
Behav Res (2016) 48:53–71
DOI 10.3758/s13428-015-0562-7

An optimization approach for mapping and measuring
the divergence and correspondence between paths

Shane T. Mueller ·Brandon S. Perelman ·
Elizabeth S. Veinott

Published online: 4 March 2015
© Psychonomic Society, Inc. 2015

Abstract Many domains of empirical research produce
or analyze spatial paths as a measure of behavior. Previ-
ously, approaches for measuring the similarity or deviation
between two paths have either required timing information
or have used ad hoc or manual coding schemes. In this
paper, we describe an optimization approach for robustly
measuring the area-based deviation between two paths we
call ALCAMP (Algorithm for finding the Least-Cost Areal
Mapping between Paths). ALCAMP measures the deviation
between two paths and produces a mapping between corre-
sponding points on the two paths. The method is robust to a
number of aspects in real path data, such as crossovers, self-
intersections, differences in path segmentation, and partial
or incomplete paths. Unlike similar algorithms that pro-
duce distance metrics between trajectories (i.e., paths that
include timing information), this algorithm uses only the
order of observed path segments to determine the mapping.
We describe the algorithm and show its results on a num-
ber of sample problems and data sets, and demonstrate its
effectiveness for assessing human memory for paths. We
also describe available software code written in the R statis-
tical computing language that implements the algorithm to
enable data analysis.

Keywords Path correspondence · Path mapping ·
Optimization

S. T. Mueller (�) · B. S. Perelman
Department of Cognitive and Learning Sciences, Michigan
Technological University, Houghton, MI, USA
e-mail: shanem@mtu.edu

E. S. Veinott
Applied Research Associates, Fairborn, OH, USA

Behavioral paths and trajectories

Paths are multi-dimensional spatial data series that represent
an ordered sequence of locations in space. In contrast to tra-
jectories (which refer to paths as a function of time), a path
typically ignores or lacks timing information, making it both
more general and at times less informative. Importantly, two
trajectories that mismatch in their timing might be judged as
very different, even if their paths are nearly identical. Nev-
ertheless, both paths and trajectories have become important
data sources in scientific research and machine intelligence
applications, and their use is only bound to increase as
research and applications take advantage of mobile GPS-
enabled devices and other automated means of recording
location. Computational research in this area has typically
focused on trajectories (Yanagisawa et al., 2003; Chen et al.,
2005) where timing is available, but in many cases the tim-
ing is either not known or is irrelevant, and so there remains
a gap in algorithms and tools for analyzing paths and mea-
suring path similarity and deviation based on their shapes
alone.

Potential applications of a general-purpose path mapping
technique

In this paper, our main objective is to present a set of algo-
rithms and software tools that analyze paths produced in
laboratory and real-world settings, allowing measurement
of the deviation between paths, as well as determining how
points on one path correspond to points on a second path. In
behavioral science, these tools have potential applications in
a number of domains, including spatial reasoning, memory,
and communication. Specific examples include: the anal-
ysis of path data produced in studies using variations of

mailto:shanem@mtu.edu

54 Behav Res (2016) 48:53–71

the HCRC Map task (Anderson et al., 1991; Brown et al.,
1984; Veinott et al., 1999), in which one person must ver-
bally communicate a path to a second person who cannot
see the path, but must reproduce it; spatial search tasks, in
which a person or animal must search for a target or reward
(Mueller et al., 2010; 2013); the traveling salesman problem
(MacGregor & Ormerod, 1996; Pizlo et al., 2006), in which
an efficient path must be planned that visits a set of tar-
gets; eye-tracking research (van der Stigchel et al., 2006), in
which the eye fixation pattern is recorded; mouse-tracking
studies (Freeman & Ambady, 2010), in which a computer
mouse path is recorded in a dynamic task; motor control
research (Abend et al., 1982), in which the physical path
of an effector is tracked; and human–computer interaction,
for example in research that compares navigation through
virtual and physical space (Ruddle & Lessels, 2009; Zhang
et al., 2012).

Although applications in behavioral science are our pri-
mary concern, our methods may also have utility in any
domain for which path data is available. Examples include:
neuroscience research examining neural information path-
ways (Tuch et al., 2003); the domains of geography and
anthropology which study the migration and movement of
nomadic pastoral groups (Erdenebaatar & Humphrey, 1996;
Istomin & Dwyer, 2009), especially to the extent that they
compare simulated paths to observed data (Kennedy et al.,
2010); zoology, in the study of migration paths of ani-
mals (Croxall et al., 2005; Egevang et al., 2010; Guilford
et al., 2009; Weimerskirch & Wilson, 2000; Ceriani et al.,
2012); and earth sciences including the measurement and
assessment of how river routes (Fisk, 1944), ocean sur-
face currents (Gawarkiewicz et al., 2012), atmospheric jet
streams (Barton & Ellis, 2009), and the paths of hurricanes
and tropical storms (Demuth et al., 2006) differ over time
or events. Consequently, the potential applications of these
methods may extend far beyond human behavioral science.

Goals of a path mapping algorithm and related problems

In any of these problem domains, two common goals
emerge: first, one would like to measure how similar two
paths are to one another (to score performance, give feed-
back, perform a clustering analysis, evaluate an experimen-
tal manipulation, etc.); second, one may want to determine
the point on one path that best corresponds to a point on
another path. This correspondence could be used to judge,
for example, whether path memory errors produce a bowed
serial position function, whether a remembered path was
incompletely recalled, whether particular features of one
path (e.g., loops, non-rectilinear corners, etc.) are repro-
duced accurately, or whether a set of paths are evidence for
a single common strategy.

Non-ordered mappings Even though paths are ordered data
sequences, a simple and fast approach for measuring path
similarity (or divergence) might be to ignore the order of
points and use methods for determining multi-point similar-
ity. For example, one might simply map each point on one
path to its nearest neighbor on another path (cf. Dasarathy,
1991), or use some other general point-to-set optimization
(Zangwill, 1969; Hogan, 1973). Similar approaches have
been successful in many non-spatial domains (e.g., Littman,
Dumais, & Landauer, 1998), and may be sufficient for sim-
ple paths as well. However, it is easy to identify conditions
under which this would produce suboptimal or illogical
results. For example, the grey hashed triangle in Panel C of
Fig. 1 indicates an area of one path that might be mapped
out-of-sequence to the single (closest) point on the second
path. This may be adequate for some applications, but by
taking advantage of the ordinal nature of paths and con-
straining the mapping to follow this order, we may be able
to induce better inferences about how two paths correspond.

Measuring trajectory similarity A number of algorithms
have been developed for measuring similarity of trajecto-
ries (i.e., paths with timing information). These have proven
useful for machine vision applications that track objects,
people, or animals, and for storing and indexing these in
databases to enable later retrieval by similarity. For exam-
ple, Yanagisawa et al. (2003) developed a shape-based sim-
ilarity and indexing scheme for trajectories, and similarly
Chen et al. (2005) compared a number of methods for mea-
suring distance between trajectories, and introduced a mea-
sure called Edit Distance on Real Sequence (EDR). These
methods rely to some extent on the time-based nature of
the trajectories, which are implicitly ordinal, to help deter-
mine how elements from one path map onto elements on the
second path. Trajectories sampled at regular time intervals
produce a natural division of a path into equal-duration path
segments, and even with irregular sampling, trajectory times
can be interpolated to produce equal-duration segments. The
EDR method relies on timing information and its measure
of similarity is a generalization of the edit distance, which
counts the number of operations that are required to make
one trajectory match the other in terms of timing and posi-
tion. These approaches have also focused on the practical
problems related to efficiently storing, indexing, and retriev-
ing trajectories, which involves other tradeoffs we will not
address here.

Such methods do not work directly for paths that lack
timing information. In many cases, one or both paths lack
a measured time-series component. This is especially true
when one path is the experimental stimulus and the other
path is generated by a subject as a measure of mem-
ory, search, or communication. Yet even when timing

Behav Res (2016) 48:53–71 55

information is available, the timescale of one trajectory may
necessarily be different from the timescale of another tra-
jectory. For example, it may take only seconds to remember
and draw a flown flight path that took minutes or hours to
complete; similarly, flying a planned flight route may take
hours, even if the plan was generated in seconds. And in
both of these cases, it is not always the case that the timing
information is relevant. Thus, even when some timing infor-
mation is available, it may not be helpful or possible to use
it to compare paths.

