skewness or kurtosis in the
sample, it is common to use the D’Agostino et al. (1990) tests.
To test for significant skewness, g1 is transformed to a z sta-
tistic, which is approximately normally distributed under the
null hypothesis of population normality. For our purposes, in
each simulation, a two-tailed alpha = .05 hypothesis test was

Fig. 1 a Letters and small squares represent combinations of population
skewness and kurtosis values that were simulated, with red = nonnormal
and green = normal. The U-shaped curve shows the lower boundary of
kurtosis as a function of skewness (see Eq. 9). b–f The smaller panels

show illustrative examples of select combinations of skewness and
kurtosis. The smooth colored lines are approximate population densities,
and the histogram bars illustrate a single random sample (n = 160) drawn
from the population
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conducted on this z statistic (i.e., with cutoffs of approximately
±1.96). This is a univariate test, so it was done separately for
the X and Y variables. Likewise, an additional set of two tests
was done for kurtosis on the basis of g2 in X and Y variables
(for details, see D’Agostino et al., 1990). Note that
D’Agostino et al. recommended their normal approximation
test for kurtosis only if n ≥ 20, thoughwe found that it was still
informative with n = 10 in the present simulations.

For an omnibus test of normality, we also examined the
results of the Shapiro–Wilk test (Shapiro & Wilk, 1965). This
test is also univariate, and must be done separately for X and Y.
The Shapiro–Wilk test is often preferable to other tests (e.g.,
Kolmogorov–Smirnov) because it is usually more powerful
(Shapiro, Wilk, & Chen, 1968).

Finally, we also examined multivariate tests of normality.
Specifically, we examined Mardia’s (1970, 1974) tests for
multivariate skewness and multivariate kurtosis (see Eqs. 5.5
and 5.7 in Mardia, 1974).

Confidence interval construction methods

Fisher z See Eqs. 1 through 5.

Spearman rank-order with Fieller et al.’s (1957) standard
error (SpearmanF) In this method, X and Y were separately
transformed into ascending ranks. Then the Pearson correla-
tion was computed on these ranks, thus forming the Spearman
rank-order correlation coefficient. The confidence intervals
were created just as in the Fisher z' method. However, the
Fieller et al. estimate of the standard error was used, replacing
the standard error in Eq. 4. Fieller et al.’s estimate of the
standard error of z' is

σz0F
¼ 1:03

. ffiffiffiffiffiffiffiffiffi
N−3

p
: ð15Þ

Spearman rank-order with Bonett and Wright’s (2000)
standard error (SpearmanBW) Bonett andWright’s estimate
of the standard error of z' is:

σz0BW
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

.
2

r . ffiffiffiffiffiffiffiffiffi
N−3

p
: ð16Þ

All other details of this confidence interval method are the
same as in the previous method.

Box–Cox transformation X and Y were separately trans-
formed using the Box–Cox transformation (Box & Cox,
1964), which is especially well-suited for skewed data:

f x;λð Þ ¼
xλ− 1

λ
; i f λ≠0;

ln xð Þ; i f λ ¼ 0:

8<
: ð17Þ

In each simulated sample, the free parameter λ was
chosen by an iterative one-parameter optimization. The
optimization’s goal was to maximize normality, as mea-
sured by the correlation of the coordinates of the normal
qq-plot, a correlation that tends to be higher with more
normal distributions (Filliben, 1975). The optimization
routine involved both golden-section search and succes-
sive parabolic interpolation, and was implemented
through R’s optimize function. Following transforma-
tion, the confidence interval was constructed via the
Fisher z' method.

RIN transformation X and Y were separately transformed
through the rankit formula (Bliss, 1967):

g xð Þ ¼ Φ−1
xr−1

.
2

n

0
@

1
A; ð18Þ

whereΦ–1 is the inverse of the cumulative normal distribution
function, and xr is the ascending rank of each x value.
RIN transformation provides a good approximation of
the unknown transformations that would normalize the
unknown population distributions (Klaassen & Wellner,
1997; Zou & Hall, 2002). The rankit formula comes
from a larger class of RIN transformations, all of which
transform nearly any continuous distribution into an
approximately normal one (see Beasley et al., 2009,
for a review). The rankit formula was chosen because
it more accurately reproduces the even moments of a
normal distribution (Solomon & Sawilowsky, 2009).
For a tutorial, see the Appendix of Bishara and Hittner
(2012).

