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Abstract An asymmetric one-mode data matrix has rows and
columns that correspond to the same set of objects. However,
the roles of the objects frequently differ for the rows and the
columns. For example, in a visual alphabetic confusion matrix
from an experimental psychology study, both the rows and
columns pertain to letters of the alphabet. Yet the rows corre-
spond to the presented stimulus letter, whereas the columns
refer to the letter provided as the response. Other examples
abound in psychology, including applications related to inter-
personal interactions (friendship, trust, information sharing) in
social and developmental psychology, brand switching in con-
sumer psychology, journal citation analysis in any discipline
(including quantitative psychology), and free association tasks
in any subarea of psychology. When seeking to establish a
partition of the objects in such applications, it is overly restric-
tive to require the partitions of the row and column objects to
be identical, or even the numbers of clusters for the row and
column objects to be the same. This suggests the need for a
biclustering approach that simultaneously establishes separate
partitions of the row and column objects. We present and
compare several approaches for the biclustering of one-mode
matrices using data sets from the empirical literature. A suite
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of MATLAB m-files for implementing the procedures is pro-
vided as a Web supplement with this article.

Keywords Clustering - Biclustering - One-mode asymmetric
matrix - Two-mode KL-means partitioning - Two-mode
blockmodeling - Nonnegative matrix factorization

A common data structure is a R matrix, X = [x;], where x;,
is some measure of proximity (similarity or dissimilarity) be-
tween objects i and j, forall 1 <i<Nand 1 <j < N objects. In
some instances, X is a symmetric matrix, with x;; = x;; for all 1
<i<Nand 1 <j<N objects. For example, when the N objects
are measured on a collection of metric variables, a nonnega-
tive N x N symmetric dissimilarity version of X can be
established on the basis of the pairwise Euclidean distances
between pairs of objects. Symmetry is present because the
Euclidean distance between objects i and j is the same as the
distance between j and i. The dissimilarity interpretation is
appropriate because larger matrix elements (i.e., distances)
imply greater dissimilarity (rather than greater similarity)
among the pairs of objects.

Although symmetric matrices are common, there are also
many psychological applications for which X is an asymmet-
ric matrix. For example, in experimental psychology, when
studying confusion among a set of stimulus objects, x;; (for i
#J) is commonly a measure of the number of instances (or the
percentage of instances) for which subjects mistakenly
responded with stimulus object j when stimulus object i was
actually presented (see Brusco & Steinley, 2006). For any
given pair of objects (i, ), asymmetry can potentially occur
because a presented stimulus 7 could be mistaken more fre-
quently for j than stimulus j would be mistaken for i, or vice
versa. Likewise, for brand-switching applications in consumer
psychology, where x;; (for i # j) is a measure reflecting the
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degree to which the consumers in a sample switch from brand
i to brand j, asymmetry occurs because switches from i to j
might be more or less frequent than those from j to i.
Asymmetry is also apt to be present in matrices associated
with social network ties among schoolchildren (in develop-
mental psychological studies—e.g., Anderson, Wasserman, &
Crouch, 1999; Parker & Asher, 1993), social groups (in social
psychological studies—e.g., Gibbons & Olk, 2003), and or-
ganizational members (in studies from industrial/applied psy-
chology—e.g., Totterdell, Wall, Holman, Diamond, &
Epitropaki, 2004). Regardless of whether these network ex-
amples concern friendship, trust, advice seeking, information
sharing, or some other type of relational tie, the potential
for asymmetry arises because ties need not be reciprocat-
ed: Actor i could identify actor j as a friend, someone
they trust, or from whom they seek advice, but actor j
might not reciprocate such ties.

Although the rows and columns of the matrix pertain to the
same set of objects, the asymmetry in X generally stems from
the objects having two different roles. In confusion matrices,
the role of the row objects is the “presented stimulus,” whereas
the role of the column objects is the “response to a presented
stimulus.” Similarly, for brand-switching applications, the role
of the row objects is “previously purchased brand” (or
“switched from”), with the role of the column objects being
“most recently purchased brand” (or “switched to”). In social
network situations, the roles of the row and column actors are
commonly “tie senders” and “tie receivers,” respectively. For
journal citation networks, the row journals could be “cited
journals” (or “producers”), with the column journals being
“citing journals” (or “consumers”).

There are a variety of methods for analyzing asymmetric
proximity data (a recent review of some of these approaches
has been provided by Vicari, 2014). Moreover, regardless of
the type of method selected, transformation or decomposition
processes are sometimes applied prior to analysis. For exam-
ple, one popular approach is to decompose X into its symmet-
ric (¥) and skew-symmetric (A) components and to pursue
analysis of these components independently or jointly (Brusco
& Stahl, 2005a; Hubert, 1987, chap. 4; Hubert, Arabie, &
Meulman, 2001, chap. 4; Zielman & Heiser, 1996). The ele-
ments of the symmetric component are ;= 1; = (x; + x;;)/2,
whereas the elements of the skew-symmetric component are
Ay = (x;;—x;;)/2 for all 1 <4, j < N. The decomposition of X is
then provided by X =¥ + A.

The methods for analyzing asymmetric data include graph-
ical approaches, seriation, unidimensional scaling, multidi-
mensional scaling, hierarchical clustering, and nonhierarchi-
cal clustering. Graphical representation procedures have been
described by Constantine and Gower (1978) and Chino
(1978). Seriation methods, which seek to develop orderings
of'the objects associated with an asymmetric matrix, have also
been proposed by numerous authors (Baker & Hubert, 1977;
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Brusco, 2001; Brusco & Stahl, 2005b; DeCani, 1972; Flueck
& Korsh, 1974; Hubert, 1976; Hubert et al., 2001, chap. 4;
Ranyard, 1976). Multidimensional-scaling approaches for
asymmetric matrices have been developed by Harshman,
Green, Wind, and Lundy (1982), Okada and Imaizumi
(1987), and Zielman and Heiser (1996). Here, however, we
restrict attention to methods for clustering or partitioning the
objects associated with the one-mode proximity data. Hubert
(1973) provided one of the earliest investigations of this topic
in his discussion of the application of hierarchical clustering
methods to asymmetric data. A more recent review of hierar-
chical methods was provided by Takeuchi, Saito, and
Yadohisa (2007), and Brusco and Steinley (2006) discussed
approaches within the framework of partitioning.

The presence of asymmetry in a one-mode proximity ma-
trix presents a challenge when one is seeking to identify a
partition of the N objects. One approach is to collapse X into
a symmetric proximity matrix using some type of transforma-
tion procedure, and then to apply traditional one-mode
partitioning methods to obtain a solution (see, e.g., Brusco
& Steinley, 2006, for a discussion of this approach within
the context of confusion data). Unfortunately, this approach
discards information associated with the asymmetry. For ex-
ample, two journals might have very similar roles as producers
for the journals that cite them, but markedly different roles as
consumers of the journals they cite (see, e.g., Brusco, 2011;
Brusco & Doreian, 2015b). A second approach is to sequen-
tially establish partitions based on the row objects and column
objects. In the first stage, a symmetric nonnegative matrix of
Euclidean distances between the row objects could be
established by treating the columns as variables, and a parti-
tion of the row objects could then be obtained using hierarchi-
cal or nonhierarchical clustering. This process would then be
repeated for the column objects by treating the rows as vari-
ables. A caveat associated with this approach is that the main
diagonal elements are often arbitrary and, therefore, not ap-
propriate for use when computing the distance matrices.