Shape similarity algorithms A third relevant domain is
the study of shape and object representation and match-
ing (see, e.g., Latecki and Lakämper (2000), Belongie et al.
(2001), Belongie et al. (2002), and Gorelick et al. (2006)),
and related work on human movement analysis (Gorelick
et al. 2007). Although there is little fundamental differ-
ence between paths and polygons, the goals for object and
shape matching typically differ from those of path mapping.
For example, shape algorithms typically ignore absolute
coordinates, orientation, scale, and arbitrary affine transfor-
mations, in an attempt to identify the best mapping between
two polygons based on their overall shape. These allow
automated analysis of imagery that present similar objects
from different perspectives, in different sizes and with vari-
ations on shape, as might be expected from natural objects
and natural views (Pizlo, 2010; Mueller, 2010). These
details that are specifically ignored by shape-matching algo-
rithms can be critical for measuring the similarity between
two paths, because here location and scale typically do mat-
ter. For shape matching, the value that is optimized is not
typically related to the distance between shapes, but often
involves statistics related to the relative angles between con-
secutive line segments (Latecki & Lakämper, 2000). Thus,
although shape similarity algorithms may not be directly
useful, their basic approach of using optimization to find a
mapping between corresponding contours is quite relevant.

In summary, although there are several related existing
approaches that could be used to map paths (non-ordered
mappings, trajectory similarity, and shape similarity), none
will be completely adequate for comparing paths. In the next
section, we will identify some of the specific challenges a
path mapping algorithm must be able to handle.

Challenges for path mapping and alignment algorithms

To help define the ideal properties of a path mapping
algorithm, we have identified a number of potential chal-
lenges that such an algorithm must deal with, illustrated in
Fig. 1. Once we review these challenges, we will exam-
ine the extent to which several candidate methods address
these challenges. Then, we will describe a method designed

A Line Segmentation B Path Intersections

C Incomplete routes D Self-intersections

E Parallel Loops F Route Complexity

Fig. 1 Potential challenges for a path correspondence algorithm
include that it should: A be relatively insensitive to how a path is seg-
mented:B handle intersecting paths:C accommodate paths of different
overall lengths: D handle paths that intersect themselves and form
loops, E handle parallel loops on both paths, and F provide reasonable
measures that account for differences in path complexity

to robustly measure path correspondence in the face of
these challenges, and introduce a free software package that
implements the algorithm.

When measuring the deviation between two paths, one
issue is that two paths are not guaranteed to be partitioned
into equal-length segments (a problem that trajectories may
not have, because the time-based partitioning is an impor-
tant part of the trajectory). Panel A shows an example of
this. These paths might be produced by a memory test in
which a given path is defined by just a few line segments,
but a recalled path may be a digitized line which has hun-
dreds of small elements. To handle this, an algorithm must
be able to map multiple points and segments of one path
onto a single segment of another path. A second issue (Panel
B) is that two similar paths often intersect one another.
As we will see later, not all measures handle intersections
easily. A third issue (Panel C) is that one path may be
substantially shorter in length than another. In the case of
the paths in Panel C, the shorter path should probably be
mapped onto the similar section of the longer path rather
than being mapped proportionally from start to end onto the
other path. At the same time, paths that are perhaps simpli-
fied versions of a more complex path (Panel D) should map
one to the other in a reasonable way. Another issue is that a
path may loop or intersect itself (also Panel D), and the algo-
rithm should handle these situations robustly, including (as
in Panel E) where both paths loop in parallel. Finally, as we

56 Behav Res (2016) 48:53–71

will discuss in greater detail later, there are deviations such
as in Panel F that are not measured well by area deviation
alone, as they may represent large differences that produce a
small-area polygon, and an algorithm should be sensitive to
these.

Candidate methods for measuring divergence between
paths

Although no widely used methods exist for measuring
the divergence and correspondence between paths, an
intuitive solution is to measure the area between two
paths. In this section, we will review a number of alter-
natives for computing area-based divergence, as well
as several based on path shape, before introducing our
approach.

Area-based measures

Many potential methods for finding the similarity between
paths rely on measuring the area subtended by the poly-
gon formed by connecting the paths. In previous behavioral
research, the typical approach for measuring the area devi-
ation between two paths (cf. Veinott et al., 1999) has been
to overlay the paths with transparent graph paper and count
the grid cells within their deviation. A polygon whose area
can be measured can be formed from two paths by connect-
ing the starting point of each path to the ending point of
the other path. Such an area-based measure has the advan-
tage of being identical regardless of whether a path has been
segmented or digitized. Thus, area-based measures can be
invariant to the details of path creation that may impact
path segmentation. Furthermore, an area-based measure is
interpretable by dividing the area by the mean path length,
which gives the mean deviation per unit length. Many tra-
jectory similarity algorithms are area-based in some way
(Yanagisawa et al., 2003; Chen et al., 2005), but rely
on the fact that a time-based natural segmentation exists,
enabling one to use the area-based difference between
two segments to determine the best mapping between seg-
ments. Without timing information, area-based methods are
still applicable. Next we will review and evaluate sev-
eral methods that can be used to measure the area of a
polygon.

The graph planimeter, Green’s theorem, and the surveyor’s
formula Physical computers called planimeters have been
available for measuring the area of bounded regions since
Johann Hermann introduced a device in 1814 (see Care
2010, Chapter 2). The most famous of these was devel-
oped by Amsler (1856), as a mechanical implementation

of Green’s theorem.1 Green’s theorem shows how a dou-
ble integral over a region (i.e., its area) can be computed
via a line integral over its boundary (see Gatterdam, 1981,
for an accessible explanation of this device). For polygons
(i.e., area domains that are bounded by line segments), the
solution offered by Green’s theorem can be simplified to
an algorithm relying on determinants of consecutive line
segments known as the surveyor’s formula, or the simpli-
fied but algebraically identical shoelace formula (Braden,
1986). These are perhaps more convenient for digitized
paths, where a path can easily be transformed into a series of
line segments and the area can be automatically computed
via software.

These methods are fairly simple and can be used to effi-
ciently compute the area of the polygon formed by two paths
that do not intersect. However, they will not provide the cor-
rect answer in a number of cases, and so cannot be used as
a general solution. For example, when two paths cross, this
creates regions of negative area that need to be detected and
handled separately. We will consider this type of strategy
next.

Surveyor’s formula applied to segmented polygons The sur-
veyor’s formula approach could be salvaged by searching
for the points where a line segment from one path inter-
sects with a segment from the other path. Then, using this
information to isolate each non-intersected sub-polygon,
one could compute areas using the surveyor’s formula and
find the sum. However, this method still has a number of
problems. First, the approach still presents difficulties when
paths intersect themselves. For example, consider Panel D
of Fig. 1. Here, one path loops, while the other does not.
The isolated polygons produce one area, but a better devi-
ation might be the grey area indicated in the figure. But
more importantly, this hypothetical algorithm now requires
substantial search and analysis to use, and so the goal of
a simple solution has been lost. Consequently, we might
consider digital approaches akin to the graph-paper solution
based on flood-fill algorithms.

Flood-fill algorithms Using a flood-fill algorithm (e.g.,
Asundi & Wensen, 1998; Shaw, 2004) might be a way to
avoid some of the complexity involved in the surveyor’s
formula. In this approach, one would render the two paths
on a pixel-based background, connect the ends, and use
flood-fill to ‘paint’ everything outside the resulting poly-
gon. Then, one could simply count the number of unpainted

1Green’s theorem had been known for some time, but had only recently
been proven by Riemann (1851) in his dissertation.

Behav Res (2016) 48:53–71 57

pixels and determine an area-based deviation. This method
could be very accurate (limited only by the pixel size) and
it may avoid the need for identifying and isolating each
sub-polygon. However, this approach also faces some of the
same problems as the earlier approaches, especially when
paths intersect themselves. For example, if a pair of closely
intertwined paths formed a larger loop that intersected itself,
a simple flood-fill algorithm would mismeasure the corre-
spondence unless the area in the center of the loop was
subtracted. Attempts to improve on flood-fill would require
identifying and isolating parts of paths and larger loops, and
so again the hope of a simple algorithm is lost.