Nonparametric bootstrap For each simulation, a sample
of n pairs of observations was drawn with replacement
from the observed data. This bootstrap sample was then
used to calculate the bootstrap correlation, r1

*. The
bootstrap correlation was calculated with the usual for-
mula (Eq. 1), but with the bootstrap sample rather than
the observed data. This process was then repeated for a
total of 9,999 bootstrap samples, each with its own val-
ue of r*. The 95 % confidence interval of the correla-
tion was estimated at the 2.5th and 97.5th percentiles of
the distribution of r* (Efron, 1979; Lunneborg, 1985).
In order to avoid undefined r* values, any bootstrap
sample that consisted entirely of repeats of a single pair
was discarded and replaced (see Strube, 1988).

Nonparametric bootstrap with AA The percentile confi-
dence interval bounds were widened by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 2ð Þ= N þ 1ð Þp
(Efron, 1982). Specifically, if LB

and UB are the original lower and upper percentile
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bounds of the nonparametric bootstrap, then the AA
confidence interval is

CIAA ¼ 1

2
LBþ UBð Þ

� 1

2
UB−LBð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 2ð Þ

.
N þ 1ð Þ

r
: ð19Þ

This method is less common in the recent literature, but it
was included in our simulations because previous work had
shown some promise for it with an observed imposed boot-
strap (Beasley et al., 2007).

Nonparametric bootstrap with BCa This method adjusts
the percentile bounds of the nonparametric bootstrap so as to
improve the coverage of the interval, with the error of intended
coverage approaching zero more rapidly in the limit as n ap-
proaches infinity. Extensive details can be found in Efron and
Tibshirani (1993).

Code for this approach was adapted from Efron and
Tibshirani’s (1993) S package. On rare occasions, the original
packaged code approximated the lower confidence interval
boundary as being the 0th percentile. R interprets a B0^ index
as empty, which caused R to recycle the upper bound for both
the lower and upper boundaries, resulting in a confidence
interval with zero width, which could not possibly cover ρ.
To avoid this problem, the code was adjusted so that the 0th
percentile was replaced by the smallest r* in the distribution of
bootstrap replicates.

Observed imposed bootstrap In this method (Beasley et al.,
2007), let {X',Y'} be an initial sampling frame created by
combining all possible pairs of the originally observed X and
Yvariables. For example, if n = 3, and {xi,yi} represents the ith
pair of the observed data, then the initial sampling frame will
have n2 = 9 pairs: {X', Y'} = {(x1,y1), (x2,y1), (x3,y1), (x1,y2),
(x2,y2), (x3,y2), (x1,y3), (x2,y3), (x3,y3)}. This initial sampling
frame will necessarily have a correlation of 0. Next, let the
standardized sample frame be {X'', Y''}, where each xj' has the
mean of X' subtracted and is then divided by the standard
deviation of X', and likewise for yj

′, so as to standardize each
variable. Next, to impose the originally observed correlation,
r, the frame is transformed through bivariate Cholesky
decomposition:

y
0 00
j ¼ r*x

0 0
j
þ

ffiffiffiffiffiffiffiffiffi
1−r2

p
*y

00
j
; ð20Þ

where yj
′ ′ ′ is each new y-value (Kaiser & Dickman, 1962). Let

x
0 00
j ¼ x

00
j
. Importantly, the correlation between X''' and Y''' is

the same as the original sample correlation, r. Thus, the
Bobserved^ correlation has been Bimposed^ on a much larger
sampling frame that consists of n2 instead of n pairs. From this
final sampling frame of {X''' , Y'''}, n pairs of observations are

sampled with replacement, and the same procedure is follow-
ed as with the nonparametric bootstrap described above. Fur-
ther details about the observed imposed bootstrap can be
found in Beasley et al. (2007).

Observed imposed bootstrap with AAThe same procedure
was applied as with the nonparametric bootstrap, except that
LB and UB were generated from the observed imposed boot-
strap before application of Eq. 19.