A preferable approach is to adopt a biclustering (Madeira
& Oliveira, 2004; Preli¢ et al., 2006; Van Uitert, Meuleman, &
Wessels, 2008; Wilderjans, Depril, & Van Mechelen, 2013)
perspective that seeks to simultaneously establish two distinct
partitions of the objects: (i) one based on their role as row
objects, and (ii) one based on their role as column objects.
The term biclustering is used broadly here, and it is noted that
alternative terminology, such as two-mode clustering or two-
mode partitioning, is also used in some instances. As with the
sequential method, biclustering creates flexibility by allowing
different numbers of clusters for the row and column objects.
However, unlike the sequential approach, the entire asymmet-
ric proximity matrix is used when establishing the row-object
and column-object partitions.

Succinctly, the approach adopted herein is to treat the one-
mode asymmetric matrix X as though it is two-mode. Strictly,
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a two-mode matrix has data in which the N row objects are
completely distinct from the M column objects. Psychological
examples of two-mode matrices include memberships of
CEOs on boards of directors and the scores of examinees on
test items. A formidable research effort has been devoted to
two-mode partitioning problems (Brusco & Doreian, 2015a, b;
Brusco, Doreian, Lloyd, & Steinley, 2013; Brusco, Doreian,
Mrvar, & Steinley, 2013; Brusco & Steinley, 2007, 2009,
2011; Doreian, Batagelj, & Ferligoj, 2004, 2005; Doreian,
Lloyd, & Mrvar, 2013; Schepers, Ceulemans, & Van
Mechelen, 2008; Schepers & Van Mechelen, 2011;
Schepers, Van Mechelen, & Ceulemans, 2011; Van
Mechelen, Bock, & DeBoeck, 2004; van Rosmalen,
Groenen, Trejos, & Castillo, 2009; Vichi, 2001; Wilderjans,
Depril, & Van Mechelen, 2013). An especially important as-
pect of applying a biclustering approach to a one-mode matrix
concerns the handling of the main diagonal. A two-mode ma-
trix has no main diagonal, but a one-mode matrix clearly does.
In some situations, having main diagonal elements is nonsen-
sical, as in the case of social network ties (e.g., are people
friends with themselves?). However, in brand-switching ap-
plications, the main diagonal can reflect the degree of reten-
tion of customers. Similarly, in confusion data, the main diag-
onal exemplifies correct responses to the presented stimulus.
Ideally, psychological researchers would have easy ac-
cess to biclustering procedures that could be used for
one-mode data and that would have the flexibility to
include or exclude the main diagonal, depending on the
goals of their studies. Unfortunately, such methods are
generally unavailable in commercial software packages.
Accordingly, in the spirit of other attempts to identify
and make accessible the clustering models and methods
that are important for psychological applications (Brusco
& Steinley, 2006; Koéhn, Steinley, & Brusco, 2010;
Schepers & Hofmans, 2009; Schepers & Van Mechelen,
2011), we seek to achieve three interrelated objectives in
this article: (i) to briefly describe several methods that
can be used for biclustering one-mode matrices, (ii) to
present a suite of MATLAB programs that implement
these biclustering methods, and (iii) to provide two psy-
chologically oriented examples to demonstrate and com-
pare the procedures and programs. The next section pre-
sents three different useful methods for biclustering and
describes MATLAB m-files for their implementation.
These m-files are available in the Web supplement asso-
ciated with this article. This is followed by a description
of a general process for model selection with biclustering
based on ideas gleaned from Schepers et al. (2008),
Wilderjans, Ceulemans, and Meers (2013), and Brusco
and Steinley (2014). Subsequent sections provide illus-
trations of the software programs for a real-valued asym-
metric matrix and a binary asymmetric matrix, respec-
tively. The article concludes with a brief summary.

Biclustering methods
Two-mode KL-means partitioning

Two-mode KL-means partitioning (TMKLMP) is a generali-
zation of K-means partitioning. Whereas a K-means method
(see Steinley, 2006, for a review) partitions a single set of
objects into K clusters on the basis of minimization of the
sum of squared errors, TMKLMP simultaneously establishes
distinct partitions of the row and column objects using an
analogous criterion. Although similar approaches have been
discussed using different names (Brusco & Steinley, 2007;
Hartigan, 1972; van Rosmalen et al., 2009), TMKLMP was
recently adopted by Brusco and Doreian (2015a, b), such that
the “KL” component of the name reflects the fact that the
number of row clusters (K) need not be the same as the num-
ber of column clusters (L). The goal is to find row-object and
column-object partitions that minimize the within-submatrix
sum of squared deviations from the within-cluster means.
Formally, we denote P = {S1, . . ., Sk} as a K-cluster partition
of the N objects associated with the rows of a data matrix, X,
where Sy, is the set of objects assigned to cluster £ forall 1 <k <
K. The standard conditions of a partition having clusters that
are nonempty (S; # &, for all 1 <k < K), mutually exclusive
Sx N S;= forall 1 <k#[<K),and exhaustive (S; u...US;
= S) apply. Similarly, we define Q = {T, ..., T;} as an L-
cluster partition of the N column objects of X, where 7 is the
set of objects assigned to cluster / for all 1 </<L. The standard
conditions of a partition hold also for Q.

Denoting II as the set of all partitions of N objects into K
clusters and Q as the set of all partitions of N objects into L
clusters, the optimization problem associated with TMKLMP
can be specified as follows:

K L
Minimize - /(P,0) = 3_ 3% 3 (%)’ (1)

k=1 I=1 i€S; jeT,;

where
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and | S| (1<k<K)and | T;| (1 <I<L)are the numbers of
row objects and column objects in clusters & and /, respective-
ly. Together, the row objects (Sy) in cluster &£ and the column
objects (7)) in cluster / define a submatrix of X. The value of
X 1s the mean of the elements in that submatrix, and the
degree of homogeneity for the submatrix is a variance type
with a measure defined by the sum of the squared deviations
of each element from the submatrix mean, (x; — )?kl)z. Perfect
homogeneity of a submatrix is achieved when all elements in
the submatrix are the same (e.g., all 0 s or all 1 s, in the case in
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which X is defined by the presence or absence of network
ties). From an interpretive standpoint, the row objects (or col-
umn objects) in the same cluster can be perceived as being
similar, in the sense that they tend to have comparable mea-
sures within the submatrices.

Brusco and Doreian (2015b) recently developed an exact
algorithm for the TMKLMP that can be successfully applied
to problems of size N =20. A number of heuristic algorithms
have been designed for TMKLMP, including simulated an-
nealing (Trejos & Castillo, 2000), genetic algorithms
(Brusco & Doreian, 2015a; Hansohm, 2002), and variable
neighborhood search (Brusco & Steinley, 2007). However, a
two-mode generalization of the K-means algorithm designed
by Baier, Gaul, and Schader (1997) has been shown to be
competitive with these more sophisticated procedures (van
Rosmalen et al., 2009). Accordingly, we make available the
MATLAB m-file tmklmp.m, which implements this proce-
dure. The key inputs to tmklmp.m are X, K, and L. The default
setting is for 500 restarts of the algorithm from different initial
partitions, which is based on the implementations in previous
studies (Brusco & Steinley, 2007; van Rosmalen et al., 2009).
The principal outputs are the partitions of the row and column
objects. Also, the raw objective function value corresponding
to Eq. 1 is reported, as well as a normalized measure
representing the total variance accounted for (vaf) by the par-
tition, computed as follows:

vaf = l-—————— f]\([P 1% ; (3)

ZZ Xij X

i=1 j=I

where

N N
2.
i=1 j=1

N2

=I
I

(4)

The program tmklmp.m is applicable directly to either two-
mode matrices or asymmetric one-mode matrices. However,
when applied to the latter data structures, it is important to
recognize the inclusion of the main diagonal elements of X
in the computation of the submatrix means in Eq. 2, as well as
in the sum-of-squares objective function in Eq. 1. As we noted
previously, a compelling argument for ignoring the main di-
agonal elements can be made for many applications.
Therefore, we also developed an alternative version,
tmklmp nodiag.m, which ignores the main diagonal elements
when computing the submatrix means in Eq. 2 and the sum of
squares in Eq. 1. The main diagonal is also ignored when
computing the overall mean in Eq. 4 and the denominator term
in Eq. 3. The inputs and outputs of this program are identical
to those for tmklmp.m.