General limitations of area-based solutions In general,
simple area-based solutions appear to be untenable, pri-
marily because of the need to handle path intersections,
which requires additional analysis. However, even if simple
crossovers and intersections can be identified, other prob-
lems persist. For example, in Panel E of Fig. 1, two paths
may match one another fairly accurately, but together they
form a set of parallel loops. A naive area-based solution
might count the entire loop as a mismatch, as it might be
ambiguous what corresponds to what. Clearly, if the two
paths deviate from one another very little, the deviation of
the paths should be close to 0, but substantial logic could
be necessary to know which areas between line segments
should or should not be counted in this deviation. Further-
more, suppose a pair of paths looped several times (e.g., if
a pair of aircraft circled over a target)—this might be very
difficult for a simple area-based measure to handle. Next,
even for a simple polygon, there are situations where total
area may not be the best measure of path deviation. For
example, consider Panel F of Fig. 1. Here, one path is lin-
ear, but the second path is jagged. Because of the zigzag
followed by this second path mapping, there is relatively
little area within this polygon. In cases such as this, a sim-
ple polygon area approach is probably not even appropriate,
and the dissimilarity measure should be greater than what
would be obtained by area alone. For comparison, consider
the third (dashed) path in Panel F, which has an overall
larger distance deviation from the straight path than the
wavy path, but is subjectively and objectively more similar
in most ways. Finally, area-based solutions in general can
provide dissatisfying results, because they do not determine
how two paths actually correspond or map onto one another.
This information could be very useful, and we would like
to obtain this mapping as a consequence of measuring the
deviation between paths.

For these reasons, we argue that simple area-based
measures must be abandoned. However, the optimization
approaches used in both shape-matching and trajectory-
mapping algorithms offer an alternative that might avoid
the need to analyze the topology of crossing paths and

determine which areas should or should not count. In this
approach, if we can determine a measure of the deviation
between any segment on one path and any point or segment
on a second path, we may be able to apply standard mathe-
matical programming algorithms that find a mapping having
the smallest overall deviation. Thus, the smallest possible
deviation between two paths will be identified, and a cor-
respondence that maps points on one path to points on the
second will be produced as a consequence. We will describe
this approach next.

An algorithm for finding the least-cost areal mapping
between Paths (ALCAMP)

The goal of finding point-to-set and set-to-set mappings
(sometimes called set-valued maps or set-valued functions)
has been studied in a number of domains of applied and pure
mathematics, and general proofs for optimizing such map-
pings date back at least to Zangwill (see Zangwill, 1969;
Hogan, 1973). Importantly, any mapping can be thought of
as incurring a cost defined by a cost function or objective
function, and the goal of optimization is to find the mapping
that incurs the least cost. In our approach, we use opti-
mization to find a mapping between paths that produces the
least total cost, where cost is the area between correspond-
ing points and segments. This approach shares some of
the same logic as shape-based similarity measures (Latecki
& Lakämper, 2000) and trajectory-mapping algorithms
(Yanagisawa et al., 2003; Chen et al., 2005), in that it
finds an optimal mapping by applying a cost function to
deviations between paths. Formally, we use the same gen-
eral dynamic programming algorithms used to compute
sequence distance in many contexts, perhaps most widely
for aligning sequential data such as letter strings or DNA
sequences (the so-called edit or Levenshtein distance; cf.
Levenshtein, 1966). For a string of letters, the goal of the
edit distance is to find the minimum number of changes
needed to transform one string into another, permitting addi-
tions or subtractions, each having an equal cost. For the
EDR trajectory-mapping approach of Chen et al. (2005),
the goal is to find the minimum number of changes of one
path (in either timing or position) required to transform it
into another path. There, each change also incurs a cost,
but the cost depends on the distance each segment must
be moved, and is not fixed for each operation. This dis-
tance, if weighted by segment length, is analogous to an
area-based cost function, which is roughly the same as our
approach.

The primary goal of our algorithm is to determine a map-
ping between two paths that minimizes a cost function. To
begin with, we must first define three things: the specific
meanings of paths, mappings, and cost functions. Once this

58 Behav Res (2016) 48:53–71

is complete, we will apply a dynamic programming opti-
mization algorithm to efficiently identify the cost of the best
mapping.

Defining a path

A path is an ordered series of points and the line segments
connecting those points. A path can be completely defined
by the points alone:

Apoints = {A1, A2, A3, A4, . . .}, (1)

or by the edges in the path

Aedges = {A12, A23, A34, . . .}, (2)

or more redundantly by the interleaved series of points and
edges:

Amerged = {A1, A12, A2, A23, A3, A34, A4, . . .} (3)

or, alternately,

Amerged = {A11, A12, A22, A23, A33, A34, A44, . . .} (4)

where each single-number (or doubled-number) subscript
element indicates a point, and each two-subscript element
indicates a line segment. Note that although Apoints is
unconstrained, the end point of each element of Aedges

must be connected to the starting point of the next ele-
ment. Within Amerged , we will generically refer to points
and segments as nodes, using point to refer to odd nodes and
segment to refer to even nodes.

Determining a mapping between two paths

We define a mapping as an indicator function M(Ai, Bj) ∈
{0, 1} that identifies which nodes of path A correspond to
which nodes of path B.2 In general, one might place no con-
straints on M(), allowing any point or segment on one path
to map onto any or all points or segments on another path.
However, because paths are ordered sets, many of the possi-
ble mappings are incompatible. Thus, we define the subset
of proper mappings between two paths A and B as map-
pings that satisfy the following conditions: each point of A

corresponds to at least one node of B, each point of B cor-
responds to at least one node of A, and the correspondences
are strictly non-decreasing, so that the correspondence map
does not move ‘backward’ on either path. More formally, a
proper mapping satisfies the following constraints:

• ∀x ∈ Xpoints , y ∈ Ymerged ,
∑

y M(Xi, Yj) ≥ 1

2In the notation of Hogan (1973), a point-to-set map � is defined as
the mapping X → 2X; i.e., the power set. For any node of A (corre-
sponding to a row of the matrix implied by M(Ai, Bj)), the power set
2X is just all possible combinations of 1s and 0s on that row. Similarly,
each column of M(Ai, Bj) represents a point-to-set mapping between
a node of B and the nodes of A.

• ∀y ∈ Ypoints , x ∈ Xmerged ,
∑

x M(Yi, Xj) ≥ 1
• if M(Ai, Bj) = 1, then M(As, Bt) = 0 if s > j and

t < i, or if s < j and t > i

Note that we do not require or consider the mapping
between two edges. This is mainly done to simplify the
optimization problem, and it is typically possible to infer
whether two edges correspond by using a ‘sandwich’ rule
(i.e., an edge is sandwiched between its endpoints which
always have an explicit mapping to the other path), and
similarly to identify how any point lying on one path corre-
sponds to the other path (even when it lies in the middle of
a segment).

A proper mapping is illustrated in Fig. 2, where a dashed
line between points or segments indicates that M(A,B) =
1. Here, A has four points and three segments, for a total
of seven nodes; B has seven points and six segments, for
a total of 13 nodes. Starting at the left, points A1 and B1

are mapped onto one another so that M(A1, B1) = 1. Next,
M(A1, B12) = 1, and so on, so that eventually each point
on each path is connected to a point or segment on the
other path, and the connections do not move backward to a
previous node. However, multiple adjacent nodes (edges or
points) on one path may be mapped onto a single node on
another path. The mapping illustrated in Fig. 2 is shown in
matrix format in Table 1, which shows each pair ofM(A,B)

for which M(A,B) = 1. Note that any proper mapping
must have a non-zero value in each odd row and each odd
column, and the path through M must be non-decreasing in
both row and column.

Computing the area-based cost for any mapping Measur-
ing the deviation between paths can be translated into the
network (a planar graph) shown in Fig. 3. Each node corre-
sponds to one entry in the matrix in Table 1. To understand
a mapping, we can conceive of it as a process by which we
link two paths together, starting at the two end-points, and
moving to the adjacent nodes on one or the other path, until
we arrive at the endpoints of the two paths. The process of
moving between adjacent nodes can be framed as moving
along an arrow connecting nodes in the graph. Movement
of the mapping along the nodes of path A corresponds to
following rightward arrows in the graph; movement along
the nodes of path B corresponds to following downward
arrows in the graph, and a concomitant movements along
paths A and B together correspond to a diagonal arrow in the
graph.