Observed imposed bootstrap with BCa For this method,
one change had to be made to Beasley et al.’s (2007) proce-
dure, to reduce computing time. In pilot simulations with large
samples, more than 90 % of the computing time for the entire
simulation was devoted to calculating the observed imposed
BCa confidence intervals. This computational burden oc-
curred because of the jackknife estimation of the BCa’s accel-
eration term, a jackknife estimation that results in looping
across n2 observations in this particular technique. To alleviate
this computational burden in large samples, an approximate
jackknife technique was used whenever n2 exceeded 1,000.
This approximation involved a random sample (without re-
placement) of 1,000 Bleave-one-out^ subsamples instead of
all n2 subsamples. This approximation only affected the accel-
eration term, not the number of bootstrap samples or the bias
correction, and was only applied to scenarios with n ≥ 40. The
consequence could be a slightly less precise acceleration term
in such situations. However, any resulting injury to the cover-
age rate of this method was not large enough to be noticeable
when comparing across sample sizes or other observed im-
posed methods.

Simulation

Within each scenario, 10,000 simulations were conducted.
This number was used so that the primary dependent vari-
able—coverage probability—could be estimated with a
95 % confidence interval margin of error of less than ± .01.
With this level of precision, any observed coverage probabil-
ity less than .94 can be considered significantly below the
ideal coverage probability of .95. Within each simulation,
each bootstrap type (nonparametric and observed imposed)
used a total of 9,999 bootstrap samples (Beasley & Rodgers,
2012; Boos, 2003).

In order to simulate nonnormal data with the specified pop-
ulation correlation, skewness, and kurtosis values, the fifth-
order power polynomial method was used (Headrick, 2002;
Headrick, Sheng, & Hodis, 2007). This method yields skewness
and kurtosis values with more precision and less bias than do
earlier, third-order power polynomial methods (Olvera Astivia&
Zumbo, 2015). Further details of this data-generating method
can be found in Supplementary Materials C. Simulations were
conducted in the language R (R Development Core Team,
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2014). Simulations were distributed on a high-performance com-
puting cluster, with different cores devoted to different scenarios.

Results

Coverage probability and confidence interval length

Figure 2 gives a concise summary of the observed coverage
probabilities of the different confidence interval estimation
methods. An ideal 95 % confidence interval method would
cover the true population correlation with probability .95, re-
gardless of the scenario. Many methods reached this goal
when the normality assumption was met, indicated by the
circles in the figure. However, when considering the
nonnormal scenarios (squares), most methods’ coverage
varied either higher or lower than .95. Of particular concern,
the default method, Fisher z', led to some 95 % confidence
intervals that covered the true parameter as little as 67.6 % of
the time.

Among the transformation methods, the SpearmanF and
RIN approaches led to more desirable results, with coverage
of approximately .95 regardless of the scenario. The
SpearmanBW method led to slightly higher than .95 coverage.
The Box–Cox transformation method had low coverage in
some scenarios, likely due to its inability to address symmet-
rical nonnormality (γ1 = 0, γ2 ≠ 0).

Among the six bootstrapping methods, observed imposed
AA and observed imposed BCa fared the best, with coverage
of approximately .95 in the normal scenarios, and coverage
always greater than .90 in the nonnormal scenarios. The

observed imposed methods sometimes exceeded the target
.95 coverage, suggesting that they might have been too long.

As is shown in Table 1, some confidence interval methods
led to smaller (i.e., more precise) intervals than others. On
average, RIN transformation led to the second smallest confi-
dence intervals, bested only by the nonparametric bootstrap.
Of course, the nonparametric bootstrap camewith the cost of a
lower-than-.95 coverage probability. The observed imposed
bootstrap methods often had the longest intervals, particularly
the observed imposed AA. Observed imposed BCa provided
coverage probability similar to the AAmethod, but with more
precise intervals.

Overall, among the transformation methods, the
SpearmanF and RIN intervals provided consistently accurate
coverage probabilities, and the RIN interval lengths were es-
pecially precise. Among the bootstrap methods, which have
the virtue of preserving the original scale of the raw data, there
was no perfect alternative to the Fisher z'. At least, though, the
observed imposed BCa method had an adequate coverage
probability (>.90) and had more precise intervals than the
corresponding AA method. In the remaining analyses, we
focus on the Fisher z' method as compared to three promising
alternatives: SpearmanF, RIN, and observed imposed BCa.

