
Conducting real-time multiplayer experiments on the web

Robert X. D. Hawkins

Published online: 1 October 2014
Psychonomic Society, Inc. 2014

Abstract Group behavior experiments require potentially
large numbers of participants to interact in real time with
perfect information about one another. In this paper, we ad-
dress the methodological challenge of developing and
conducting such experiments on the web, thereby broadening
access to online labor markets as well as allowing for partic-
ipation through mobile devices. In particular, we combine a
set of recent web development technologies, including
Node.js with the Socket.io module, HTML5 canvas, and
jQuery, to provide a secure platform for pedagogical demon-
strations and scalable, unsupervised experiment administra-
tion. Template code is provided for an example real-time
behavioral game theory experiment which automatically pairs
participants into dyads and places them into a virtual world. In
total, this treatment is intended to allow those with a back-
ground in non-web-based programming to modify the tem-
plate, which handles the technical server–client networking
details, for their own experiments.

Introduction

Many phenomena studied in group behavior research emerge
from real-time interactions. In financial or prediction markets,
participants can buy or sell shares at any point in time, not just
on the hour. Prices are immediately updated and made avail-
able for other participants to see and act upon, a condition
known as perfect information (Boer, Kaymak, & Spiering,
2007; Deck & Nikiforakis, 2012). Multi-agent systems like
crowds, flocks, and social networks update their perceptions
of neighbors in real-time and are subject to time-delay

constraints forcing individuals to act asynchronously, yet they
often remain stable and capable of reaching group-level con-
sensus (Cao, Morse, & Anderson, 2008; Olfati-Saber, Fax, &
Murray, 2007). In group foraging tasks, players’ knowledge of
resource levels and the positions of other players must be kept
up-to-date in order to make informed decisions and converge
to accurate equilibrium distributions (Goldstone, Ashpole, &
Roberts, 2005).

Recent experiments in behavioral game theory have dem-
onstrated that allowing real-time interaction dramatically
increases cooperation levels in the prisoner’s dilemma and
also facilitates cooperation under robust communication pro-
tocols in public goods provision (Friedman & Oprea, 2012;
Charness, Oprea, & Friedman, 2012). Similar dynamics also
play a role in student-teacher interaction, collaborative brain-
storming, social influence, group decision-making, and in-
terpersonal communication (Cialdini & Goldstein, 2004;
Dale, Fusaroli, Duran, & Richardson, 2014; Friedman &
Oprea, 2012; Michinov & Primois, 2005; Miller, Garnier,
Hartnett, & Couzin, 2013).

There are two primary ‘use cases’ that drive the demand for
a way to implement such environments on the web and across
devices. First, foundational examples of group behavior like
those mentioned above are increasingly included in the cur-
riculum of undergraduate courses in psychology, education,
and economics. Instructors are looking for ways to increase
engagement in the classroom, making interactive experiment
demonstrations particularly attractive. With the tools we
describe in this paper, instructors can code up an experi-
ment on a web server, post a URL for students to follow
on their laptops, smartphones, or tablets during class, and
immediately collect the results for discussion. There are no
software requirements for the students aside from a browser,
and mobile devices are treated no differently than desktop
devices as long as keyboard input is avoided.

Second, online labor markets like Amazon Mechanical
Turk offer many advantages to researchers in the behavioral
sciences but these advantages are currently unavailable for
many group behavior applications due to the technical

R. X. D. Hawkins (*)
Department of Psychological and Brain Sciences, Cognitive Science
Program, Indiana University, Bloomington, IN 47405, USA
e-mail: hawkrobe@indiana.edu

Behav Res (2015) 47:966–976
DOI 10.3758/s13428-014-0515-6

Keywords Web experiments . Node.js . Behavioral game
theory

difficulty of running real-time, multiplayer experiments on-
line. These advantages include recruitment from a large, stable
subject pool, quick deployment of new experimental con-
ditions, and remote administration with little to no time
commitment (Mason & Suri, 2012). Furthermore, early
studies demonstrated that results from the web version of
an experiment were qualitatively indistinguishable from a
controlled laboratory version, regardless of compensation
level (Mason & Watts, 2010; Paolacci, Chandler, &
Ipeirotis, 2010), and the subject pool is much more di-
verse than the typical sample of American college students
(Buhrmester, Kwang, & Gosling, 2011).

Most behavioral experiments currently being developed for
the web do not require participants to directly interact with one
another. Those that do, like the public goods game reported by
Suri and Watts (2011), are staged in discrete blocks. In other
words, each turn consists of players simultaneously and inde-
pendently entering their responses, usually into text boxes,
under some time pressure. Once the time window is up,
responses are collected and the web page automatically re-
freshes with updated information for another round of play.

While staged designs are straightforward to implement
online with HTTP request methods (e.g. GETand POST), they
are insufficient for the full range of group behavior contexts.
The real-time examples given above require participants to see
what actions others have taken immediately after those actions
have taken place and to take actions at any point in time
without artificial restrictions. For such tasks, converting the
natural real-time design to a staged design for ease of running it
online would sacrifice their central mechanism.