As discussed earlier, there are no nodes corresponding
to edge-edge connections (indicated by a small unfilled
circle). Moving from one node-node connection to an adja-
cent node-node connection incurs a cost equal to the area
deviation of the polygon formed by this movement. These

Behav Res (2016) 48:53–71 59

Fig. 2 Example alignments between two paths. Each point must map onto either an edge or a point in the corresponding path

transitions form either 0-area polygons, triangles, or quadri-
laterals whose area-based costs can be computed by geomet-
ric formulas, or (less efficiently) by the Surveyor’s formula,
or (hypothetically) by other cost functions. Consequently,
we will use S() to represent the area-based cost, with the
assumption that it could be computed in various ways, or
perhaps substituted with another cost function. Before a
final cost of a path can be computed, we first must determine
how to measure the area for consecutive points on one path
that are mapped onto the same segment on another path.

One way to measure the cost between consecutive points
on one path that are mapped onto a single line segment on
a second path is to select the points on the segment that
are closest to the points, and find the area of that quadri-
lateral. Figure 4 shows three example points: (P1, P2, and
P3), and how they might be connected to the segment RS.
RS lies on line t , and unless Pi lies on t , there is another
line (t ′) orthogonal to t that passes through Pi , and thus
through point Q on line t . If the point Q is on segment

Table 1 The proper mapping between path A and B shown in Fig. 2.
Connected nodes are indicated with a 1; a ‘.’ indicates nodes are
unconnected

A11 A12 A22 A23 A33 A34 A44

B11 1

B12 1 . 1

B22 . . 1

B23

B33 . . 1 1 . . .

B34

B44 . . . 1 1 1 .

B45

B55 1 .

B56

B66 1 .

B67

B77 1

RS, we refer to the point as being ‘opposite’ the segment.
Whether a point is ‘opposite’ a segment can be precomputed
by calculating the length of the line segment RP projected
onto line RS via a dot product, and then dividing by the
length of RS to determine the proportional length z (where
z = ((S −R) · (P −R))/(|(S −R)|). If z is less than 0, P is
attached to R; if z is greater than 1, P is attached to S, and
otherwise P is attached to Q = R + z(S − R).

To compute the area corresponding to these mappings, it
is convenient to define oi :

oi =
⎧
⎨

⎩

0 if zi ≤ 0,
zi if 0 ≤ z ≤ 1,
1 if zi ≥ 1.

(5)

Here, oi represents the proportion along the segment’s
length to which a point is mapped: a value of 0 indicates
one end of the segment, a value of 1 indicates the other end,

Fig. 3 The connection graph describing the path alignment prob-
lem. In the ALCAMP algorithm, transitions are only allowed along
arrows, and each transition incurs a cost related to the areal deviation
between the two nodes (i.e., either a line with area 0, a triangle, or a
quadrilateral)

60 Behav Res (2016) 48:53–71

Fig. 4 Three points connected to their closest points on RS. The line perpendicular to t passing through P1 (t ′1) falls to the left of RS, and so P1
gets attached to R. The line t ′3 falls to the right of S on t , and so gets attached to S. The line t ′2 falls within RS at point Q, and so gets attached there

and a value between 0 and 1 indicates an intermediate point.
This can be used to compute the distance of one side of a
quadrilateral or triangle represented by a transition, and it
allows the areal deviation to be carved into multiple poly-
gons whenever a single point on one path is mapped to a
segment on the other path.

If several consecutive points are mapped onto a single
segment, we can simply map each point onto its nearest
point on the segment (as shown in Fig. 4). However, this
has the potential for reversing direction of the mapping. For
example, if comparing a straight segment to a loop whose
points are all opposite the segment, the mapping from each
point on the loop to the closest point on the segment will
march forward, reverse, and forward again. The proper way
to handle this is to break the long segment into subsegments
and solve the mapping problem using the same optimiza-
tion approach we use to solve the entire problem. This will
obtain the smallest cost independent of path segmentation.
We provide tools for doing this, but it can come at the cost
of a substantially more complex (and time-consuming) opti-
mization, because paths may be segmented into dozens or
hundreds of sub-segments if one of the paths has many
segments. In our tests using this approach, adding these
additional segments typically had little or no impact on the
final mapping.

Now, we can compute formulas for each type of transi-
tion in Fig. 3. Note that there are seven distinct transition
types, labeled p, q, r , s, t , u, and v. Each of these transitions
represents a different transition in the mapping. We will
show how each cost is computed, considering the incoming
transitions for any graph node. First, consider a point-point
mapping. The previous mapping could be the previous pair
of points on each path, which skips back two nodes in the
network. Here, v is the cost of a quadrilateral defined by
the four points being considered (where Ai is used as a
shorthand for point Ai,i),
v = S(Ai, Ai−1, Bj−1, Bj) (6)

For v, the two paths may in fact cross one another, and a
naive cost function might not be able to detect or compen-
sate for this. Under our approach, we handle this by detect-
ing crossovers in a pre-processing step, and divide both
crossing segments into two line segments at the cross-over
point.

Other possible transitions to point–point mappings come
from moving from the previous segment on one or the other
path. Consider first the case where an adjacent segment and
point on B are both mapped onto Ai,i . This cost is related to
the triangle whose sides are defined by segment Bj−1,j and
point Ai,i . However, the actual starting point of the triangle
depends on the value of oi−1. These areas are defined by t

and u, respectively, for triangles that move along either path
A (right in the planar graph) or path B (down in the planar
graph):

t = S(Ai−1 + oi−1 × (Ai − Ai−1), Ai−1, Bj) (7)

u = S(Ai, Bj−1 + oj−1 × (Bj − Bj−1), Bj) (8)

Next, consider mappings between a segment Ai−1,i on
path A and a point Bj on path B. Transitions to this map-
ping are obtained either by moving from a point–segment
mapping (between Bj−1 and Ai−1,i ; the previous point of B
mapped to the same segment of A), or from a point–point
mapping (between Bj and Ai−1; the current point of B and
the end point of the A segment). These transitions incur
costs s and p, respectively. If we consider the corresponding
case of segment Bj−1,j mapped onto pointAi , the transition
costs are q and r . In these formulas, r and s both represent
the cost associated with two consecutive points mapped onto
a single segment, whereas p and q both represent the cost
associated with a consecutive point and edge on one path
mapped onto a single point on the other path.

The cost of r and s transitions only makes sense when
both of the points in the transition are opposite the line seg-
ment. If oi <= 0 or oi >= 1, the transition is really a move

Behav Res (2016) 48:53–71 61

to the point–point mapping, and so the value of r or s is
given the cost value of ∞ to force the mappings to use the
point–point route and simplify the optimization. The formu-
las for r and s are essentially identical but with the role of
A and B swapped. In each case, the polygon area formed
by the transition actually depends on the value of o for each
point–segment pair:

r = S (Bi, Bj−1, Ai−1 + oi−1 × (Ai − Ai−1),

Ai−1 + oi × (Aj − Ai−1))

iff oi−1, oi ∈ (0, 1). (9)

s = S (Ai, Ai−1, Bj−1 + oj−1 × (Bj − Bj−1),

Bj−1 + oj × (Bj − Bj−1),)

iff oj−1, oj ∈ (0, 1).

(10)

Finally, costs p and q both involve transitions from
the immediately previous point–point mapping to a point–
segment mapping. Again, p and q are identical with the
roles of A and B swapped:

p = S(Ai, Bj + oj × (Bj − Bj−1)) (11)

q = S(Bj , Ai + oi × (Ai − Ai−1)) (12)

These seven formulas provide the complete cost function
for all possible transitions within the graph. Together, the
cost of any proper mapping, which is a route through the
graph from the upper left to lower right, can be computed
as the sum of the costs along that route. Of all the possible
routes, a subset will incur the minimal cost, and our goal is
to identify that cost and the mappings that produce it. Before
we introduce an algorithm that will optimize this, we will
first consider several preprocessing steps that might be used.

Pre-processing steps

Prior to applying ALCAMP to a pairing of paths, three
distinct pre-processing steps might be needed. We offer spe-
cific solutions to two of these, although one might use a
number of alternate approaches.

So far, we have assumed that a path is a relatively
true representation of the original behavior, sampled with-
out considerable noise. If a path is known to be sampled
with noise, one may wish to first pre-process the path with
some time-series smoothing or interpolation algorithms.
The details of this approach would need to be fairly spe-
cific to the type of data one is considering. A smoothed
representation of a noisy data source may enable the path
to be represented using fewer points or path segments, and
thus could allow for a more efficient optimization. How-
ever, this step is not necessary to apply the algorithm, and
it may not even typically provide a better measure of path
similarity, given the current approach already optimizes a

cost function. Consequently, we have merely mentioned the
possibility but do not explore it in this paper.