Population shape

As is shown at the top of Table 2, the Fisher z' confidence
interval worked as intended when bivariate normality was
satisfied. Even when just one variable was normal, the cover-
age was not noticeably impaired. However, when both vari-
ables were nonnormal, coverage fell below the nominal 95 %.

Fig. 2 A 95% confidence interval will, ideally, cover the true population
parameter with probability .95 in simulations. Observed coverage
probabilities are shown for bivariate normal scenarios (circles) and for
scenarios in which at least one variable was not normal (squares).

SpearmanF = Fieller et al. (1957), SpearmanBW = Bonett and Wright
(2000), RIN = rank-based inverse normal, Nonpar. = nonparametric,
AA = asymptotic adjustment, BCa = bias correction and acceleration,
Imp. = imposed
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The bold values in the table show proportions less than .940.
This cutoff was chosen because the margin of error for the
proportions was less than ± .010. All remaining tables also
show proportions, and so also have margins of error less than
± .010 and cutoffs of .940.

The effect of sample size depended on the population corre-
lation coefficient. With a zero correlation, larger sample sizes
improved the coverage rate. However, with a nonzero correla-
tion, larger sample sizes actually worsened the coverage rate.

As is shown in the lower panels of Table 2, the SpearmanF
and RIN methods produced approximately .95 coverage, re-
gardless of population shape and sample size. The observed
imposed BCa method showed approximately .95 coverage

when bivariate normality was satisfied, but slightly higher cov-
erage than intended when at least one variable was nonnormal.

As is shown in Table 3, both skewness and kurtosis affect-
ed the coverage rate of the Fisher z' method. The effect of
negative skewness was approximately the same as that of
positive skewness: Greater absolute skewness led to lower
coverage. As can be seen by comparing the different rows,
increased kurtosis also reduced coverage. It is difficult to com-
pare skewness directly to kurtosis, but there are at least some
circumstances in which the coverage probability appeared
more sensitive to skewness than to kurtosis. For example,
consider ρ = .5, γ1 = 0, γ2 = 8: Increasing skewness by 2
reduced coverage by .029. In contrast, increasing kurtosis by

Table 1 Mean confidence interval length (upper bound minus lower bound)

Default Fisher
z'

Transformation Bootstrapping

SpearmanF SpearmanBW Box–
Cox

RIN Nonpar. Nonpar.
AA

Nonpar.
BCa

Observed
Imposed

Observed
Imposed
AA

Observed
Imposed
BCa

.597 .608 .613 .594 .590 .587 .635 .607 .651 .703 .663

Confidence interval lengths in this table have a margin of error no greater than ± .007, based on the 95 % confidence intervals of the means. RIN = rank-
based inverse normal, Nonpar. = nonparametric, AA = asymptotic adjustment, BCa = bias correction and acceleration

Table 2 Observed coverage probabilities of 95 % confidence intervals among select methods as a function of sample size, population correlation (ρ),
and population shape

Confidence Interval Method n ρ = 0 ρ = .5

Neither Normal One Normal Both Normal Neither Normal One Normal Both Normal

Fisher z' 10 .936 .949 .950 .893 .950 .946

20 .940 .950 .947 .880 .951 .951

40 .944 .950 .951 .862 .952 .950

80 .945 .950 .949 .842 .952 .949

160 .947 .950 .951 .823 .950 .951

SpearmanF 10 .951 .951 .952 .950 .949 .949

20 .954 .955 .955 .948 .948 .951

40 .955 .956 .957 .947 .947 .948

80 .956 .956 .956 .946 .946 .949

160 .957 .957 .957 .946 .946 .949

RIN 10 .950 .950 .950 .948 .948 .947

20 .949 .949 .948 .950 .950 .950

40 .950 .949 .951 .950 .950 .950

80 .950 .950 .950 .950 .950 .948

160 .950 .951 .951 .949 .950 .952

Observed imposed
bootstrap BCa

10 .970 .969 .953 .975 .971 .950

20 .963 .963 .951 .971 .972 .948

40 .962 .958 .954 .967 .975 .949

80 .959 .954 .951 .964 .977 .949

160 .956 .951 .951 .962 .980 .951

Bold values indicate coverage probabilities < .940. The different columns indicate how many raw variables (X and Y) were normally distributed in the
population. RIN = rank-based inverse normal, BCa = bias correction and acceleration
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the same amount reduced coverage by only .010. Of course,
note that Table 3 omits scenarios in which a nonnormal X was
paired with a normal Y, because the Fisher z' had approximate-
ly .95 coverage probability in such scenarios.