@ Springer

Nonnegative matrix factorization

The second approach for biclustering of one-mode asymmet-
ric matrices has its roots in pioneering work on matrix decom-
position (Eckart & Young, 1936; Young & Householder,
1938). More specifically, low-dimensional least-squares ap-
proximations of a two-mode matrix can be obtained using
singular value decomposition (SVD) or principal component
analysis (PCA). Given that the one-mode asymmetric matrix
can be treated as two-mode data, these methods are applicable
here, as well. However, two limitations are readily apparent:
(1) the potential requirement of ignoring the main diagonal and
(ii) the possibility of negative elements in the factors, which
can hinder interpretability (Lee & Seung, 1999).

Aswith the SVD and PCA approaches, nonnegative matrix
factorization (NMF) seeks a minimum-sum-of-squares, low-
dimensionality approximation of X. However, in contrast to
the eigenvectors obtained by SVD and PCA, which can as-
sume both positive and negative values, these components are
required to be strictly nonnegative in NMF. The rationale for
this constraint, as described by Lee and Seung (1999), is to
preserve the condition of having components be the sum of
their parts. The arbitrary sign of the elements of a PCA fac-
torization presents the following difficulty, noted by Lee and
Seung (1999, p. 789): “As the eigenfaces are used in linear
combinations that generally involve complex cancellations
between positive and negative numbers, many individual
eigenfaces lack intuitive meaning.” Expanding on this point,
Fogel, Hawkins, Beecher, Luta, and Young (2013, p. 207)
found that NMF “often leads to substantial improvements in
the interpretability of the factors,” relative to attempts to trans-
form PCA scores of mixed signs into meaningful factors.

To formalize NMF, we denote D as the desired dimension-
ality of the factorization. The problem requires the determina-
tion of two nonnegative matrices, G and H, the product of
which will generate a D-dimensional least-squares approxi-
mation of X. Matrix G = [g;;] is an N x D matrix of nonneg-
ative coefficients for the row objects (1 <i < N) for each of the
D dimensions (1 < d < D). Similarly, H = [4,] isa D X N
matrix of nonnegative coefficients for the column objects (1 <
Jj <N) for each of the D dimensions (1 <d < D). The optimi-
zation problem for NMF is

2

N N D
Minimize : Z = ||X—GHH ZZ ( Zgidhdj> ) (5)
=1 j=1 d=1

Subject to : <I<Nand1<d<D, (6)
hq;>0, for1<d<Dand 1<j<N. (7)

g.4>0, forl

Essentially, the optimization problem is to obtain G and H
while minimizing the least-squares loss function in Eq. 5, sub-
ject to the nonnegativity constraints in Eqs. 6 and 7. Lee and
Seung (2001) described a rescaled gradient descent algorithm
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for solving the optimization problem stated in Eqgs. 5-7
(see also Brusco, 2011, for a description and extension to
the case of an asymmetric one-mode matrix with an ar-
bitrary main diagonal). Once the optimization problem
has been solved by obtaining G and H, there are several
possibilities for constructing partitions of the row and
column objects. Perhaps the simplest approach is to as-
sign each row object i to the cluster d for which g;; is
maximum, and each column object j to the cluster d for
which A, is maximum. Of course, this approach imposes
the restriction that K = L = D. An alternative approach,
which is employed herein, is to apply K-means
partitioning (with, say, 5,000 restarts) to the G and H
matrices in order to obtain K-cluster and L-cluster parti-
tions of the row and column objects, respectively.

We developed a MATLAB m-file implementation of
the NMF algorithm, nmf.m. The nmf.m program is sim-
ilar to the module that is available in the MATLAB
system, yet it is differentiated by distinct parameter set-
tings for the descent algorithm and, more importantly,
by the inclusion of a K-means clustering subroutine to
cluster the rows and columns on the basis of G and H,
respectively. The inputs to the program are X, K, L, and
D. The outputs of the nmf.m program are the percent-
age reduction of error (PRE) provided by the D-dimen-
sional factorization, the partition of the row objects, and
the partition of the column objects. As was the case for
TMKLMP, a second version of the NMF program,
nmf nodiag.m, was prepared that ignores the main di-
agonal elements in the estimation process. The inputs
and outputs of this program are identical to those of
nmf.m.

Two-mode blockmodeling

Although the previously described methods can be ap-
plied to binary data matrices (i.e., x; € {0, 1} for all i
and j), some analysts might prefer a method that is ex-
plicitly designed for such data. Two-mode blockmodeling
methods are especially well-suited for binary data
(Brusco & Steinley, 2007, 2011; Brusco, Doreian,
Lloyd, & Steinley, 2013; Brusco, Doreian, Mrvar, &
Steinley, 2013; Doreian et al., 2004, 2005). These
methods seek partitions of the row and column objects
such that the ideal submatrices formed by the row and
column clusters are either complete (having all 1 s) or
null (having all 0 s) to the greatest extent possible.
Accordingly, the typical objective is to obtain partitions
minimizing the number of inconsistencies with this ideal
structure, as measured by a count of the total number of
violations. More formally, the objective of the two-mode
blockmodeling problem (TMBP) that we consider is to
minimize the total of the sum of 1 s in submatrices that

are mostly 0 s plus the sum of 0 s in submatrices that are
mostly 1 s. The optimization problem is:

K L
%;1}1711361633 :g(P,Q) = ; ;min{mn Purts (8)
where
M= > % V1<k<Kand1<I<L, (9)
ieSy jeT
and
P = Z Z (1-x;;) V1<k<Kand1<I<L. (10)
€Sy jeT

Brusco, Doreian, Lloyd, and Steinley (2013) designed an
exact algorithm for TMBP that is scalable for applications in
which N < 20. Heuristic methods for TMBP include tabu
search (Brusco & Steinley, 2011) and variable neighborhood
search (Brusco, Doreian, Mrvar, & Steinley, 2013). However,
recent computational results reported by Brusco, Doreian,
Mrvar, and Steinley have shown that a two-mode relocation
heuristic designed by Doreian et al. (2004, 2005) often pro-
duces solutions that are as good as those obtained by these
more sophisticated procedures. For this reason, we prepared a
MATLAB m-file, tmbp.m, implementing the relocation heu-
ristic procedure. The key inputs to tmbp.m are X, K, and L.
The default setting is for 5,000 restarts of the algorithm from
different initial partitions. The principal outputs are the objec-
tive function value (Eq. 8) and the partitions of the row and
column objects.

Model selection

All three of the methods described in the previous section
require the selection of a model. In the case of TMKLMP
and TMBP, model selection is generally limited to the selec-
tion of K and L. We recommend running these algorithms for
all possible different combinations of K and L obtained from
the intervals K; <K <K, and L; <L < L,. The total number of
clusters for any given combination is & = K + L, which repre-
sents the level of complexity of the model. To measure the
improvement in the objective function with respect to an in-
crease in complexity, we employ the convex hull (CHull)
approach, which has been widely adopted in the context of
multimode clustering (Ceulemans & Van Mechelen, 2005;
Schepers et al., 2008; Schepers & Van Mechelen, 2011;
Wilderjans, Ceulemans, & Meers, 2013).