A second pre-processing step can be done to improve
efficiency. One can remove redundant points, simplifying
the path by merging segments that lie on the same line,
or that do not contribute significantly to the shape of the
path. A robust algorithm has been proposed by Latecki
and Lakämper (2000), and we provide an implementa-
tion of their algorithm in our software library in a routine
called SimplifyPath. This not only removes completely
redundant points, but it also can remove points that only
impact the shape of the overall path in small ways.

Finally, a third approach is to do further interpolation
to ensure that a series of points on one path can map in a
monotonic fashion to points on a second path. For exam-
ple, we can add points implied by each Q point from Fig. 4,
allowing each point to connect directly to another point, and
eliminating any need to allow multiple consecutive points
to map onto the same segment. This interpolation approach
can reduce efficiency of the overall algorithm, but its advan-
tage is that it enforces a strictly non-decreasing mapping
along each path segment. The alternative approach, allowing
consecutive least-area mappings of points onto a single seg-
ment, can produce a larger cost, and is thus sensitive to how
paths are segmented, but typically has only a minor impact
and can be substantially more efficient.

Finding the least-cost mapping

Once a pair of paths has undergone pre-processing, we can
construct a graph such as in Fig. 3 and compute costs asso-
ciated with each transition between nodes. Any legal route
from the upper left to the lower right corresponds to a map-
ping between paths, and the sum of the transitions is the
cost of that mapping. For paths with non-trivial curvature,
some of these mappings will produce greater area costs than
others, because they will create a map that produces over-
lapping regions whose areas are counted multiple times.
However, there will typically be a set of mappings whose
costs are identical and equal to the minimum cost.

For any network, the total number of possible paths
is finite but large, and for paths with only a handful of
nodes, one could perform exhaustive search to find the least-
cost path. For complex mappings (e.g., for paths where at
least one is smoothly generated and so includes hundreds
of nodes), a complete search would be computationally
infeasible. However, there exists a standard dynamic pro-
gramming algorithm that allows the cost of the shortest path
in such a graph to be computed in a time proportional to
M × N , where M and N refer to the number of nodes in
paths A and B.

An efficient solution to finding the least-cost mapping
for such a graph is closely related to the algorithm for

62 Behav Res (2016) 48:53–71

computing edit distance. The mechanics and proofs of
the optimality of such algorithms are well understood and
appear in many textbooks on dynamic programming (see
Marzal and Vidal, 1993, for a detailed explanation using
edit distance). Despite the fact that there are a large number
of routes through the network, the cost of the best route(s)
can be found by visiting each node only once, provided
that all the incoming nodes to any node can be computed
(i.e., there are no circuits in the directed graph). An intuitive
explanation for this uses a recursive argument. Consider that
any partial route through the network (e.g., starting at the
upper left node but ending at an intermediate node) repre-
sents a partial mapping between the paths. Thus, suppose
we have identified the least-cost route to the three interme-
diate nodes that precede the final (bottom right) node of
the graph. Then the best route can be identified by comput-
ing the transition costs between each of these three previous
nodes and the final node mapping, and choosing the mini-
mum value. But finding the least-cost route to any of these
previous nodes can likewise be computed if the minimum
costs of the incoming nodes are also known. Applying the
algorithm recursively, one can continue until one arrives at
the upper-left node of the network, which has no input nodes
and thus a cost of 0. Once this first node is known, the
least-cost route through the first row can be computed eas-
ily, moving left to right on each row, and handling each row
top to bottom in sequence, as the prior costs that need to be
known have already been computed. Thus, each node of the
network is visited once, and at the end the cost of the best
mapping is available. The algorithm to find the smallest cost
has computational complexity O(n × m), although an addi-
tional pass through the network is required to determine the
set of mappings that produce this optimal cost. Importantly,
multiple routes could (and in our case typically do) produce
a least-cost mapping, and although this method can deter-
mine the cost of best mapping, it does not identify the set of
all least-cost mappings.

Finding the family of least-cost mappings

This method is sufficient for computing the least-cost area
between paths, and is robust to a number of problems
for simpler polygon-based measures. However, it may not
provide an unambiguous answer to the path correspon-
dence problem, because there are typically many equivalent
mappings that produce the same area. For example, con-
sider the three mappings in Fig. 5, which each have the
same cost because each exactly fills the area (in fact, almost
every proper route through the cost network produces the
same cost!). This network is shown in Fig. 6, with the three
mappings highlighted. Here, the top-most route in Fig. 5
corresponds to the upper mapping in Fig. 6, the center route
corresponds to the lower mapping, and the third route in

Fig. 6 corresponds to the diagonal mapping in the planar
graph.

These three mappings have the same area-based cost,
which illustrates how area-based measures alone often can-
not identify a best mapping between paths. A number of
additional constraints can be considered for this situation,
but one we suggest aims to minimize the mean distance
of the connections between paths. To do this, a second
pass is made through the network to determine all possible
minimal-cost mappings. Finally, this least-cost subnetwork
is searched using the same dynamic programming approach
used in the first pass to find the mapping that minimizes
the sum of the node-node, node-segment, and segment-node
distances (rather than areas). The third mapping in Fig. 5
(corresponding to the center route in Fig. 6) is a result of
this minimization, which produces the smallest average dis-
tance between nodes among all mappings having the same
area. Visually, this mapping is one that appears to directly
connect each point on one path with its closest point on the
opposite path.

This completes the basic description of the ALCAMP
procedure. Software for implementing these methods is
available in the pathmapping package for the R statis-
tical computing language. Next, we will examine how this
process fares on example toy and real-world problems.

Applications and example

Conceptually, the algorithms described here are fairly sim-
ple, but the implementation requires substantial program-
ming. We have implemented the algorithm using the R
statistical computing language (R Core Team 2013). The
complete source code is available for download from https://
sites.google.com/a/mtu.edu/mapping/tasks, and is available
in the pathmapping package via the Comprehensive R
Archive Network (CRAN). A description of the functions is
provided in Appendix.

The algorithm produces reasonable answers in the face
of all of the challenges identified in Fig. 1, as shown in
the first two rows of Fig. 7. The third row shows example
path pairs from a map communication task. In this task, one
participant saw one reference path and communicated this
verbally to a second participant who drew it. The left panel
of row 3 shows a highly accurate communication; the center
shows a communication with two distinct error patterns: one
very costly error where the northward path was mis-drawn
by about 300 pixels (despite the fact that this only used two
placed points), and another region involving dozens of given
and placed points that were also mis-specified badly, yet this
cost was considerably less. The right panel of row 3 shows
an example where a complex portion given path was approx-
imated with a single line, with reasonably good results.

https://sites.google.com/a/mtu.edu/mapping/tasks
https://sites.google.com/a/mtu.edu/mapping/tasks

Behav Res (2016) 48:53–71 63

Fig. 5 Three equal-area mappings between two paths. The first map-
ping prefers transitions along the bottom path; the second mapping
prefers transitions along the top path, and the third mapping minimizes

the sum of the distances between each node on one path and the other
path. Colors are used to illustrate different segments of the mappings

However, it also highlights a limitation of our area-based
approach: the two lower points on the simpler drawn path
each miss the given point by about 50 pixels, and clearly
were intended to correspond to one another. The least-area
correspondence does not map these critical corners to one
another.