Recently, the software development community has coa-
lesced around a set of JavaScript-based tools built specifically
to address these challenges, which were originally encoun-
tered in building web applications like chat rooms and fast-
paced multiplayer games. In this paper, we adapt these
preexisting tools to run low-maintenance real-time multiplay-
er experiments directly in the browser. The resulting system
does not require an experimenter to be present to administer
the experiment, nor does it cap the number of experiments
running simultaneously. Due to extensive coverage elsewhere
(e.g. Mason & Suri, 2012; Paolacci, Chandler, &
Ipeirotis, 2010), we will not dwell on the details of running
experiments on specific crowd-sourcing platforms. Although
our code was tested and successfully run on Amazon
Mechanical Turk, it is intentionally platform-independent.

The architecture of the system is depicted in Fig. 1. We
begin by running server-side JavaScript code with Node.js,
using the Express module to listen for users to connect. When
users access the URL on which our system is listening, the
module Socket.io is invoked to establish and maintain a
persistent connection between the user (or client) and the
server. Upon first connecting, users are automatically placed
in a waiting room or trigger a new experiment instance if other

players are available. Throughout the experiment, this con-
nection is used to update the user’s display with new infor-
mation from the central server (using the HTML5 Canvas for
graphics) and asynchronously letting the server know about
user input (collected using jQuery) as soon as either becomes
available. The experiment proceeds according to the logic
encoded in the server-side code, writing the current state of
the world to a text file on the server as often as the experi-
menter would like. When this logic dictates that the experi-
ment has ended, the user is redirected to another URL such as
an exit survey or a portal to submit a payment request.

While there exists substantial technical documentation on
each of these components individually (Hughes-Croucher &
Wilson, 2012; Takada, 2012; Tilkov & Vinoski, 2010), the
following sections focus more broadly on the complementary
roles they play in the context of online group behavior exper-
iments. Documented code and instructions for getting our
demonstration running from scratch are available online.1

The demonstration itself can be run without any programming
at all, along with many variations formed by tweaking the
variables set at the top of the game.core.js file. However,
if the reader has a background in programming, even in non-
web-based languages likeMATLAB, R, or Python, this frame-
work is flexible enough to implement nearly any real-time,

1 https://github.com/hawkrobe/MWERT

Fig. 1 Diagram indicating how various tools fit together. The server runs
Node.js code, which listens on a URL using the express module. When
clients on any devices connect to that URL, a Socket.io connection is
established. jQuery and the HTML5 canvas are used client-side to collect
input and display information to the user (Icons reproduced under Creative
Commons CC0, except server and desktop workstation icons, from the
RRZE Icon Set, distributed under Creative Commons CC BY-SA)

Behav Res (2015) 47:966–976 967

https://github.com/hawkrobe/MWERT

multiplayer scenario. The goal of the template, then, is to
automatically handle the most difficult web-based aspects,
therefore largely reducing it to a tractable non-web-based prob-
lem (which may still, of course, require substantial creativity
and work). The goal of the paper is to guide the reader through
steps that may need to be taken to modify the code, including
handling some peculiarities of JavaScript, and, at a more con-
ceptual level, to help the reader assess whether these tools will
be an appropriate solution for their problem in the first place.

To accurately assess the time investment required to put an
experiment online, it is important to note that one additional
step must be taken to run experiments securely through an
online labor market: a database must be shared across the
experiment discussed in this paper and a ‘gateway’website (e.g.
to post as an 'external HIT' on Mechanical Turk). The task of
creating the database and gateway is common to all web exper-
iments, not just those featuring a real-time, multiplayer setting,
and is therefore out of the scope of this paper and its accompa-
nying template code (but see Goldin &Darlow, 2013;Mason&
Suri, 2012; Reips, 2002). Since the problem of updating a
database in real-time from within Node.js is specific to our
system, however, we will cover the tools necessary to do so
below. For researchers who have already created a database and
gateway for previous web experiments, the template code has
been designed for easy integration with pre-existing SQL data-
bases, and instructions are included in the GitHub README.

Tools

Node.js

There is a significant engineering challenge behind running
real-time multiplayer experiments in the browser. A potential-
ly large number of players must somehow communicate with
an ongoing server-side process that listens for input from each
player and responds instantaneously to each with customized
information about what their screens should display. Node.js
is a server-side JavaScript environment built specifically to
handle such applications (Hughes-Croucher & Wilson, 2012;
Tilkov & Vinoski, 2010; Takada, 2012).

In addition to undergirding a set of modules to easily serve
up files and allow clients to interact (including the essential
Socket.io), Node.js handles the onslaught of tasks in an intel-
ligent, efficient way. Input/Output (I/O) operations are often a
bottleneck for web servers, especially in real-time experiments
where actions and updates must be sent and received many
times per second. Traditional I/O techniques scale poorly. For
instance, synchronous I/O keeps a list of requests and carries
them out in sequence, always waiting for the first request to
complete before beginning the next. This is simple to imple-
ment, but wasteful; the server or client spends most of its time
waiting, when it could be working on the next task.

One common way to fix this problem (used by Apache
servers) is to spawn a new, independent ‘thread’ with each
new request, so that the new thread canwork on the new request
while the old thread is still waiting. This creates other problems,
though: each thread comes with a substantial memory over-
head, and can wreak chaos when the different threads need to
access a shared resource. Node.js avoids all of these problems
by sticking to a single thread and automatically switching
between tasks in an asynchronous, non-blocking manner using
“callbacks,” a powerful concept in programming languages.