To illustrate the CHull approach for TMKLMP, we consid-
er the vaf as the objective criterion of interest. The process
begins with a deviance plot of the vaf values obtained from
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all combinations of K and L. The vertical axis of this plot is
vaf, and the horizontal axis is the total number of clusters (& =
K+ L). The second step retains only those solutions falling on
the upper boundary of the convex hull and places them in an
ordered list based on complexity. We use B to denote the total
number of solutions falling on the boundary, vaf(b), as the vaf
for the solution b (1 <b < B), and £(b) to denote the complex-
ity of solution b (1 < b < B). The upper boundary is used
because the goal is to maximize vaf. For a minimization ob-
jective function, the lower boundary would be used. The third
step is to select one of the B solutions on the basis of visual
inspection of the deviance plot and/or the use of measures
based on the slopes of segments of the convex hull. A visually
based selection of a solution from the boundary is made via a
search for an “elbow” in the plot, in a manner similar to the use
of a scree plot in factor analysis. Ceulemans and Van
Mechelen (2005) have provided two slope-based measures
to augment visual inspections. The difference measure,
DiffCH, is used to choose the solution b that maximizes

vaf (b)—vaf(b=1)| _|vaf(b+ 1)-vaf(b)|
[£(b)=¢(b-1)) 66+ 1)=€(B)]

Similarly, the ratio measure, RatioCH, leads to a choice of
the solution » maximizing

(lvaf (b)—vaf(b-1)|/|£(b)—£(b—1)]]
vaf (b + 1)=vaf(b)|/|§(b + 1)=¢(b)|

(11)

(12)

Although the absolute value signs in Egs. 11 and 12 are not
required in the case of a maximization objective such as vaf,
they are included to avoid any sign confusion that might arise
in a minimization context, such as g(P, Q) in Eq. 8. Ceulemans
and Van Mechelen (2005) found that RafioCH outperformed
DiffCH in their simulation study. Nevertheless, some caution
regarding the use of RatioCH is advisable, because it can be
extremely sensitive to very small changes in the criterion func-
tion. To illustrate this, suppose that the vaf(b) values for four
possible solutions B—3, B—2, B— 1, and B are .6, .9, .92, and
921, respectively. Assuming that £(b) = b forall 1 < b < B,
solution B — 2 has DiffCH = (.9 — .6) — (92 — .9) = .28. In
contrast, solution B — 1 has DiffCH =(.92—.9)—(.921 -.92) =
.019. Solution B — 2 would be preferred to B— 1 on the basis of
DiffCH. However, B — 1 is preferred to B — 2 on the basis of
RatioCH, because (.92 — .9)/(.921 — .92) = 20 exceeds (9 —
.6)/(.92 —.9) = 15. Arguably, the B — 2 solution is the proper
choice. Yet the very small change when moving from B — 1 to
B makes B — 1 preferred according to the RatioCH measure.
For this reason, we recommend consideration of both mea-
sures, along with visual inspection to select a model.
Examples of doing this are provided in our empirical
examples.

In addition to K and L, NMF also requires the selection of
the dimensionality of the factorization. We recommend
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decoupling the selection of D from the selection of K and L.
More specifically, a choice for D is made first on the basis of
the analysis of PRE at different values of D. We recommend
choosing D by using visual inspection of the plot of PRE
measures at different values of D together with the DiffCH
and RatioCH measures. Once D is selected, the numbers of
clusters (K and L) for NMF can be chosen in a variety of ways.
One approach would be to obtain a set of K-means clustering
solutions for G using different Ks and to select K on the basis
of any of the host of different indices (see, e.g., Steinley &
Brusco, 2011). This process would then be repeated for H to
choose the best value for L. An alternative approach, adopted
here, is to select K and L on the basis of the results obtained
using TMKLMP (TMBP could also be used). Although this
approach does make NMF dependent on TMKLMP, it has the
advantage of enabling the joint (or simultaneous) selection of
Kand L.

Example 1
Lipread consonant data

The first example comes from a study of confusion among N =
21 lipread consonants (Manning & Shofner, 1991, p. 596).
The elements (x;)) of the data matrix correspond to the propor-
tions of responses given as letter j when letter i was the pre-
sented stimulus. All elements of the lipread consonant data are
nonnegative real-valued numbers. Accordingly, two-mode
KL-means clustering and nonnegative matrix factorization
can be applied for analyzing these data. Since their original
publication, these lipread consonant data have been
reanalyzed using clustering or seriation methods (Brusco &
Stahl, 2005b; Brusco & Steinley, 2010). However, the latter
studies analyzed the data subsequent to transforming the
asymmetric confusion proportions to a symmetric matrix. In
contrast, our analysis herein preserves the asymmetry in these
data.

The main diagonal of the confusion matrix represents the
proportions of correct responses for the corresponding stimu-
lus objects. For most consonants the proportions are, by far,
the largest numbers in the rows. At the extreme, the letters {y}
and {w} have main diagonal entries of .974 and .968, respec-
tively. However, a few of the less frequently used letters have
high confusability with more popular letters, and accordingly,
their main diagonal entries are much smaller. Examples in-
clude the letters {x} and {z}, which have main diagonal en-
tries of .091 and .151, respectively. Given that the focus of this
type of study is usually on the patterns of confusion, as well as
on the artificial inflation in variation that is likely to be in-
curred from large diagonal elements, we emphasize that we
used tmklmp nodiag.m and nmf nodiag.m for our analyses.
However, our presentation of the results will culminate with a
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brief discussion of the effects of including the main diagonal
in the analysis, via the use of tmklmp.m.

Results

We began our analysis by applying tmklmp nodiag.m to the
confusion matrix for all combinations of2<K<9and2<L <
9. The vaf for each combination is displayed in Table 1, and
the deviance plot of the vaf values is provided in Fig. 1. An
inspection of the upper boundary of the convex hull reveals
three levels of complexity (§=K+L=5,E=K+L="7,and §
= K + L =9) as not producing a solution on the boundary.
Moreover, visual inspection of the plot shows the sharpest
elbow occurring at & = K + L = 8. The selection of & = 8 is
supported strongly also by its DiffCH measure of .0743, which
is far larger than the corresponding measures for the other
values of &. The & = 8 solution on the upper boundary has
the second largest RatioCH measure (2.65) and is appreciably
larger than the measures at most other values of &. The lone
exception is & = 16 (RatioCH = 4.29). However, its large
measure arises because of the issue noted in the Model
Selection section. In this instance, the very small increase in
vaf when moving from & = 16 to & = 17 inflates the RatioCH
measure for & = 16. Considering this caveat with respect to the
RatioCH measure, along with the visual inspection of Fig. 1
and the DiffCH measure, & = 8 is a more appropriate level of
model complexity. The particular solution on the upper
boundary at & = 8 corresponds to K = L =4, and this solution
was selected for interpretation. The computation time for
tmklmp nodiag.m for K = L = 4 was approximately 3.3 s on
a 2.2-GHz Pentium 4 PC, which is a circa 2000-2002 hard-
ware platform. The best-found vaf was identified on 97 % of
the 500 restarts of the algorithm, which is a high attraction rate
suggesting (but not guaranteeing) that the global optimum has
been found.