Sample shape

The results presented thus far rely on knowledge of the pop-
ulation skewness and kurtosis, which are rarely known to the
researcher. From a practical perspective, it may be more im-
portant to know whether the choice to use Fisher z' can be
informed by the observed sample. In other words, how much
observed skewness, kurtosis, or other indication of
nonnormality in the sample is sufficient to justify an alterna-
tive to the Fisher z'?

As is shown in Table 4, sample skewness and kurtosis could
indeed be used to justify avoidance of the Fisher z'. As absolute
sample skewness or sample kurtosis increased, the Fisher z'
coverage probability decreased. Generally, the Fisher z' cover-
age probability was noticeably lowwhen the absolute skewness
was at least 1, or when kurtosis was at least 2. In contrast, the
SpearmanF and RIN coverage probabilities were approximately
.95 regardless of the sample skewness or kurtosis, and observed
imposed BCa coverage tended to exceed .95. Note that sample

skewness and kurtosis are tightly restricted in small samples
(see Cox, 2010). To keep the table estimates precise, only bins
with at least 10,000 observations are shown.

As is shown in Table 5, normality tests of samples could
also be used to justify avoidance of the Fisher z'. The
D’Agostino et al. (1990) tests were most discriminating be-
tween accurate and inaccurate coverage situations. Specifical-
ly, for the Fisher z' interval, when both variables showed sig-
nificant violations of skewness or kurtosis expected under
normality, the coverage probability was noticeably poor. In
contrast, when both variables showed nonsignificant results
with this test, or if only one variable did, the coverage proba-
bility was approximately .95. The Shapiro–Wilk test was less
discriminating between good and bad coverage situations, es-
pecially for small samples. Tests for multivariate skewness
and kurtosis were least informative.

Discussion

Nonnormality can distort the Fisher z' confidence interval, and
the outcome can be quite misleading; in the most extreme
example, an intended 95 % confidence interval would have
been better described as a Btwo-thirds^ confidence interval.

Table 3 Observed coverage probabilities of Fisher z' confidence intervals as a function of population correlation, skewness, and kurtosis, when both
variables were nonnormal

Population Correlation Population Kurtosis (γ2) Population Skewness (γ1)

–4 –3 –2 –1 0 1 2 3 4

ρ = 0 40 .936 .934 .933 .932 .933 .932 .933 .935 .936

30 .940 .939 .937 .937 .936 .938 .938 .939 .943

20 .945 .942 .941 .942 .940 .944 .946

10 .948 .946 .945 .945 .948

8 .950 .946 .947 .947 .948

6 .947 .946 .948

4 .947 .949 .949

2 .949 .948 .949

0 .950

–1 .949

ρ = .5 40 .750 .771 .774 .778 .781 .781 .779 .773 .753

30 .771 .808 .818 .823 .823 .824 .818 .807 .774

20 .837 .859 .868 .870 .868 .858 .835

10 .893 .911 .912 .911 .892

8 .892 .919 .922 .919 .893

6 .925 .931 .926

4 .932 .939 .930

2 .933 .945 .933

0 .950

–1 .945

Bold values indicate coverage probabilities < .940

304 Behav Res (2017) 49:294–309



Table 4 Observed coverage probabilities among select methods, based on sample size, sample skewness, and sample kurtosis

Confidence Interval Method Sample Kurtosis (G2) n = 10 n = 40 n = 160

Absolute Sample Skewness ( |G1| )