In simple terms, a callback is a piece of code attached to an
event, such that the code only runs when the event takes place.
The core process in Node.js, then, is an “event loop” which
continuously checks whether any events have occurred. If so,
the loop takes a break to run the attached callback function.
This may be familiar from client-side JavaScript, where some
code may run when a user clicks a button or presses a key.
Node.js takes the same approach to server-side I/O events.
When the server needs data about a user’s current progress in
the experiment, for instance, it passes a callback function along
with the request. It can then forget about the request and
proceed to perform other tasks. When the I/O operation has
completed and the data is ready, the event loop detects this and
runs the function specified by the original callback. This allows
a high volume of requests to be processed in a very short
amount of time.

The GitHub README explains how to download and
install Node.js and accompanying modules locally or on a
web server, and we will not cover the details here. Instead, we
proceed to give some demonstrations of the use of callbacks
through a pair of essential open-source modules developed
and maintained by the Node.js developer community: Express
and Socket.io. Callbacks are the main difference between
writing (and modifying) code in Node.js and writing code in
‘synchronous’ languages like MATLAB, R, or Python.

Serving files over the network with Express

Express is a highly abstracted web application framework for
Node.js, which allows us to start up a minimal web server
where participants will be directed when ready to participate
in the experiment. This can be done in very few lines of code,
which we put inside a file called app.js:

var app = require(‘express’)();
var server = app.listen(8000);
app.get(‘/*’,function(request,response){

var file = request.params[0];
response.sendfile(‘./’ + file);

});
Walking through this code, we first use the require ()

function to load the Express module. The section line tells the

968 Behav Res (2015) 47:966–976

module to begin listening on port 8000 and returns the
resulting server for later use. The rest establishes our first
callback to handle file requests. The app.get() function
takes a path to match against (using an asterisk means ours
will match all user queries), and also a function to be run when
that path is matched.

Inside the callback function, we automatically have access to
two parameters: the request, which contains information about
the client and the content of their request, and also the response,
which is in charge of sending files back to the client. In this
simple example, we simply extract the name of the file that the
user is requesting and then give the response object the appro-
priate path to that file on the server machine. Suppose hypo-
thetically that the web server where this code has been placed is
called “research.” To begin listening for users with Express,
we would enter “node app.js” at the command line. Now, if a
user tried to navigate to “http://research:8000/index.html” in
their browser, the app.get() event would be triggered,
with its corresponding callback function. It would extract
“index.html” as the requested file name, then look for a file
of this name in the same directory as app.js to serve to the
user. This index.html file loads all the client-side
JavaScript code we want to run. One major function of this
client-side code is to establish a persistent pipeline to the
server with Socket.io. Note that the code in app.js should
not need to be modified to implement new experiments –
after it establishes the server, it automatically attaches various
callback functions, which will be defined elsewhere, to the
appropriate events. This way, the programmer can just worry
about what the functions need to do without worrying about
the way they’re wrapped together.

Maintaining persistent server–client connections
with Socket.io

The central problem of client–server networking is synchro-
nizing and communicating across the separate game states
maintained on different machines. Socket.io builds upon the
framework provided by Express to sustain a persistent con-
nection between experiment participants and the server,
allowing parties to send and receive messages at any point
in time (Hughes-Croucher & Wilson, 2012). It has a number
of nice properties. It can detect which browser a participant is
using in order to automatically choose the fastest and most
capable communication method the user’s system can handle.
It will also attempt to reconnect if a user’s connection drops
suddenly. This module is the core of multiplayer functionality.

In Socket.io, we again attach callback functions to specific
events, such as a user connecting, disconnecting, entering
input, or sending an update of their state. We use the on()
construct to define and label an event on one end of the client–
server relationship, then use the emit() construct with that
label to trigger it from the other end of the relationship. The

basic setup example is given below. This appears in app.js
and will not need to be changed:

var io = require(‘socket.io’)(server);
io.on(‘connection’, function (client) {
client.emit(‘onconnected’, { id: "AD5000"});
client.on(‘disconnect’, function () {
endGame(client);

});
client.on(‘message’, function(s) {
onMessage(client, s);

});
});

After stacking the Socket.io module on top of the Express
server set up in the previous section, we attach a function to
the ‘connection’ event, which is run every time a new partic-
ipant (client) connects. The first line inside that function uses
emit() to trigger the client’s ‘onconnected’ event and pass
along some data assigning them an id. That ‘onconnected’
event is defined and labeled in a client-side script (in our case,
game.client.js) tha t runs when they load
index.html. Next, we establish a ‘disconnect’ event that
the client will automatically trigger when leaving the
webpage, in order to gracefully alter the experiment to handle
their absence. In the endGame() function, we could remove
their avatar or end the game for others if their presence was
essential to the experiment’s validity.

The final ‘message’ event is intended to simplify the task of
modifying the template for users without a web programming
background. Of all the code in the template, Socket.io func-
tions are the most likely to need to be modified to build
original experiments. While Socket.io allows several sophis-
ticated communication semantics, our template code places an
extra layer on top which reduces this problem to sending and
parsing strings. By attaching an event called ‘message’ to the
client object (and also to the server object, elsewhere), we
route all handling of client-side events through a single func-
tion (server_onMessage() in game.server.js) and
all server-side events through a single function
(client_onMessage(), in game.client.js).