Table1 Two-mode KL-means partitioning results for the Manning and
Shofner (1991, p. 596) lipread consonant confusion data: Variance
accounted for at different combinations of K and L

L=2 L=3 L=4 L=5 L=6 L=7 L=8 L=9
K=2 2797 3124 3445 3530 .3547 3593 .3601 .3608
K=3 3206 .5401 .5722 .6028 .6113 .6157 .6189 .6207
K=4 3275 5778 7787 8108 .8417 .8557 .8640 .8685
K=5 3326 .5854 .8002 .8687 .9008 .9234 .9320 .9381
K=6 3345 .5920 .8069 .8753 .9069 .9390 .9478 .9543
K=7 3363 .5937 .8108 .8791 9136 .9447 9521 .9603
K=8 3372 .5956 8122 .8799 9148 9467 .9539 .9617
K=9 3378 .5967 8136 .8808 9187 .9480 .9558 .9627

Next, we applied nmf nodiag.m to the lipread consonant
confusion matrix using 1 <D < 6. A plot of the PRE values is
displayed in Fig. 2. Visual inspection of the plot reveals a
sharp elbow at D = 3, with a lesser elbow at D = 4. On the
basis of the DiffCH measure, D =3 (DiffCH = 0.17) would be
preferred to D = 4 (DiffCH = 0.08). However, on the basis of
the RatioCH measure, D = 4 (RatioCH = 4.83) is preferred to
D =3 (RatioCH = 2.70). Once again, we recommend caution
when using the RatioCH measure because of its sensitivity to
very small changes on the right. In this instance, the PRE =
95.63 % at D = 4, so there is very little room for further
improvement by increasing the dimensionality to D = 5. The
move to D = 5 only improves the PRE to 97.77 %. This small
improvement drives the inflated RatioCH measure for D = 4.
Considering the visual inspection of Fig. 2, together with the
slope measures overall, D = 3 is more reasonable for the di-
mensionality. We applied K-means clustering, independently,
to the G (using K =4) and H (using L = 4) matrices obtained
by the factorization using D = 3. The selection of K =L =4
was made for these K-means analyses, to facilitate a compar-
ison with the TMKLMP results. The total computation time
for nmf nodiag.m using the settings of D =3, K =L =4, and
500 restarts of the K-means algorithm to obtain the row and
column partitions was 21.9 s on the 2.2-GHz Pentium 4 PC.

The K = L = 4 partitions obtained using tmklmp nodiag.m
and nmf nodiag.m (D = 3) were identical. This solution is
displayed in Fig. 3. Two observations regarding the solution
are immediately observable: (i) There is considerable symme-
try in the partitions—that is, the partition of the consonants as
stimuli is strikingly similar to the partition of the same conso-
nants as responses—and (ii) the partitions each consist of three
small clusters and one large cluster. The consonants {b, p}
form both a row (stimulus) cluster and column (response)
cluster. These two letters were highly confused with one an-
other but were not confused strongly with any of the other
consonants. The consonant “p” was frequently (.440) a mis-
taken response for the stimulus “b,” and similarly, “b” was
frequently (.424) a mistaken response for the stimulus “p.”
The cluster {c, d, t, z} also emerges in both the row and
column partitions, because of the generally modest levels of
(symmetric) confusion among these four letters. Unlike “b”
and “p,” which exhibited high symmetry in their confusion,
the consonants “s” and “x” show strong asymmetry in confu-
sion. The consonant “s” was frequently (.582) a mistaken
response for stimulus “x,” but “x” was seldom (.074) a mis-
taken response for stimulus “s.” For this reason, {s, x}
emerges as a cluster in the row (stimulus) objects, and {s} is
a singleton cluster in the column (response) objects.

One final analysis of the lipread consonant data was con-
ducted by applying tmklmp.m to the confusion matrix. This
program includes the main diagonal elements (i.e., the propor-
tions of correct responses for each stimulus letter) in the com-
putation of the submatrix means and the sum of squared
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Fig. 1 Convex hull for the two-mode KL-means partitioning (TMKLMP) application to the lipread consonant data

deviations. For comparative purposes, we selected K =4 and L
=4. The tmklmp.m algorithm produced a four-cluster partition
of the stimulus (row) letters, whereby the three letters {f},
{w}, and {y} were each a singleton cluster and all other letters
were placed in the fourth cluster. The partition of response
(column) letters was the same as the row partition. The expla-
nation for the extraction of the singleton clusters is that those
three letters have the largest main diagonal elements and,
therefore, their isolation reduces the total variation. Clearly,
the tmklmp.m solution is far less useful and interesting than
the tmklmp nodiag.m solution. This highlights the impor-
tance of having available software that permits the exclusion
of the main diagonal.

Example 2
Friendship ties among third-grade students

The second asymmetric one-mode matrix comes from a study
of friendship ties and peer group acceptance among elemen-
tary schoolchildren (Parker & Asher, 1993). The particular
classroom used in this example corresponded to 22 third-
grade students (14 boys and eight girls). The data were col-
lected using the roster method: The schoolchildren were pro-
vided with a list of their classmates and asked to identify their
“very best friend,” three best friends, and as many other
friends as they liked. Anderson et al. (1999) analyzed the

PRE

02+ T T

1 2 3

T T

4 5 B

Number of dimensions

Fig. 2 Convex hull for the nonnegative matrix factorization (NMF) application to the lipread consonant data. The plot represents the
proportions of reductions in error (PRE) as a function of the number of dimensions in the factorization (D)
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B P C D T Z S F G H

J K L M N Q R v w X Y

473 440 .001 .003 .002 .002 .001 .008 .001 .001
424 425 .002 .006 .005 001 003 .009 .005 .002

.001 .000 .010 .029 .003 .001 .002 .007 .002 .001 .000
.000 002 005 074 015 .000 .000 014 002 .000 .000

.006 .010 .256 286 .180 143 .007 014 .020 .001
002 .007 127 .381 204 099 .003 014 .071 .003
002 .005 141 325 183 094 .009 .004 .100 .003
011 .009 245 275 171 151 .005 .007 .024 .000

.002 .002 014 .022 .007 .000 .001 .002 .005 .000 .000
.003 .000 011 .025 .006 003 .002 012 .002 .000 .000
012 013 012 .031 019 .005 .002 013 .001 .002 .000
.005 .001 014 015 .010 002 .004 014 .002 .000 .000

.000 .000 .003 .000 .001 .000 .655 .007 .001 135
000 .001 .002 .002 .001 .000 582 .005 .003 117

.000 012 018 .006 075 .000 .004 .000 .001 .074 .004
.007 .005 013 013 127 .000 .001 .003 .002 091 .003

.000 .000 .002 .001 .002 .000 .000 946 .002 .000
000 .001 .001 .005 .006 .004 001 003 905 .025
.002 .000 .000 .001 .002 .000 024 .003 .010 904
000 .000 .000 .004 .003 000 .001 019 .042 .007
002 .003 .001 .005 .006 .004 .007 .046 .002 012
.002 .002 .003 .002 .000 .001 .034 .023 .001 .030
003 .005 .000 .002 005 000 .002 .010 .001 001
.004 .006 011 012 .004 .002 .021 .032 015 .108
003 .007 .007 .004 .004 .000 001 .003 013 .001
.003 .005 .001 .001 .001 .000 .000 .005 .002 .006
.007 .005 .002 .004 .002 .004 .001 044 .001 .000
.000 .001 .001 .001 .002 001 .000 .000 .001 .001
.000 .001 .000 .000 .000 .000 .000 .001 .000 .000