0–1 1–2 2–3 3 ≤ 0–1 1–2 2–3 3 ≤ 0–1 1–2 2–3 3 ≤

Fisher z' 20 ≤ – – – – – – – – – – – .704

10–20 – – – – – – .759 .689 .837 .828 .807 .770

8–10 – – – – – .830 .795 – .875 .865 .847 –

6–8 – – .643 – .869 .858 .829 – .894 .883 .862 –

4–6 – .788 .722 – .901 .884 .855 – .915 .900 – –

2–4 .894 .866 – – .927 .907 – – .935 .919 – –

1–2 .930 .910 – – .940 .924 – – .941 .928 – –

0–1 .946 .928 – – .947 .932 – – .946 – – –

–1–0 .956 .940 – – .955 – – – .954 – – –

<–1 .959 – – – .954 – – – .949 – – –

SpearmanF 20 ≤ – – – – – – – – – – – .950

10–20 – – – – – – .953 .951 .950 .950 .950 .948

8–10 – – – – – .951 .952 – .950 .950 .952 –

6–8 – – .953 – .951 .950 .951 – .951 .951 .953 –

4–6 – .952 .955 – .951 .951 .949 – .951 .952 – –

2–4 .952 .952 – – .951 .951 – – .953 .952 – –

1–2 .951 .952 – – .951 .951 – – .951 .953 – –

0–1 .951 .951 – – .952 .954 – – .952 – – –

–1–0 .950 .953 – – .951 – – – .951 – – –

<–1 .949 – – – .952 – – – .953 – – –

RIN 20 ≤ – – – – – – – – – – – .950

10–20 – – – – – – .952 .949 .950 .949 .949 .949

8–10 – – – – – .949 .951 – .949 .950 .951 –

6–8 – – .948 – .948 .949 .950 – .951 .949 .951 –

4–6 – .949 .952 – .950 .950 .947 – .950 .949 – –

2–4 .948 .949 – – .950 .950 – – .951 .950 – –

1–2 .949 .949 – – .951 .950 – – .950 .950 – –

0–1 .949 .949 – – .950 .951 – – .950 – – –

–1–0 .949 .952 – – .950 – – – .950 – – –

<–1 .948 – – – .951 – – – .951 – – –

Observed Imposed BCa 20 ≤ – – – – – – – – – – – .950

10–20 – – – – – – .963 .960 .963 .961 .954 .940

8–10 – – – – – .965 .958 – .964 .961 .949 –

6–8 – – .955 – .971 .968 .958 – .965 .962 .949 –

4–6 – .974 .963 – .972 .967 .955 – .966 .960 – –

2–4 .986 .975 – – .973 .964 – – .965 .958 – –

1–2 .982 .981 – – .970 .962 – – .962 .955 – –

0–1 .978 .981 – – .966 .961 – – .964 – – –

–1–0 .970 .982 – – .965 – – – .966 – – –

<–1 .959 – – – .949 – – – .941 – – –

Sample skewness and kurtosis ranges indicate the least amount of nonnormality observed in the X and Yvariables. For example, the top number of the
leftmost column, .894, represents the coverage probability when both 0 ≤min(|G1X|, |G1Y|) < 1 and 2 ≤min(G2X,G2Y) < 4.Bold values indicate coverage
probabilities < .940. Only bins with at least 10,000 observations are reported. RIN = rank-based inverse normal, BCa = bias correction and acceleration
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Increasing sample size improved coverage when X and Ywere
independent, with a true population correlation of zero. How-
ever, increasing sample size worsened coverage with a nonze-
ro population correlation. The latter pattern may appear coun-
terintuitive, due to the misconception that the central limit
theorem also applies to the sampling distribution of the Fisher
z'. Unfortunately, the central limit theorem can provide no
such comfort for correlations with nonnormal data. Thus, in-
creasing sample size is not a general Bcure-all^ for
nonnormality.

The present results show that Fisher z' coverage is affected
not only by population kurtosis, but also by population skew-
ness, and sometimes more so. Worse coverage could result
from either high kurtosis or high absolute skewness, particu-
larly when both variables were nonnormal. At least in some
circumstances, Fisher z' coverage was somewhat more influ-
enced by changes in skewness than kurtosis, which suggests
that the historical emphasis on kurtosis may be misplaced, or
at least incomplete.

Interestingly, poor Fisher z' coverage could be predicted by
the corresponding sample statistics, which are sometimes the
only values available to researchers. Sample statistics for
higher-order moments, such as skewness and kurtosis, are

sometimes considered untrustworthy due to their instability
(Ratcliff, 1979). The present results suggest that, despite such
concerns, sample statistics can provide clues as to the confi-
dence interval coverage rate, and they can do so even in sam-
ples as small as 10. Significantly less than 95 % coverage
occurred when both X and Y had an absolute sample skewness
of 1 or higher, or when both had a sample kurtosis of 2 or
higher. This pattern was in close agreement with the popula-
tion pattern, in which similar thresholds for skewness and
kurtosis emerged. Additionally, low coverage occurred if both
X and Y showed significantly extreme skewness or kurtosis,
based on the D’Agostino et al. (1990) tests. These results are
important because they suggest that, evenwhen researchers do
not know the true shape of the population, they may be able to
use sample skewness and kurtosis statistics, or hypothesis
tests of those statistics, to help them decide whether to use
the Fisher z' confidence interval.