The client can send a message to the server by calling
game.socket.send(s) where s is a string, and the server
c an s end a mes s age t o t h e c l i e n t by ca l l i ng
game.<client_object>.send(s). Note that since only
a certain number of people are associated with each ‘game’
object (two, in the example below), this effectively separates
participants into separate ‘rooms’ each with their own commu-
nication channel. Inside the opposite onMessage() function,
the programmer sets up an if statement detailing what to do
when that string is received.

For example, suppose each player controls an avatar and
the programmer wants to allow the player to set the direction

Behav Res (2015) 47:966–976 969

this avatar is moving by clicking on the screen. This requires
the client to send a Socket.io message to the server, notifying it
of the change. The actual collection of click coordinates is
handled by jQuery, described below, but for now suppose the
(x, y) coordinates are (120, 240). After extracting these num-
bers, the client might send the string “c.120.240” to the central
server by calling game.socket.send(“c.120.240”),
using the key ‘c’ to distinguish the ‘click’ type of event and
pas s ing a long the a s soc i a t ed da t a . In s ide the
server_onMessage() function on the server-side, we
can split this string, match on the key, write an instruction to
change that client’s “destination” variable, and pass along the
update to the other client. Any server–client communication a
researcher might need to add can be implemented in this
fashion, which is familiar from conventional imperative pro-
gramming languages.

One final role of Socket.io may be relevant for modifying
the system. Part of what makes web programming confusing is
the need to constantly synchronize variables across the different
machines in the network. When a researcher adds a new
variable to the client-end code, the server-end code cannot
initially access it, even if it’s global. The server holds one
instance of the state of the experiment, but each client is tasked
with maintaining its own state. For most experiments, the
server can be solely responsible for all moment-to-moment
computations, updating its local variables and then broadcast-
ing the results to the clients. This regular update (sent every time
the screen is redrawn – multiple times per second) is handled
by a function called server_send_update() in
game.core.js. It bundles together all the variables the client
may need to know about and triggers a client-side function
called client_onserverupdate_received() which
updates the clients’ local variables to match the server. When
adding new variables to the code, it will be necessary to include
them in this bundle.

Graphics with HTML5 canvas

In the previous sections we used the Node.js infrastructure,
along with Express, to monitor and respond when participants
arrive on the page and Socket.io to form a connection over
which both sides can react to events and pass information. We
will address the problem of collecting user input in the next
section. Here, we address the problem of updating the players’
screens to reflect the current state of the experiment. In a group
foraging task, for example, we might want to represent the
participants’ avatars as triangles on a grid and indicate current
resource levels via a set of graphs at the bottom. In a behav-
ioral game theory experiment, we might give the players a
choice between two payoffs, represented as circles with ac-
companying text labels.

There are additional technical requirements for
implementing this component of the experiment system.

These requirements are unique to the real-time aspect of our
experiments, but not necessarily the multiplayer aspect: (a) we
need to update the display fast enough to allow real-time
interactions with a low memory footprint and (b) we need to
draw the image directly in the browser such that it will be
compatible across mobile and desktop devices. If one player
decides to take an action that changes the state of the game,
such as changing the direction that his or her avatar is moving
on the grid or buying shares of some stock, the other players’
screens must immediately reflect this new state. Both of these
technical challenges are met by the <canvas> element intro-
duced in the HTML5 protocol. HTML5 is supported by all
modern browsers, including mobile browsers, and can work on
some older browser versions through vendor prefixes.
Essentially, the canvas element gives us access to a set of
simple JavaScript functions to draw shapes, colors, and text
inside a participant’s browser window. We initialize it in the
index.html code that we served to the participants with
Express:

<body>
<canvas id="viewport"> </canvas>

</body>

In the client-side JavaScript (called game.client.js in
our source code), we can then grab this element and extract its
‘drawing context’, an object containing a wide range of useful
methods to display information on the user’s screen. For
example, to present experiment instructions, item labels, or
real-time messages to participants, we can use the font
property to set what the text will look like, then call the
fillText() method to draw it at a specific (x, y) location:

viewport = document.getElementById(‘viewport’);
ctx = viewport.getContext(‘2d’);
ctx.font = "15pt Helvetica";
ctx.fillText("Welcometotheexperiment!",250,250);

To draw more complicated items, such as the partici-
pant avatars, resource indicators, line graphs, and other
visual aids populating the world of the experiment, the
appropriate canvas tool is the ‘path.’ Objects are drawn in
a block of code beginning with beginPath() and end-
ing with stroke(), with the intervening commands
describing every line segment making up the larger figure.
Straight lines can be drawn by placing the ‘pencil’ at a
coordinate location using moveTo(), and then specify-
ing another coordinate location as the line’s endpoint
using lineTo(). Circles can be constructed around the
given point using arc(), and areas can be filled in using
fill(). For example, to draw a 5-pixel radius black
circle centered at (50, 50) with a thin gray border, we
would use:

970 Behav Res (2015) 47:966–976

ctx.beginPath();
ctx.arc(50,50, 5, 0, 2 * Math.PI, false);
ctx.fillStyle = ‘black’;
ctx.fill();
ctx.lineWidth = 1;
ctx.strokeStyle = ‘gray’;
ctx.stroke();

Note that all drawing takes place client-side, and for ease of
modification, we have collected these functions together in a
file called drawing.js. As mentioned in the previous sec-
tion, if a participant’s display is not updated correctly even
though the server has the correct information, this may be
because it has not properly communicated that information to
the client in the server_send_update() function. For
our application, we decided to make the central server the
‘expert’ in charge of synchronizing the users’ states. This
means that both players will always draw the same image at
the same time. However, more advanced applications may use
client-side prediction to smooth out movements, in which case
the server allows the different participants to maintain slightly
different states and catches them up to one another when
movement has stopped.