< £ < ®m O ZZ AR =T QT X®n NASUOOQ T W

000 .000 .008 .009 .003 .002 .000 .006 .003 .000 .000
020 000 .005 .006 .003 .005 002 .000 .000 .000 .000
.050 .000 .006 .007 .004 .002 .000 .001 .050 .010 .000
879 000 .008 .020 .000 001 004 .000 .002 .000 .001
.007 370 172 244 .070 .000 .007 .004 .002 .004 .007
.007 018 578 .069 187 .000 011 .008 .002 .009 .001
003 .000 011 910 .016 001 .001 .006 .009 .001 .000
.016 .046 134 .081 421 .001 012 .017 .000 .017 .000
.008 004 022 .009 014 676 025 .029 .034 .000 .001
000 .000 019 .004 .006 025 .884 .000 .000 .003 .001
.003 .000 006 .004 .000 .000 .003 910 .001 .001 .001
000 000 .005 .000 .003 .001 002 .000 968 .000 .000
.002 .000 .004 .002 .003 .000 .000 .001 .001 .000 974

Fig.3 The (K =4, L =4) bipartition for the lipread consonant confusion
study by Manning and Shofner (1991, p. 596), which was obtained using
both two-mode KL-means partitioning and nonnegative matrix

resulting data using p* models. For simplicity, they ignored
the information regarding the degree or strength of the friend-
ship ties. Our analysis herein focuses on the binary matrix
corresponding to the friendship ties as published in
Anderson et al. (1999, p. 42), where the rows and columns
of the data matrix correspond to the senders and re-
ceivers of friendship ties, respectively. A value of x; =
1 indicates that student i identified student j as one of
his or her friends, whereas x; = 0 indicates the lack of
a friendship tie. The main diagonal of the friendship
matrix is arbitrary: Students did not identify themselves
as friends. Accordingly, methods ignoring the main di-
agonal are appropriate.

Results

Given the binary nature of the friendship ties matrix, all three
methods (TMKLMP, TMBP, and NMF) can be applied. These
data were analyzed using tmklmp nodiag.m, tmbp nodiag.m,
and nmf nodiag.m. The tmklmp nodiag.m program was im-
plemented for all combinations of2<K<5and2<L<5.The
vaf results are reported in Table 2, and the deviance plot is
displayed in Fig. 4. Visual inspection of the deviance plot
reveals an elbow at & = 7, which is supported by having the
maximum values of both DiffCH (0.0219) and RatioCH
(1.81) achieved at & = 7. The solution on the upper boundary
of'the convex hull for & =7 corresponds to having K =4 and L

factorization (D = 3). The values in bold are the main diagonal
elements, which are ignored in the computation of the variance
accounted for (vaf)

= 3. The computation time for tmklmp nodiag.m using K = 4
and L = 3 was approximately 3.9 s on the 2.2-GHz Pentium 4
PC. Once again, the attraction rate was high, such that the the
best-found vaf'was identified on 97 % of the 500 restarts of the
algorithm.

Next, we applied the tmbp nodiag.m program for all com-
binations of 2< K <5 and 2 <L <5. The g(P, Q) results and
the numbers of equally well-fitting partitions (shown in paren-
theses) are reported in Table 3, and the deviance plot is
displayed in Fig. 5. Unlike the vaf measure associated with
TMKLMP, which we seek to maximize, the goal is to mini-
mize g(P, Q). Therefore, when examining the deviance plot,
the lower boundary of the convex hull is the measure of inter-
est. Visual inspection of the deviance plot in Fig. 5 reveals
elbows at both & =6 and & = 7. There were two equally well-
fitting partitions for both the & = 6 and 7 levels of model
complexity, and both levels also produced a DiffCH measure

Table 2 Two-mode KL-means partitioning results for the Parker and
Asher (1993) third-grade classroom friendship data: Variance accounted
for at different combinations of K and L

L=2 L=3 L=4 L=5
K=2 2684 3054 3213 .3300
K=3 3527 4194 4426 4535
K=4 .3899 4681 4933 .5060
K=5 4119 4908 5218 5487
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Fig. 4 Convex hull for the TMKLMP application to the third-grade friendship data

of 2.0. Although the & = 6 solution is more parsimonious,
given the competitiveness of & = 6 and & = 7, we opted for
the & = 7 solution, to provide consistency with the selected
model for TMKLMP. The solution on the lower boundary of
the convex hull for & =7 corresponds to K =4 and L = 3. The
computation time for tmbp nodiag.m using K =4 and L = 3
was approximately 2 min on the 2.2-GHz Pentium 4 PC. The
best-found vaf was identified on only 0.1 % of the 5,000
restarts of the algorithm, which is an appreciably lower attrac-
tion rate than what was achieved by tmklmp nodiag.m.
Finally, we applied nmf nodiag.m using 1 <D <5. A plot
of the PRE values is displayed in Fig. 6. Visual inspection of
the plot reveals a clear and sharp elbow at D = 2—indeed, the
only elbow. Moreover, D = 2 is preferred to all other dimen-
sionalities for the factorization based on both the DiffCH
(DiffCH = 0.1458) and RatioCH (RatioCH = 2.94) measures.
Considering the visual inspection of Fig. 6 and the slope mea-
sures, we selected D = 2 as the dimensionality and obtained a
(K'=4, L=3) partition for comparison with the TMKLMP and
TMBP results. As we noted previously, the selection of K and
L for NMF was based on the TMKLMP solution. The com-
putation time for nmf nodiag.musing D=2,K=4,and L =3
was approximately 17.8 s on the 2.2-GHz Pentium 4 PC.
The partition obtained by tmklmp nodiag.m is displayed in
Fig. 7. This partition is identical to one of the two equally
well-fitting partitions produced by tmbp nodiag.m (the other
equally well-fitting partition differed only by the relocation of
one student in the partition of columns). The eight girls form
one of the three clusters for the column objects (friendship tie
receivers), and the 14 boys are split into two clusters of
approximately equal size. The row clusters (friendship
tie senders) are a bit more complex: There is one cluster
of seven boys, one cluster of four girls, one singleton

@ Springer

cluster consisting of one girl, and one cluster consisting
of seven boys and three girls.

The friendship tie-sending cluster of four girls exhibits a
strong linkage to the tie-receiving cluster consisting of all
eight girls, because the resulting submatrix contains mostly
1 s. However, the same cluster of girls exhibits no friendship
ties to any of the 14 boys, as is shown by the two null
submatrices. Similarly, the friendship tie-sending cluster
consisting only of boys (b2, b5, b11, b8, b20, b16, and b19)
identifies most of the other boys in the class but very few of
the girls. However, the boys in this tie-sending cluster are
more strongly linked to the first cluster of tie-receiving boys
(b2, b5, bl1, b8, b13, and b21) than to the second. The largest
friendship tie-sending cluster, consisting of boys and girls (b1,
b3, b4, b7, b10, b13, b21, gl4, g6, and g22) also has strong
linkages to the first cluster of tie-receiving boys (b2, b5, bl1,
b8, b13, and b21), but not to the other two tie-receiving clus-
ters. Accordingly, the first cluster of tie-receiving boys might
be characterized as the “popular boys,” since they are much

Table 3  Two-mode blockmodeling (TMBP) results for the Parker and
Asher (1993) third-grade classroom friendship data: Numbers of
inconsistencies relative to the ideal block structure for different
combinations of K and L

L=2 L=3 L=4 L=5
K=2 104 (858) 103 (4) 103 (113) 103 (238)
K=3 95 (1) 83 (2) 80 (4) 80 (271)
K=4 89 (1) 77(2) 74 (9) 72 (52)
K=5 89 (212) 74 (107) 69 (6) 66 (38)

The cells of the table contain the values of the TMBP objective function,
(P, O), and, in parentheses, the numbers of equally well-fitting partitions
that produce that objective value
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Fig. 5 Convex hull for the two-mode blockmodeling (TMBP) application to the third-grade friendship data

more heavily linked to the two largest clusters of tie senders
than to the other cluster of tie-receiving boys. Finally, we note
that g12 emerges as a singleton cluster of tie senders, because
she is unique in her identification of almost everyone in the
class as friends.