Validating area-based deviation as an index of memory

The bottom row of Fig. 7 shows three trials from a
task whose data and methods were originally reported by

Perelman and Mueller (2013). In this task, 21 undergradu-
ate participants each took part in five trials of a simulated
aerial search task3 implemented using the PEBL experimen-
tation software platform (Mueller & Piper, 2014). In the
task, participants were given a fixed amount of fuel (cor-
responding to 1,000 screen updates, or about 80 s) to fly
a simulated aircraft over a map in search of specific tar-
gets located at half of 12 prespecified hot zones. Flight was

3This search task software is available at https://sites.google.com/a/
mtu.edu/aerialste/.

https://sites.google.com/a/mtu.edu/aerialste/
https://sites.google.com/a/mtu.edu/aerialste/

64 Behav Res (2016) 48:53–71

Fig. 6 The planar graph depicting the possible mappings between the two paths. Each route through the network corresponds to one mapping in
Fig. 5

controlled using a touch screen monitor that changed the
current destination of the aircraft. Once the aircraft reached
that location, it smoothly circled that point until redirected
(leading to circles in the flight route). To encourage partic-
ipants to search efficiently, the fuel provided was not suffi-
cient to search all targets, and participants found about half
of the targets on any given trial. Once completed, two mem-
ory tests were performed: first, the participant drew their
best memory of their flown path on the touch screen; then,
they were asked to identify the locations of the found tar-
gets within the 12 unlabeled hot zones. For the second task,
the hit rate (proportion of originally found targets remem-
bered) and false alarm rate (proportion of foils incorrectly
remembered) were both computed, and a simple difference
score of HR-FAR served as a memory performance measure
(Signal detection statistics such as d ′ were untenable
because many participants had hit rates or false alarm rates
of 1 or 0).

We wanted to examine whether individual differences
in memory for the path would predict differences in tar-
get localization accuracy. To the extent that localization
accuracy is negatively correlated with given-to-remembered
path deviation, this would indicate that a common set of
representations, processes, or strategies is responsible.

Because the flown distances were all roughly the same,
total area-based deviation provided a good measure of path

dissimilarity, and thus memory precision. The mappings in
the bottom row of Fig. 7 were fairly representative of perfor-
mance in this task. Total area-based deviation ranged from
about 35,000 pixels to around 80,000 pixels, with a few
trials even larger than that.

We computed the average area-based deviation score for
each participant (across five trials), and compared it to
their target localization memory score. Results (see Fig. 8)
showed a high negative correlation across participants (R =
−.759, t (19) = −5.08, p < .001), indicating that partici-
pants who had better memory for where they found specific
targets were able to redraw their flown path more precisely.
Although several psychological explanations could account
for this correlation (differences in alertness, attention, a
common memory resource, etc.), this demonstrates that the
area-based deviation score has convergent validity as a mea-
sure of memory, correlating with memory for other aspects
of the flown path.

Discussion

The method we describe seeks to measure the deviation
between two paths, and along the way identifies a map-
ping between the paths that enables additional analytics.
We believe this algorithm will offer new ways to examine

Behav Res (2016) 48:53–71 65

0 100 200 300

0
1
0
0

2
0
0

3
0
0

Parallel Loops

0 100 200 300

0
1
0
0

2
0
0

3
0
0

Path Intersections

0 100 200 300

0
1
0
0

2
0
0

3
0
0

Line Segmentation

0 100 200 300

0
1
0
0

2
0
0

3
0
0

Incomplete Routes

0 100 200 300

0
1
0
0

2
0
0

3
0
0

Self−Intersections

0 100 200 300

0
1
0
0

2
0
0

3
0
0

Route Complexity

0 200 400 600 800

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Map Task
Area: 15765

0 200 400 600 800

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Map Task
Area: 136184

0 200 400 600 800

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Map Task
Area: 54983

0 200 400 600 800

0
2
0
0

4
0
0

6
0
0

8
0
0

Flight Memory Task
Area: 40025

0 200 400 600 800

0
2
0
0

4
0
0

6
0
0

8
0
0

Flight Memory Task
Area: 63505

0 200 400 600 800

0
2
0
0

4
0
0

6
0
0

8
0
0

Flight Memory Task
Area: 84198

Fig. 7 Example mappings produced by the least-cost mapping algorithm. The first two rows show how the algorithm’s output for small sample
problems. The third row shows output for three map route drawing data sets, and the fourth row shows output for three flight path memory trials

66 Behav Res (2016) 48:53–71

40000 50000 60000 70000 80000

0
.0

0
.2

0
.4

0
.6

Area between flown and remembered paths

T
a
r
g
e
t
id
e
n
ti
fi
c
a
ti
o
n
 a
c
c
u
ra
c
y

R = −0.759

Fig. 8 Scatterplot showing relationship across participants of mean
area-based deviation (horizontal axis) and memory score (target hit
rate - false alarm rate)

current data, inspire new types of experiments enabled by
the method, and provide new ideas for data mining of path
data. As currently defined, the method is sufficient for many
applications, although there are a number of limitations that
should be recognized (and that could be the source of future
development).

Limitations

Area-based costs The present algorithm uses the area
between paths to measure the cost of a deviation. This has
a drawback, in that there are often many ways in which
the area between paths can be segmented, and so there is
some ambiguity in determining a specific mapping.We have
dealt with this by performing a second pass over the sub-
network that produces the minimal area, and minimizing
a second value that corresponds, roughly, to the sum of
the distance between all the points on each path and the
other path.

Area-based cost can be viewed as the integral of a
constant cost function over the length of corresponding
segments. It may be possible to use a different cost func-
tion to constrain the optimization in a way that tends to
produce a single best mapping in one step. For any appli-
cation, the cost of deviations may not map directly onto
the area (and the cost might either be concave or con-
vex with the absolute deviation). Any convex loss function,
such as squared error, would satisfy Jensen’s inequality
and insure that the mapping prefers segment mappings
that have smaller absolute distances, and this could be
a reasonable alternative cost function to adopt. Now, the
polygon-cost would no longer be computable with the
Surveyor’s formula, but Green’s theorem would still hold
and allow a relatively efficient means for computing this
cost for each pair of segments. The pathmapping package

allows using alternative cost functions, but we have not sys-
tematically explored the consequences of these alternative
costs.

An area-based cost function can also be insensitive to
complexity at different scales. That is, a long, smooth
or straight path may be easily captured by just a few
line segments, whereas a path with detailed curvature
in a local region may require dozens of line segments
to capture it. Yet, moving or deleting one point of the
large-scale region may have a large cost, but smooth-
ing a detailed path may have only limited cost. For
example, consider the center panel of the third row of
Fig. 7. There, two mismatching points produced a large
deviation.

One way to address this is to use the mapping obtained
via ALCAMP and take an approach similar to the EDR
algorithm of Chen et al. (2005). Here, one can identify a cost
threshold, and count the number of edges that have a cost
less than the threshold. In this case, the left half of the paths
would result in two above-threshold points, whereas the
right-half would result in dozens of above-threshold points.
This may or may not be appropriate given a particular
application.

Use of raw path data A second limitation that should be
acknowledged regards the nature of the path data. The
algorithm takes as input a path, defined as an ordered
sequence of (x, y) locations. However, many paths may
not be defined in this way. For example, if one were
measuring how closely a GPS-tracked path followed a
road drawn on a map, the GPS trail might be an ordered
sequence of points, but the road might be simply a wavy
line drawn on the map. Alternately, jet stream paths may
be inferred from a complex vector field, and other paths
may be similarly inferred from some other primary mea-
sure. These paths and others might also be more like a
stream, with their widths varying along their extent. To
use the algorithm, one must still (manually or automati-
cally) translate the path into a single ordered sequence of
points. Algorithms for doing this are beyond the scope of the
current research, and might depend on the types of paths
being investigated.

Practical efficiency for long paths Another related lim-
itation is that for paths digitized or sampled from a
continuous source, (e.g., GPS history trail, flight path,
mouse tracking, etc.), the sampled path may have hun-
dreds or thousands of points. Depending on computing
resources, this may make the present algorithm imprac-
tical. In situations such as this, one could reduce the
number of points in one or both paths using methods
such as the shape evolution algorithm introduced by Late-
cki and Lakämper (1999). This would, at a minimal cost

Behav Res (2016) 48:53–71 67

of precision, allow more efficient calculation of distance
between paths.

Additional spatial, time, and other dimensions Finally, an
additional limitation is that the current algorithm only han-
dles two spatial dimensions. This approach might be useful
for three-dimensional data, such as search behaviors (in
aerial, water-based, or virtual movements), or it could con-
sider time as a third dimension (producing movement tra-
jectories such as a football running route or military attack),
or incorporate both (comparing landing or take-off paths of
pilots). The present implementation is limited to two dimen-
sions, but in principle could be extended to larger dimen-
sional spaces.

Summary and conclusions

Researchers in behavioral sciences often obtain spatial paths
in which they wish to derive a measure of similarity to
another path. Previous methods adopted have been ad hoc
and have required tedious hand-coding. Here, we propose
an algorithm that (1) finds the distance between two paths,
which can be used as a measure of dissimilarity; and (2)

determines an optimal correspondence between elements of
each path, mapping each point to a point or segment on the
other path. An implementation of the algorithm using the R
statistical computing language is available, and can provide
useful metrics both within behavioral research and in other
domains.