Collecting user input with jQuery

The other most important piece of information in an experi-
ment comes from participant interactions with the webpage.
Again, this is not unique to real-time, multiplayer experi-
ments, but worth mentioning in the context of HTML5 and
for readers new to web experiments. To communicate partic-
ipant input in the form of mouse clicks or keyboard presses,
we must bind event handlers to HTML elements. jQuery is a
popular, powerful JavaScript library with this ability, among
many others. Say we want to register the coordinates of a click
anywhere in the <canvas> element of our window and take
some set of actions using those coordinates. Since the canvas
is listed in the body of index.html with the id “viewport”,
this is the name of the element we will use in the call to
jQuery:

$(‘#viewport’).click(function(e){
e.preventDefault();
var offset = $(this).offset();
var relX = e.pageX - offset.left;
var relY = e.pageY - offset.top;
client_on_click(relX, relY);

});

R e f e r e n c i n g a n H T M L e l e m e n t w i t h
.click(function(e){…}) is a shortcut to bind a ‘click’
event handler, which will execute the given function when a
click is detected in the canvas. The variable e contains the

details of the event, including its coordinates. We always use
preventDefault() to protect against any unwanted ac-
tions the browser or operating system may take automatically,
such as selecting or allowing the user to drag-and-drop the
element. The rest of the snippet converts absolute coordinates
(i.e. location in the entire browser window) to coordinates
relative to the boundaries of the “canvas” element, and passes
them off to a function called client_on_click() which
takes the desired actions using current values of global
variables.

An event handler only needs to be bound to an element
once, at initialization, and then the program will automatically
run the specified function each time the event takes place. If
we accidentally attach more than one of the same event
handler to an element (perhaps at each iteration of a loop),
the function will be called once for every event handler, even
though the event itself only occurred once.

Integrating with a database

To run an experiment created from the tools described in the
previous sections using paid participants from online labor
markets like Amazon Mechanical Turk, it is necessary to link
the system to a database. First, it is our way of securely sharing
sensitive information across the experiment URL and the
referring website (such as how much to pay the participant).
Second, we use it to verify that participants accessing the URL
are, in fact, workers fromMechanical Turk who have accepted
a HIT, or task. Third, with each “round” of the game, we must
update the player’s current performance in order to have a way
to pay them if they suddenly disconnect.

We used MySQL to handle these basic needs; however,
other databases are known to work well with Node.js, includ-
ing MongoDB and Redis. Services like psiTurk (McDonnell
et al., 2012) or TurkGate (Goldin & Darlow, 2013) have been
developed to help handle the gateway stage of the experiment
before the participant is directed to the URL hosted by
Node.js, including managing the database, and we only need
to be concerned with being able to access this database inside
the Node.js process. To accomplish this, we used a module
called node-mysql2 that provided a convenient way to query
the database from the Node.js process. More information on
using this module is provided in the GitHub README.

Limitations

While the previous section detailed the strengths of several
tools for running real-time, multiplayer experiments on the
web, several weaknesses must be noted as well. Some are
intrinsic to the tools and may be fixed or improved as they

2 https://github.com/felixge/node-mysql

Behav Res (2015) 47:966–976 971

https://github.com/felixge/node-mysql

continue to be refined by the open-source community. Others
are intrinsic to the endeavor of running multiplayer experi-
ments, and must be addressed. We begin by discussing the
current technical limitations of Node.js and Socket.io. One
natural question is the number of simultaneous connections
that can be handled – could you have 100 users interacting
together in a foraging experiment or are you limited to groups
of two or three? How many groups of two or three can be
running simultaneously?

Like all software, there are two primary dimensions along
which Node.js and Socket.io processing can break down:
memory usage and CPU load. If both of these are managed
well, developers report being able to handle about 8,000 –
10,000 messages per second without any lag or slow down –
far more than necessary for most research purposes. For a
point of comparison, the application described below sends
regular updates containing game state to each connection once
every .66 seconds, with periodic messages sent back to the
server as user input is registered. This means we could have
approximately 6,000 participants running simultaneously. If
recruiting through Amazon Mechanical Turk, it is rare for
more than 20 or 30 people to connect at once, even at peak
times. This said, it is worth commenting on possible ways
these two bottlenecks can be mismanaged.