Although interpretable, the partition obtained from
using nmf nodiag.m, shown in Fig. 8, exhibited some
marked differences from the TMKLMP and TMBP par-
tition in Fig. 7. The tie-receiving cluster of girls remains
intact, as does the tie-sending cluster of four girls.
However, the sending and receiving clusters of boys are

0.8

carved up somewhat differently. Moreover, gl2 is folded
into a tie-sending cluster with two other girls, despite
being appreciably different from those two girls with
respect to the pattern of ties. The net result is that the
submatrices associated with the NMF solution in Fig. 8
are appreciably less homogeneous than those in the
TMKLMP/TMBP solution in Fig. 7: Whereas the num-
ber of inconsistencies [g(P, Q)] in Fig. 7 is 77, there are
104 in Fig. 8. This substantial difference in submatrix
homogeneity raises concerns regarding the effectiveness
of NMF in this application.

0.7 1

0.6 1

PRE

0.5 1

044

0.3 T

3 4 5

Number of dimensions

Fig. 6 Convex hull for the NMF application to the third-grade friendship data. The plot represents the proportions of reductions in error
(PRE) as a function of the number of dimensions in the factorization (D)
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b b b b b b b b b b b b b b g g g g g g g g
5 11 8 13 21 1 4 20 10 16 19 15 12 17 18 14 9 6 22

b 2 XX 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1
b 5 1 XX 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
b 11 1 1 XX 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
b 8 1 1 1 XX 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0
b 20 1 1 1 1 1 1 1 1 0 0 XX 1 1 1 0 0 0 0 0 0 1 0
b 16 1 1 0 1 1 1 1 0 0 0 1 1 XX 1 0 0 0 0 0 0 0 0
b 19 1 1 1 1 1 1 1 1 1 0 1 1 1 XX 0 0 0 0 1 0 0 0
g 12 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 XX 1 1 1 1 1 1
b 1 1 1 0 0 0 0 XX 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
b 3 1 1 0 0 0 1 0 XX 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 4 0 0 1 1 1 1 0 0 XX 0 0 0 0 1 0 0 0 0 0 0 0 0
b 7 0 1 1 1 1 1 0 1 0 XX 1 0 0 0 0 0 1 1 0 0 0 0
b 10 1 1 1 0 0 1 0 0 0 0 0 XX 0 1 0 0 0 0 1 0 0 0
b 13 1 0 0 1 XX 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
b 21 1 1 1 1 1 XX 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
g 14 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 XX 0 1 0
g 6 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 XX 0
g 22 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 XX
g 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XX 1 1 1 1 1 1 1
g 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XX 1 1 1 0 1
g 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 XX 1 0 1 0
g 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 XX 1 1

Fig.7 The (K =4, L= 3) biclustering solution obtained using TMKLMP using the numbering scheme used in the source, with “b” and “g” being
and TMBP for the friendship ties among 22 third-grade students (see used to label boys and girls, respectively. The solid lines distinguish the
Anderson et al., 1999; Parker & Asher, 1993). The students are labeled row and column clusters

b b b b b b b b b b b b b b g g g g g g g g

2 3 11 8 10 19 13 21 1 4 20 16 15 12 17 18 14 9 6 22
b 2 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1
b 5 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
b 11 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
b 8 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0
b 20 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0
b 16 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
b 19 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0
b 21 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
b 3 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
b 4 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
b 7 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0
b 10 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
b 13 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0
g 6 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
g 12 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1
g 14 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0
g 22 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0
g 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
g 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
g 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
g 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1

Fig. 8 The (K =4, L =3, D = 2) biclustering solution obtained using numbering scheme used in the source, with “b” and “g” used to label boys
NMEF for the friendship ties among 22 third-grade students (see Anderson and girls, respectively. The solid lines distinguish the row and column
et al.,, 1999; Parker & Asher, 1993). The students are labeled using the clusters
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Implementation
Acquiring the software

The software programs associated with this article are acces-
sible in the folder ASYM, which can be downloaded from the
following website: http://myweb.fsu.edu/mbrusco. Six
primary m-file scripts are included in the folder: (i) tmklmp.
m, (i) tmklmp nodiag.m, (iii) tmbp.m, (iv) tmbp nodiag.m,
(v) nmf.m, and (vi) nmf nodiag.m. In addition, two m-script
subroutines are called by the NMF programs, which are
named hkmeans.m and ssquares.m, respectively. There are
also two data files, lipread.prm and 3rdGrade.prn, which con-
tain the input matrices for Examples 1 and 2, respectively.
Succinct nontechnical pseudocodes for TMKLMP, NMF,
and TMBP are provided in Fig. 9. More rigorous descriptions
are provided by Brusco and Doreian (2015a), Brusco (2011),
and Doreian et al. (2004) for the respective algorithms.

A document in the ASYM folder also contains the source
code for all eight m-file scripts. Moreover, for each of the six
primary m-scripts, there are descriptions of how to perform
the function calls in MATLAB, as well as the primary inputs

and outputs of the program. The parameter settings that can be
adjusted by users familiar with MATLAB are also identified.
Finally, the Word document contains small numerical exam-
ples illustrating some of the procedures. As we noted
previously, these examples were solved using a 2.2-GHz
Pentium 4 PC (circa 2000-2002), and accordingly, the
displayed computation times for the examples should be
considered conservative.

Choosing among the methods

Two questions concerning the properties of the available
asymmetric one-mode data can be used to guide the selection
of which method to choose: (i) Should the main diagonal be
considered? and (ii) Are the elements of the network matrix
binary or nonnegative real-valued? In our experience, the
most common answer to question (i) is “no.” Consider, for
example, asymmetric matrices that stem from social network
analyses, in which it is generally illogical for someone to
identify him- or herself as a friend, someone they trust, some-
one from whom they seek advice, and so forth. Accordingly,
in these circumstances, the “nodiag” versions of the programs

TMKLMP
Fori=1 to 500 (500 is the default number of restarts)

1. Randomly construct an initial partitions of row (K clusters) and column (L clusters) objects

2a. Compute submatrix means and variances

2b. Assign row objects to row cluster associated with smallest distance from submatrix means

2c¢. Correct for any empty row clusters
3a. Compute submatrix means and variances

3b. Assign column objects to column cluster associated with smallest distance from submatrix means

3c. Correct for any empty column clusters

4. If no row or column objects change membership in steps 2 and 3, then stop; otherwise repeat steps 2 and 3.

Next i

Return partitions associated with the maximum vaf across all 500 restarts.

NMF
Fori=1 to 20 (20 is the default number of restarts)
1. Randomly populate the G and H matrices

While error exceeds tolerance (.0000001) and iterations are less than the limit (5000)
2. Update G and H, normalize G and H with respect to G, increment iterations

3. Compute GH and error
End while
Next i
Return G and H yielding minimum error across all 20 restarts.

Establish a K-cluster partition of the row objects by applying K-means to G.
Establish an L-cluster partition of the column objects by applying K-means to H.