If the default Fisher z' method cannot be used, a re-
searcher’s choice of alternatives may depend on whether raw
data transformation is tolerable, or whether instead the mea-
sured correlation must be linear and on the original scales of X
and Y. On the one hand, if raw data transformation is tolerable,
at least two methods were quite accurate: the Spearman rank-

Table 5 Observed coverage probabilities among select methods as a function of sample normality test results

Confidence Interval Method Test for Normality n = 10 n = 40 n = 160

n.s. One sig. Both sig. n.s. One sig. Both sig. n.s. One sig. Both sig.

Fisher z' Skewness–D’Agostino .947 .947 .796 .947 .946 .873 .947 .944 .875

Kurtosis–D’Agostino .946 .944 .761 .949 .950 .878 .950 .950 .883

Normality–Shapiro-Wilk .947 .946 .820 .950 .951 .885 .952 .951 .885

Multi. Skewness–Mardia .942 .898 .948 .918 .949 .913

Multi. Kurtosis–Mardia .932 – .948 .915 .951 .915

SpearmanF Skewness–D’Agostino .950 .951 .952 .951 .952 .951 .952 .951 .951

Kurtosis–D’Agostino .950 .951 .953 .952 .952 .951 .952 .952 .951

Normality–Shapiro-Wilk .950 .951 .952 .952 .952 .951 .954 .951 .951

Multi. Skewness–Mardia .953 .943 .954 .951 .953 .951

Multi. Kurtosis–Mardia .950 – .954 .950 .954 .951

RIN Skewness–D’Agostino .948 .949 .949 .949 .950 .950 .951 .950 .950

Kurtosis–D’Agostino .948 .949 .950 .949 .950 .950 .950 .950 .950

Normality–Shapiro-Wilk .948 .949 .950 .950 .950 .950 .952 .950 .950

Multi. Skewness–Mardia .950 .943 .951 .949 .951 .950

Multi. Kurtosis–Mardia .949 – .950 .950 .951 .950

Observed Imposed BCa Skewness–D’Agostino .959 .986 .972 .957 .971 .964 .956 .967 .959

Kurtosis–D’Agostino .962 .986 .969 .954 .970 .966 .952 .966 .960

Normality–Shapiro-Wilk .959 .984 .976 .954 .969 .966 .953 .966 .960

Multi. Skewness–Mardia .966 .987 .957 .969 .956 .963

Multi. Kurtosis–Mardia .971 – .957 .971 .952 .963

Columns indicate whether neither, one, or both variables (X and Y) showed significant deviations from normality, p < .05. Bold indicates coverage
probabilities < .940. Only bins with ≥10,000 observations are reported. RIN = rank-based inverse normal, BCa = bias correction and acceleration, Multi.
= multivariate
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order correlation with Fieller et al. (1957) variance, and the
RIN transformation. Both of these methods produced accurate
coverage, and did so in all 920 scenarios, suggesting that they
are robust to nonnormality. Of the two methods, RIN transfor-
mation led to slightly more precise (i.e., shorter) intervals.

On the other hand, if the correlation must indeed be linear
and on the original scales, raw data transformationmay be less
desirable. In such a situation, there appears to be no perfect
solution, at least not among the methods examined here. At
best, the observed imposed bootstrap with BCa usually
exceeded .95 coverage by producing intervals that were some-
what long. The observed imposed bootstrap has previously
been shown to perform well for hypothesis testing for nonzero
ρs (Beasley et al., 2007). Our results show that this method
also holds promise for confidence intervals. This bootstrap
method has the advantage of increasing the number of possi-
ble sampled observations, thus acting somewhat like a
smoothing method. However, unlike many other conceivable
smoothing methods for bivariate nonnormal data, the ob-
served imposed method preserves the observed sample corre-
lation, while also preserving the marginal density of one var-
iable; the marginal density of the other variable is approxi-
mately preserved. Possible improvements to this method
might involve further smoothing and/or preservation of both
marginal densities, perhaps through iterative algorithms.