Because most web servers have a surplus of RAM, the
memory bottleneck is essentially the memory limit of the
engine Node.js uses to compile and optimize JavaScript code.
At the time of writing, this is the V8 engine developed by
Google for the Chrome browser, which has a memory limit of
512MB for 32-bit architectures and 1GB for 64-bit architec-
tures (although there are options to increase this up to 1.7GB).
The number of users concurrently sending and receiving
messages, the frequency of message passing, and the size of
individual messages all affect memory usage. Using HTML5
for graphics is a good way to cut down on message size, since
no image data needs to be transmitted, only small JSON
structures containing the relevant values (e.g. player position
and payoff values). Under typical use conditions – small
messages, sent only a few times each second – it takes thou-
sands of connections to hit this limit. Of course, Socket.io is a
relatively new technology, and from time to time developers
report bugs regarding memory leaks, which can rapidly in-
crease the amount of memory used even by very few users.
These bugs are becoming less and less common as Socket.io
matures – in May 2014, version 1.0 was released, fixing many
existing issues – but certainly remain a risk.

The other bottleneck is CPU usage. As detailed in the
section on Node.js, the real strength of the system is handling
I/O (input/output). If the event loop is tied up with intensive
computations, the user will experience lag or dropped connec-
tions. As long as the asynchronous programming model is
followed, delegating computation-intensive jobs to forked
"worker" processes and keeping them out of callbacks, this will

not be a problem. The template code provided adheres to this
model, and most changes that might need to be made to modify
the experiment can take place inside pre-existing callback
functions. The only exception is if new Socket.io events need
to be added, perhaps to register an additional source of user
input or some new step of game logic, in which case the code
should be placed in a new function and a new line added to
client_onMessage() or server_onMessage()with
the name of the event and a reference to that new function.

Next, we turn to several issues that are unique not to the
specific tools, but to multiplayer online experiments in gener-
al. Most participants recruited from online labor markets are
trustworthy, but when putting an experiment online, several
security concerns must be addressed. Many of the most com-
mon issues, like SQL injection attacks and the need to encrypt
sensitive files, are common to all web applications and are
addressed elsewhere (Bishop, 2002; Mason & Suri, 2012).
Still, it is easy to imagine players with multiple Mechanical
Turk accounts signing up to play themselves for maximal
earnings, or for friends to collude through some other com-
munication channel, including Mechanical Turk message
boards. There are several ways to address this problem, al-
though a catch-all solution has not yet been found. Most
simply, we can catch participants who are attempting to play
against themselves by checking IP (Internet Protocol) ad-
dresses – if the participant has different accounts up in differ-
ent browsers, they will register as the same.

We could possibly prevent more elaborate cases of collu-
sion bymaking a single waiting roomwhere all players pool as
a countdown until the next game progresses. Once the count-
down finishes, players would be randomly paired so that they
would not be able to predict who their partner would be. There
remain some situations that can slip through this preventative
measure, for instance if there is a large group of colluders to fill
the waiting room or if the number of participants who have
accepted HITs at a particular time is not large enough to make
the waiting room sufficiently anonymous. These questions
deserve further consideration elsewhere, and these measures
have not been implemented in the accompanying code.

One other issue is the risk of drop-out. One nice feature of
Socket.io is that it will automatically seek to reestablish a
connection if a client encounters a brief lapse in network
connection, so accidental disconnection is unlikely.
Sometimes, though, participants may just grow tired of the
experiment and decide their time is better spent elsewhere.
Like all web experiments, this phenomenon has worrisome
implications for motivational confounding (Reips, 2002), but
for multiplayer experiments in particular we must also imple-
ment a way of handling a dropout gracefully for the remaining
participants in a session. For pairs, this involves redirecting
the remaining participant to a webpage explaining what hap-
pened and assuring them they will be paid for their work up to
that point. This is where the database is useful as a way of

972 Behav Res (2015) 47:966–976

saving progress throughout the experiment. For larger groups,
it may be possible to allow the others to continue, although
this attrition should be noted in the data analysis.

Finally, there is the issue of attention. There’s nothing
stopping a participant from switching to another browser tab
in the middle of the experiment, or while waiting for another
player to join. Since the experiments we’re interested in run in
real-time, this inattention may cause a participant to miss a
crucial action taken by another player, thus endangering the
assumption of perfect information. Luckily, there is a way to
track whether a tab is being viewed at any point in time, using
the W3C visibility API. This is implemented in the template
code and can be written to the file at each step of the exper-
iment for reference during data analysis. We have also imple-
mented a way to attract a player’s attention when another
player has connected: if they are not viewing the page, the
title blinks off and on in the browser tab, which is a standard
convention to notify users that a page has updated.

Application

To demonstrate its utility, we used this JavaScript framework
to conduct a real-time group behavior experiment on
Mechanical Turk. The source code for running this experi-
ment is publicly available on GitHub with instructions on how
tomodify it for other uses. The emphasis in this section will be
placed on the technological requirements demanded by the
experiment setup, and the way that the tools discussed above
satisfy those requirements. Like Friedman and Oprea (2012),
our experiment tested a distinction in behavioral game theory
between a synchronous staged design and a real-time, asyn-
chronous dynamic design.

We studied a variation on the well studied “Battle of the
Sexes” game, which induces some degree of tension between
efficiency and fairness. There are two possible ‘targets’ to
choose from, each corresponding to some payoff. One payoff
is larger than the other, thereby making the high-payoff target
more attractive to both players. However, if both players choose
the same target, neither player gets a reward. We manipulated
two aspects of this game – the time-course of response and the
disparity between the two payoffs – forming a 2 × 2 factorial
design. The payoff matrices are given in Fig. 2. This game is
interesting from the perspective of group behavior because the
players must implicitly organize their behavior into a mutually
beneficial strategy in order to be maximally successful: if both
players follow the ‘greedy’ strategy of always choosing the
highest payoff, they will come away empty-handed.