TMBP
Fori=1 to 5000 (5000 is the default number of restarts)

1. Randomly construct an initial partitions of row (K clusters) and column (L clusters) objects

2. Compute the objective criterion index (number of inconsistencies)

3. Evaluate all possible relocations of objects from their current cluster to each of the other clusters.

4. Each time a relocation is identified that reduces the number of inconsistencies, the change is implemented

5. The algorithm terminates when there is no relocation of a row or column object that will reduce the number of inconsistencies

Next i

Return partitions associated with the minimum number of inconsistencies across all 5000 restarts.

Fig. 9 Nontechnical pseudocode for TMKLMP, NMF, and TMBP

@ Springer


http://myweb.fsu.edu/mbrusco

500

Behav Res (2016) 48:487-502

would seem more appropriate. In other situations the decision
might be less clear. For example, in a confusion matrix or
brand-switching matrix, the main diagonals represent correct
responses and successive purchases of the same brand repeat-
edly. These measures do have a logical interpretation; howev-
er, they often tend to be rather large and could be retained.
Therefore, if the goal of the study were to analyze patterns of
confusion (or switching), then it still might be preferable to
use the “nodiag” programs to avert undue influence from the
large diagonal terms. This issue also dovetails with the deci-
sion to possibly normalize the input matrix in some manner,
which is a thorny matter that is beyond the scope of this
article.

If the input matrix consists more generally of nonnegative
real-valued integers, then the choice of method is restricted to
the TMKLMP and NMF programs, because TMBP is limited
to binary data. Our experience is that both TMKLMP and
NMF perform well in most instances for nonnegative real-
valued data. However, whereas both methods require the spec-
ification of the number of row and column clusters (i.e., K and
L), NMF has the additional requirement of selecting the di-
mensionality (D) of the factorization. Moreover, we recom-
mend the use of TMKLMP to select K and L for the NMF
program, and therefore, the former procedure would have to
be used anyway. Therefore, a reasonable strategy in the case of
a nonnegative real-valued asymmetric matrix might be to run
TMKLMP first, identify appropriate values for K and L based
on CHull, and store the solution corresponding to those K and
L values. Subsequently, NMF can be applied using the same K
and L, but evaluating different values of D. Upon selection of
the appropriate D, the NMF solution could be compared di-
rectly to the TMKLMP solution. This basic approach was
applied gainfully in the case of the lipread consonant confu-
sion data (Example 1), for which NMF produced a readily
interpretable partition comporting well with the TMKLMP
solution.

In the case of a binary input matrix, the computational
evidence provided herein, as well as in other sources
(Brusco, Doreian, Lloyd, & Steinley, 2013; Brusco, Doreian,
Mrvar, & Steinley, 2013; Brusco & Steinley, 2007, 2011;
Doreian et al., 2004, 2005), reveals the efficacy of TMBP.
Accordingly, our general recommendation is that TMBP
should typically be evaluated in the case of binary data, de-
spite the fact that its attraction to the best-found objective
criterion value across multiple restarts is commonly less than
that in TMKLMP. However, the computational evidence re-
ported by Brusco and Steinley (2007) and Brusco and Doreian
(2015a) also revealed good performance for TMKLMP for
binary data, as well as for nonnegative real-valued data.
Although NMF can also be applied to either binary or non-
negative real-valued input matrices, our experience is that it
tends to produce more easily interpretable results in the latter
case. When applied to the binary friendship social network
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data among third graders, the NMF solution was less inter-
pretable and, therefore, we do not recommend it highly for
binary data.

To summarize, TMKLMP appears to produce good results
for both nonnegative real-valued and binary matrices.
Nevertheless, it would seem prudent to augment a
TMKLMP analysis with either NMF or TMBP in the cases
of nonnegative real-valued or binary matrices, respectively. In
the examples provided herein, the TMKLMP and NMF
methods both produced interpretable results for the lipread
consonant confusion data, whereas TMKLMP and TMBP
both produced interpretable results for the binary social net-
work data.

Conclusions
Summary

Examples of one-mode asymmetric proximity data abound in
the psychological sciences. Examples include data obtained
from free association tasks, stimulus recognition tasks, brand
selection, and social network analyses. When approaching the
problem of partitioning objects in these applications, we sug-
gest that it is generally advisable to adopt a biclustering per-
spective. More specifically, when the data are arranged in a
one-mode asymmetric matrix, two distinct partitions of
the objects must be obtained: one partition based on their
role in the context of the rows of the matrix, and one
partition based on their role in the context of the col-
umns of the matrix. Effective methods for simultaneously
establishing these partitions are not readily available in
most commercial software packages. Accordingly, our
goals were (i) to present three alternative methods for
biclustering one-mode asymmetric matrices, (ii) to make
available a suite of MATLAB m-files that implement
these methods, and (iii) to demonstrate these methods
and software using psychologically oriented examples
in the literature. Furthermore, the methods are applicable
to many areas of behavioral research.

The MATLAB m-file software programs included in the
Web supplement associated with this article fall into three
categories of methods: (i) two-mode KL-means partitioning
(TMKLMP), (ii) nonnegative matrix factorization (NMF),
and (iii) two-mode blockmodel partitioning (TMBP). Within
each category, two m-file programs are provided, differentiat-
ed by the inclusion or exclusion of the main diagonal in
the analysis. For example, in the case of TMKLMP, the
program tmklmp.m includes the main diagonal in the
analysis, whereas tmklmp nodiag.m ignores the main
diagonal. The former program can also be used more
generally for any two-mode matrix.
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Limitations and extensions

The limitations of the methods presented herein can be char-
acterized along three dimensions: (i) scalability, (ii)
suboptimality, and (iii) model selection. Regarding scalability,
it is important to recognize that we have made the programs
available as MATLAB m-files. Although MATLAB is a user-
friendly environment, m-files are not compiled, and therefore
they run much slower than comparable codes written in
Fortran or C. It also appears that the TMKLMP programs
are appreciably more efficient than the TMBP and NMF pro-
grams. Nevertheless, most of the m-files should scale for ob-
ject set sizes of N <200. Larger matrices can also be tackled;
however, it might be necessary to scale back on the number of
restarts.

All of the m-files use heuristic procedures to produce
solutions to their respective optimization problems. For
this reason, a globally optimal solution is not guaran-
teed. However, as we noted previously, computational
results reported in the literature suggest that each of
the methods performs well and produces solutions com-
petitive with those obtained by more sophisticated
metaheuristics, such as simulated annealing, tabu search,
genetic algorithms, and variable neighborhood search.
Despite this evidence, we deemed it useful to allow
the TMKLMP and TMBP programs to count the num-
bers of restarts for which the best-found solution was
obtained. If the best-found solution was obtained only
once or twice out of 500 or 5,000 restarts, it is quite
possible that the global optimum was not located.
Greater confidence (although no guarantee) of global
optimality would be afforded by a larger number of
discoveries of the best-found objective function across
multiple restarts. Our limited analyses suggest that
TMKLMP has a greater attraction to the best-found so-
lution across multiple restarts than does TMBP. A relat-
ed issue is the agreement among different locally opti-
mal partitions. A capability for the measurement of
agreement has not been integrated into the programs at
the present time, because it is not entirely clear how
users should best interpret such information.

Perhaps the most challenging aspect of all of the proce-
dures described in this article is model selection. For TMKL
MP and TMBP, model selection requires the choices of K and
L and the decision to include or exclude the main diagonal.
The NMF method also requires these decisions, in addition to
a choice of D. Furthermore, for real-valued X matrices, trans-
formations of the asymmetric proximity matrix prior to appli-
cation of the method must be a concern. For example, Brusco
and Doreian (2015b) considered applications to journal cita-
tion and brand-switching matrices in which a transformation
was employed to adjust for scale differences prior to the im-
plementation of TMKLMP.
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