Notes The authors gratefully acknowledge the advice of and
discussions with the late Prof. Arthur F. Veinott, Jr., who
pointed us toward the dynamic programming solutions to this
problem.

Appendix

Overview of the pathmapping package for R

The R software code we provide contains a number of func-
tions that enable a user to determine the distance and a
mapping between paths. Along with a number of basic func-
tions to compute distances, costs, and closest points between
points and segments, the following functions are available

Table 2 Table A1 documents the main user-accessible functions. e, a path refers to a two-column matrix of x,y coordinates; a mapping refers
to the data structure produced by the CreateMap function

Function name arguments Return value Description

CreateMap path1, path2, mapping Finds a minimum-cost

plotgrid =F, mapping between two paths

Cost=Cost.area,

nondecreasingos=F,

verbose=F,

insertopposites=T

GetMinMap mapping,leftbias=T, mapping Finds the minimum-area mapping

verbose=F that also minimizes linear distance

between points on paths

PlotMap mapping, cols, Plots the paths and the

linecol, xlim, ylim mapping between paths

Insert path1, path2, mapping Inserts points on one path that

Intersections insertopposites=T, are opposite points on a second path.

verbose=F

SimplifyPath path, path Removes points that do not

tolerance=.075,faster=T, significantly impact the shape

verbose=F, plot=F of the path, using method by Latecki and Lakämper (1999)

surveyors polygon An area Computes area inside polygon

PathDist path A distance Computes length of a path

SummarizeMapping map A matrix Returns a common matrix

showing the direct correspondence

between two paths.

PathOverlap map A proportion Proportion of paths that overlap in their mapping.

68 Behav Res (2016) 48:53–71

for computing and displaying path mappings. Complete
documentation and further examples are provided within the
package, which can be installed and accessed by typing the
following within R:

First, each path must be defined as two columns of x,y
values, for example:

The main function that computes the basic mapping is
called CreateMap, which takes the two paths as argu-
ments, and several optional arguments: plotgrid, which
plots the grid network seen in Fig. 9; nondecreasingos,
which will force the mapping to be monotonic when
multiple points are mapped onto a single segment, and
verbose, which prints out status information during com-
putation. Importantly, the CreateMap function returns a
data structure that contains a minimum-cost mapping as
well as many other aspects of the problem.

The returned value includes the following elements
which can be accessed via the $ accessor (e.g., dist is
accessed using answer$dist. Values include:

• path1, the first path values
• path2, the second path values
• linkcost, a matrix showing the linear distance

between each node and the other path
• leastcost, a matrix showing the minimum cumula-

tive area-based costs at each node.
• bestpath, an N ×M×2 matrix that records the least-

cost area-based path to each node. Note that the output
of CreateMap does not choose a path that minimizes
the linear distance between paths.

• opposite, a matrix computing oij for each node-
segment pair.

• dist, the areal deviation between paths

The InsertIntersections function will first insert
points on paths where the paths intersect, and then (option-
ally) insert points on segments of one path that are opposite
points on the second path. This function is called by the
CreateMap function, and so does not need to be called by
the user directly.

This data structure can be displayed using PlotMap()
function, which draws a polygon representing each mapping
along the path, as shown in the top panel of Fig. 10. The data
structure produced by CreateMap can be re-analyzed by

Fig. 9 Example grid plotted using the CreateMap function

Behav Res (2016) 48:53–71 69

Fig. 10 Example paths, including default mapping produced by the CreateMap function, and distance-minimized mapping produced by
GetMinMap

the GetMinMap function, which itself returns a mapping
object:

This function adds an additional value to the mapping
object, $leastcostchain, which records the cumula-
tive cost network for the linear distance optimization. The
result of this function is plotted in the bottom panel of
Fig. 10.

The basic mapping function can be fairly computation-
ally intensive, given that it is not currently parallelized,
it is running in interpreted R code, and it is currently
not optimized for speed. For paths with relatively few
points (fewer than 100), the mapping completion time is
tolerable, but when mapping one or more complex paths
containing hundreds of points, the time to complete the
mapping can take much longer. Any individual path can

be reduced to a smaller number of critical points using the
SimplifyPath function:

The default tolerance value (0.075) has produced reason-
able results for fairly long and complex paths. A value very
close to 0 will only remove points that lie one a segment
containing its direct neighbors; a value larger will be more
likely to distort smooth curves.

Finally, the function PathDist() computes the over-
all length of a path, by summing the length of each segment
connecting adjacent points. This can be useful for com-
puting an average deviation score (by dividing the area
deviation by the path length), or for other metrics.

Details of flight path memory example

For the flight memory example in the paper, each flown
path (flownpath) involved 1,001 points, represented as

70 Behav Res (2016) 48:53–71

a two-column matrix of x and y coordinates. The follow-
ing code represents the logical steps (with brief comments)
used to perform this analysis (although we omit the logic to

read in files from each individual file and separate these into
different distinct trials).

References

Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory
formation. Brain: A Journal of Neurology, 105(2), 331–348.

Amsler, J. (1856). Über die mechanische Bestimmung
des Flächeninhaltes, der statischen Momente und der
Trägheitsmomente ebener Figuren insbesondere über einen neuen
Planimeter (On the mechanical assessment of the area, the static
moments, and the moment of inertia of figures in a plane, in
particular on a new planimeter) Schaffhausen: Beck. available
from. http://books.google.com/books?id=qpQ5AAAAcAAJ

Anderson, A.H., Bader, M., Bard, E. G., Boyle, E., Doherty, G., &
Garrod, S. (1991). The HCRC map task corpus. Language and
Speech, 34(4), 351–366.

Asundi, A., & Wensen, Z. (1998). Fast phase-unwrapping algorithm
based on a gray-scale mask and flood fill. Applied Optics, 37(23),
5416–5420.

Barton, N. P., & Ellis, A.W. (2009). Variability in wintertime posi-
tion and strength of the North Pacific jet stream as represented
by re-analysis data. International Journal of Climatology, 29(6),
851–862.

Belongie, S., Malik, J., & Puzicha, J. (2001). Matching shapes. In
Proceedings of the Eighth IEEE International Conference on
Computer Vision (ICCV-2001) (Vol. 1, pp. 454–461).

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and
object recognition using shape contexts. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(4), 509–522.

Braden, B. (1986). The surveyor’s area formula. The College Mathe-
matics Journal, 17(4), 326–337.

Brown, G., Anderson, A.H., Shillcock, R., & Yule, G. (1984). Teach-
ing talk. Cambridge University Press.

Care, C. (2010). Technology for modelling: Electrical analogies, engi-
neering practice, and the development of analogue computing,
Chapter 2. Berlin: Springer. doi:10.1007/978-1-84882-948-0

Ceriani, S. A., Roth, J. D., Evans, D. R., Weishampel, J. F., & Ehrhart,
L.M. (2012). Inferring foraging areas of nesting loggerhead tur-
tles using satellite telemetry and stable isotopes. PloS One, 7(9),
e45335.

Chen, L., Özsu, M. T., & Oria, V. (2005). Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data
(pp. 491–502).

Croxall, J. P., Silk, J. R., Phillips, R. A., Afanasyev, V., &
Briggs, D. R. (2005). Global circumnavigations: Tracking year-
round ranges of nonbreeding albatrosses. Science, 307(5707),
249–250.

Dasarathy, B. V. (1991). Nearest neighbor (NN) norms: NN pattern
classification techniques. IEEE Computer Society Press.

Demuth, J. L., DeMaria, M., & Knaff, J. A. (2006). Improvement of
advanced microwave sounding unit tropical cyclone intensity and
size estimation. Journal of Applied Meteorology and Climatology,
45(11), 1573–1581.

Egevang, C., Stenhouse, I. J., Phillips, R. A., Petersen, A., Fox, J. W.,
& Silk, J. R. (2010). Tracking of Arctic terns Sterna paradisaea
reveals longest animal migration. Proceedings of the National
Academy of Sciences, 107(5), 2078–2081.

Erdenebaatar, B., & Humphrey, C. (1996). Socio-economic aspects
of the pastoral movement patterns of mongolian herders. In C.
Humphrey & D. Sneath (Eds.), (pp. 58–110). White Horse Press.