When the game is played against the same opponent many
times, one possible solution to this problem is to ‘alternate,’
where each player takes the small payoff on one round in
exchange for getting access to the high payoff the next round
(Helbing, Schönhof, Stark, & Hołyst, 2005; Lau & Mui,

2008). This way, neither player dominates, and the payoffs
come out more or less equal at the end of many games.
However, alternation requires the players to agree upon and
follow some set of self-imposed rules without explicitly
discussing them. This agreement may be more or less difficult
to achieve under different conditions. The real-time condition
is of particular interest in game theory (Friedman & Oprea,
2012) and cognitive science (Spivey & Dale, 2006), since it is
closer to the reality found in stock markets, social interaction,
and just-in-time production, yet has remained relatively unex-
plored theoretically and experimentally (Charness et al.,
2012).

A piece of software called ConGwas recently developed to
enable researchers in behavioral economics to run such real-
time, asynchronous experiments in the laboratory (Pettit,
Friedman, Kephart, & Oprea, 2014). It is important to note
that while this package is easy to configure and well designed
for the particular area of behavioral game theory, it cannot be
used over the web. The web framework built from the ele-
ments described in this paper potentially require a deeper
knowledge of programming, but we believe the flexibility to
run any kind of group behavior experiments online and across
devices make up for the added complexity.

Methods

After workers accepted the (External) HIT on Amazon
Mechanical Turk, they were directed to a gateway website
where they filled out a consent form and took a simple pre-test
to prove their understanding of the instructions. Then, they
were redirected to the URL and port number on which the
Express server is listening. Upon connection (via Socket.io, in
app.js), the worker ID was extracted from the query string
and checked against the MySQL database to verify that the
user had indeed recently accepted a HIT. Their Socket.io
connection was then passed to the findGame() function
in game.server.js. That function creates a new game to
serve as a ‘waiting room’ for the player if there is no game

Fig. 2 Payoff matrices for both conditions. Every game has two targets,
one of which has a higher payoff than the other. If both players choose the
same target, they end up on the diagonal of the matrix and neither player
earns any points. Otherwise, each player earns an amount proportional to
the payoff of the target

Behav Res (2015) 47:966–976 973

available, or matches the player with an existing game, if one
exists.

In the waiting room, the player saw a “waiting for other
player…” message and was able to click to navigate their
avatar around the environment, although there was nothing
of interest to do. Once another player joined, they were placed
at opposite ends of the screen, with two targets spaced equi-
distantly between them (see Fig. 3). In the dynamic condition,
players were given a 3-second countdown to secretly place
their ‘destination’ markers, and at the end of the countdown
began moving at a constant speed toward the target in small,
frequent jumps. At any point in time (even between jumps),
they were allowed to change their destination, an event de-
tected with jQuery and sent to the server through the Socket.io
connection. With a latency of less than 50 ms, on average,
their avatar was changed on the other players’ screen to reflect
the new trajectory and the next small jump would be in the
corresponding direction. Information about the state of the
game including both player’s positions and destinations was
written to a file multiple times a second, at each small jump.

The staged condition was similar, except instead of a
countdown, the round began by instructing each player to
“choose a target.”Neither player moved until both had chosen
valid destinations, at which point the avatars began moving
directly in the corresponding direction with the same anima-
tion as the other condition. Neither player knew when or what
the other player chose before the first movement. However, to
mimic the traditional design, players could not alter their
trajectory after the round started. Clicking had no effect.
This is equivalent to writing one’s choice on a scrap of paper

in the laboratory and simultaneously handing it to the exper-
imenter for comparison. If one player disconnects in the
middle of a game, the remaining player is automatically
redirected to a webpage apologizing for the inconvenience
and providing a link to an exit survey. Because the amount
earned is updated at each round, and 50 or 60 total rounds are
played, depending on the condition, we pay each player the
amount earned up to the point of disconnection. Mechanical
Turk workers were not permitted to participate more than
once, using the database to check the worker ID.

Discussion

Full treatment of the results is outside the scope of this paper,
but we will sketch some possible analyses to demonstrate the
utility of this framework in addressing scientific questions.
First and unsurprisingly, we found that efficiency (measured
as the sum of both players’ total earnings) was substantially
higher in the dynamic condition than the staged condition.
This indicates that groups can collectively achieve more effi-
cient outcomes when allowed to make decisions in real-time,
with access to one another’s moment-by-moment actions. In
game theory, actions double as signals. The staged version
only allowed signals to be sent at the onset of each round, but
the dynamic version allowed players the freedom to signal
asynchronously at any point in time, thus providing a more
information-rich environment for decision making.