Limitations

In the present simulations, adequate Fisher z' coverage could
be achieved if just one variable was normally distributed.
However, this result is unlikely to hold in all situations, and
especially so in large-n situations, as the Fisher z' sampling
distribution converges toward the wrong value of variance
(Hawkins, 1989). In Bbig data^ research, inadequate Fisher
z' coverage may occur with small deviations from normality
in even one variable. Of course, with an extremely large n, the
confidence intervals may become so narrow that they are gen-
erally no longer relevant.

In the simulations here, the SpearmanF confidence intervals
showed a slightly more accurate coverage rate than
SpearmanBW confidence intervals. This pattern does not ap-
pear to be universal (cf. Puth et al., 2015). Fortunately, the
differences between the Spearman confidence intervals are
usually trivial, so researchers’ choice of a particular Spearman
confidence interval is unlikely to affect the conclusions.

Datasets with frequent ties will not be well normalized by
RIN or other raw data transformation approaches, because
such methods do not break ties, and thus cannot erase the
modes created by tied data. Datasets with frequent ties are
typically addressed through concordance statistics (e.g.,
Goodman–Kruskal gamma, Kendall’s tau, etc.; see Puth
et al., 2015; Ruscio, 2008; Woods, 2007).

General recommendations

With nonnormal data, the typical methods for calculating the
correlation coefficient can be far from optimal. On the basis of
the present and recent work (e.g., Beasley et al., 2007; Bishara
& Hittner, 2012, 2015; Puth et al., 2014, 2015), several con-
clusions can be reached about choosing among alternatives.
On the one hand, if the sample size is small (n < 20) or if the
linear correlation needs to be measured on the original scale,
an optimal strategy may include some combination of resam-
pling methods, such as a permutation test and bootstrapping.
Such a strategy can minimize Type I errors, reduce bias, and as
we showed here, provide a cautiously wide confidence inter-
val, particularly with the observed imposed BCa bootstrap. On
the other hand, if the sample size is at least moderate (n ≥ 20)
and there is no need to measure the linear correlation on the
original scale, an optimal strategy may focus instead on the
Spearman or RIN transformation methods. Both methods pro-
tect against Type I and II errors, reduce the bias and error of
the point estimate, and provide approximately accurate confi-
dence interval coverage. Of these two methods, RIN transfor-
mation often leads to slightly higher power and, relatedly,
slightly more precise confidence intervals. R code for each
of these methods can be found in Supplementary Materials A.

How extreme of a deviation from normality is needed to
justify these alternative methods? The present study suggests
two possible criteria. One criterion would be to use sample
skewness and kurtosis estimates. That is, one could use alter-
native methods if both variables have absolute sample skew-
ness greater than 1, or both have sample kurtosis greater than
2. The sample skewness and kurtosis equations used here are
the same as those used in popular software packages such as
SPSS, SAS, and Excel, and so such cutoffs can be easily
implemented. A slightly more lenient criterion would be to
rely on hypothesis tests of skewness and kurtosis, and only
to use an alternative method if both variables show statistically
significant violations of either univariate skewness or univar-
iate kurtosis, as indicated by the D’Agostino et al. (1990) tests.
R code for both sample estimates and the D’Agostino et al.
tests can be found in Supplementary Materials A. Future sim-
ulation research may suggest slightly different sample
nonnormality thresholds if simulations involve different
ranges or proportions of population parameters. Given that
the present correlation study was the first to orthogonally ma-
nipulate skewness and kurtosis, these cutoffs can be taken as
starting points, and modified if necessary as further research
indicates.

Finally, a word of caution should be noted. It is sometimes
said that the Pearson correlation is Brobust^ to nonnormality
(e.g., Havlicek & Peterson, 1977; for an early review, see
Kowalski, 1972). However, the present and recent studies
suggest a more nuanced viewpoint. On the one hand, the
Pearson correlation can be robust in terms of the point
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estimate and the Type I error rate, which usually converge on
the correct values as n increases. On the other hand, the Pear-
son correlation is not generally robust in terms of confidence
intervals or power, even in large samples. Thus, at least for the
Pearson correlation, nonnormal data should be approached
cautiously and with a careful consideration of alternative
methods.
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