Fisk, H. N. (1944). Geological investigation of the alluvial val-
ley of the lower Mississippi River. War Department, Corps
of Engineers. Retrieved from. http://biotech.law.lsu.edu/climate/
mississippi/fisk/fisk.htm

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for
studying real-time mental processing using a computer mouse-
tracking method. Behavior Research Methods, 42(1), 226–241.

Gatterdam, R. W. (1981). The planimeter as an example of Green’s
theorem. American Mathematical Monthly, 701–704.

Gawarkiewicz, G. G., Todd, R. E., Plueddemann, A. J., Andres, M.,
& Manning, J. P. (2012). Direct interaction between the Gulf
stream and the shelfbreak south of New England. Scientific
Reports, 2.

Gorelick, L., Blank, M., Shechtman, E., Irani, M., & Basri, R. (2007).
Actions as space-time shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(12), 2247–2253.

Gorelick, L., Galun, M., Sharon, E., Basri, R., & Brandt, A.
(2006). Shape representation and classification using the Poisson
equation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(12), 1991–2005.

Guilford, T., Meade, J., Willis, J., Phillips, R. A., Boyle, D., &
Roberts, S. (2009). Migration and stopover in a small pelagic
seabird, similar point, for: Manx shearwater Puffinus puffinus:
Insights from machine learning. Proceedings of the Royal Society
B: Biological Sciences. rspb–2008.

Hogan, W. W. (1973). Point-to-set maps in mathematical program-
ming. SIAM Review, 15(3), 591–603.

Istomin, K. V., & Dwyer, M. J. (2009). Finding the way. Current
Anthropology, 50(1), 29–49.

Kennedy, W. G., Hailegiorgis, A., Rouleau, M., Bassett, J., Coletti, M.,
& Balan, G. (2010). MASON HerderLand: Modeling the ori-
gins of conflict in East Africa. Proceedings of the First Annual
Conference of the Computational Social Science Society.

http://books.google.com/books?id=qpQ5AAAAcAAJ
http://dx.doi.org/10.1007/978-1-84882-948-0
http://biotech.law.lsu.edu/climate/mississippi/fisk/fisk.htm
http://biotech.law.lsu.edu/climate/mississippi/fisk/fisk.htm

Behav Res (2016) 48:53–71 71

Latecki, L. J., & Lakämper, R. (1999). Convexity rule
for shape decomposition based on discrete contour
evolution. Computer Vision and Image Understanding, 73
(3), 441–454.

Latecki, L. J., & Lakämper, R. (2000). Shape similarity mea-
sure based on correspondence of visual parts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22
(10), 1185–1190.

Levenshtein, V.I. (1966). Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady, 10, 707.

Littman, M. L., Dumais, S. T., & Landauer, T. K. (1998). Auto-
matic cross-language information retrieval using latent semantic
indexing. In Cross-language information retrieval (pp. 51–62).
Springer.

MacGregor, J. N., & Ormerod, T. (1996). Human performance on the
traveling salesman problem. Perception & Psychophysics, 58(4),
527–539.

Marzal, A., & Vidal, E. (1993). Computation of normalized edit dis-
tance and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(9), 926–932.

Mueller, S. T. (2010). A partial implementation of the BICA cognitive
decathlon using the Psychology Experiment Building Language
(PEBL). International Journal of Machine Consciousness, 2(2),
273–288.

Mueller, S. T., Perelman, B. S., & Simpkins, B. G. (2013). Pathfinding
in the cognitive map: Network models of mechanisms for search
and planning. Biologically Inspired Cognitive Architectures, 5,
94–111.

Mueller, S. T., & Piper, B. J. (2014). The Psychology Experiment
Building Language (PEBL) and PEBL test battery. Journal of
Neuroscience Methods, 222, 250–259.

Mueller, S. T., Price, O. T., McClellan, G. E., Fallon, C. K., Simpkins,
B., & Cox, D. A. (2010). Cognitive Performance Prediction with
the T3 Methodology, (Tech. Rep.). Dayton, OH: DTRA Technical
report, HDTRA-1-08-C-0025.

Perelman, B. S., & Mueller, S. T. (2013). Examining memory for
search using a simulated aerial search and rescue task. In Proceed-
ings of the 17th International Symposium on Aviation Psychology
(ISAP17) (pp. 302–309). Dayton, OH.

Pizlo, Z. (2010). 3D shape: Its unique place in visual perception.MIT
Press.

Pizlo, Z., Stefanov, E., Saalweachter, J., Li, Z., Haxhimusa, Y., &
Kropatsch, W. G. (2006). Traveling salesman problem: A foveat-
ing pyramid model. The Journal of Problem Solving, 1(1), 8.

R Core Team (2013). R: A Language and Environment for Statistical
Computing [computer software manual]. Vienna, Austria. http://
www.R-project.org/

Riemann, B. (1851). Grundlagen für eine allgemeine Theorie der
Functionen einer veränderlichen complexen Grösse (Doctoral dis-
sertation, EA Huth). See reference at: http://www.emis.ams.org/
classics/Riemann/Grund.pdf

Ruddle, R. A., & Lessels, S. (2009). The benefits of using a walking
interface to navigate virtual environments. ACM Transactions on
Computer-Human Interaction (TOCHI), 16(1), 5.

Shaw, J. (2004). QuickFill: An efficient flood fill algorithm.
Online article Retrieved from: http://www.codeproject.com/
Articles/6017/QuickFill-An-efficient-flood-fill-algorithm

Tuch, D. S., Reese, T. G., Wiegell, M. R., & Wedeen, V. J. (2003).
Diffusion MRI of complex neural architecture. Neuron, 40(5),
885–895.

van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye move-
ment trajectories and what they tell us. Neuroscience & Biobehav-
ioral Reviews, 30(5), 666–679.

Tuch, D. S., Reese, T. G., Wiegell, M. R., & Wedeen, V. J. (2003).
Diffusion MRI of complex neural architecture. Neuron, 40(5),
885–895.

Veinott, E. S., Olson, J., Olson, G. M., & Fu, X. (1999). Video
helps remote work: Speakers who need to negotiate common
ground benefit from seeing each other. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
(pp. 302–309).

Weimerskirch, H., & Wilson, R. P. (2000). Oceanic respite for
wandering albatrosses. Nature, 406(6799), 955–956.

Yanagisawa, Y., Akahani, J., & Satoh, T. (2003). Shape-based sim-
ilarity query for trajectory of mobile objects. In Mobile Data
Management (pp. 63–77). Springer.

Zangwill, W. (1969). Nonlinear programming: A unified approach.
Prentice-Hall, Englewood Cliffs, NJ.

Zhang, R., Nordman, A., Walker, J., & Kuhl, S. A. (2012). Minifica-
tion affects verbal-and action-based distance judgments differently
in head-mounted displays. ACM Transactions on Applied Percep-
tion (TAP), 9(3), 14.

http://www.R-project.org/
http://www.R-project.org/
http://www.emis.ams.org/classics/Riemann/Grund.pdf
http://www.emis.ams.org/classics/Riemann/Grund.pdf
http://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-f ill-algorithm
http://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-f ill-algorithm

	An optimization approach for mapping and measuring the divergence and correspondence between paths
	Abstract
	Behavioral paths and trajectories
	Potential applications of a general-purpose path mapping technique
	Goals of a path mapping algorithm and related problems
	Non-ordered mappings
	Measuring trajectory similarity
	Shape similarity algorithms

	Challenges for path mapping and alignment algorithms

	Candidate methods for measuring divergence between paths
	Area-based measures
	The graph planimeter, Green's theorem, and the surveyor's formula
	Surveyor's formula applied to segmented polygons
	Flood-fill algorithms
	General limitations of area-based solutions

	An algorithm for finding the least-cost areal mapping between Paths (ALCAMP)
	Defining a path
	Determining a mapping between two paths
	Computing the area-based cost for any mapping

	Pre-processing steps
	Finding the least-cost mapping
	Finding the family of least-cost mappings

	Applications and example
	Validating area-based deviation as an index of memory

	Discussion
	Limitations
	Area-based costs
	Use of raw path data
	Practical efficiency for long paths
	Additional spatial, time, and other dimensions

	Summary and conclusions

	Notes
	Appendix
	Overview of the pathmapping package for R
	References