Second, the dynamic condition reveals detailed fine-
grained data about the moment-by-moment time-course of
decision making. For example, the case when both players

Fig. 3 Screenshot of the first round of the experiment. The colored
triangles represent the players’ avatars, and the circles represent targets
worth a given payoff. Players, targets, and text are drawn on the HTML5
canvas. jQuery is used to collect the coordinates of a mouse click, and the

canvas is updated to display that point as a colored cross which remains
invisible to the other player. The upper left hand corner shows the relative
speeds of each player, which were held constant in the reported
experiment

974 Behav Res (2015) 47:966–976

are simultaneously heading toward the high payoff is equiva-
lent to a game of ‘chicken’ in which each player waits for the
other to ‘divert’ first, but cannot wait too long because the
low-payoff is better than nothing. By looking at the distribu-
tion of time until divergence, we can test models of players’
expectations about one another and their aversions to risk.
Finally, we can examine macro-level patterns of learning and
shifting equilibria across many rounds.

Conclusion

Although multiplayer experiments and real-time classroom
demonstrations pose difficult, technical challenges to re-
searchers and teachers, the open-source community has re-
cently coalesced around a set of tools, notably including
Node.js and Socket.io, which have provided a feasible solu-
tion. In this paper, we walked through this core set of tools and
illustrated how they can be combined to conduct real-time
multiplayer experiments on the web. Template code was pro-
vided tomakemany ofmost difficult elements of client–server
networking tractable for those without strong web program-
ming backgrounds.

It may be helpful to give a brief ‘roadmap’ for successful
modification of this code. If the desired scenario still involves
two participants being paired and placed into a virtual world,
then the primary difference will be in movement dynamics or
game logic, both of which are handled in game.core.js.
The function server_update_physics() updates the
positions of the players and checks whether there is anything
special about the new positions (e.g. is it close enough to a
target to warrant awarding a payoff and ending the game?)
The function server_new_game(), along with its
companion funct ion client_new_game() in
game.client.js, determines what happens at the end of
a round. The function client_on_click() specifies
what happens when a player clicks on the virtual world.
These are the best starting points for understanding the code.

Modifying these functions will often involve adding new
variables that need to be shared across the server and client
objects. This is one of the most frequent sources of problems
in writing Node.js code, and instructions for handling this step
properly are given in the section on Socket.io above. To
debug, var iable values can be printed out with
console.log(). Note that when this is called in server-
side code, the result will print to the terminal, but when it is
called client-side, it will print into the browser developer
console. The steps to access this console are different across
browsers, but are easy to find online.

If the desired scenario involves more than two participants,
or some alteration to the ‘waiting room’ sequence, then more
sweeping changes will need to be made to the findGame()
and endGame() functions in game.server.js. One

should expect this to involve a larger time commitment, but
it should still be tractable with a conventional programming
background and easier than starting from scratch. More
advanced applications are limited only by imagination
and development time. For example, we could insert a
set of real cognitive agents into a controlled futures
market (Majumder, Diermeier, Rietz, & Amaral, 2009),
fish school (Miller et al., 2013), or crowd disaster
scenario (Moussaïd et al., 2009), all of which rely
crucially on events unfolding in real-time.

Because multiplayer experiments require multiple people
to be in the same place at the same time, they can be difficult
and expensive to conduct for researchers in small labs. We
hope that through using this framework, the benefits of online
labor markets can be extended to more sophisticated research
questions involving real-time, asynchronous behavior.
Additionally, this set of tools facilitates a move toward ‘big
data,’ scaling up the number of participants and allowingmore
sophisticated analysis of moment-by-moment decision pro-
cesses, not just outcomes.

Author Note This research was in part supported by National Science
Foundation REESE grant 0910218 to the Percepts and Concepts Labo-
ratory. We thank Shoshana Berleant and the members of the Santa Fe
Institute mailing list for participating in usability tests of the framework
and also Rob Goldstone and Johan Bollen for comments on early drafts.

References

Bishop, M. (2002). Computer security: Art and science.Addison-Wesley
Professional.

Boer, K., Kaymak, U., & Spiering, J. (2007). From discrete-time models
to continuous-time, asynchronous modeling of financial markets.
Computational Intelligence, 23(2), 142–161.

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-
quality, data? Perspectives on Psychological Science, 6(1),
3–5.

Cao, M., Morse, A. S., & Anderson, B. D. (2008). Agreeing asynchro-
nously. IEEE Transactions on Automatic Control, 53(8), 1826–
1838.

Charness, G., Oprea, R., & Friedman, D. (2012, April). Continuous time
and communication in a public-goods experiment (University of
California at Santa Barbara, Economics Working Paper Series No.
qt5404914p). Department of Economics, UC Santa Barbara.
Retrieved from http://ideas.repec.org/p/cdl/ucsbec/qt5404914p.html

Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance
and conformity. Annual Review of Psychology, 55, 591–621.

Dale, R., Fusaroli, R., Duran, N., & Richardson, D. C. (2014). The self-
organization of human interaction. Psychology of Learning and
Motivation, 59, 43–96.

Deck, C., & Nikiforakis, N. (2012). Perfect and imperfect real-time
monitoring in a minimum-effort game. Experimental Economics,
15(1), 71–88.

Friedman, D., & Oprea, R. (2012). A continuous dilemma. The American
Economic Review, 102(1), 337–363.

Goldin, G., & Darlow, A. (2013). TurkGate (version 0.4.0) [Computer
software manual]. Providence, RI.

Behav Res (2015) 47:966–976 975

http://ideas.repec.org/p/cdl/ucsbec/qt5404914p.html

Goldstone, R. L., Ashpole, B. C., & Roberts, M. E. (2005). Knowledge of
resources and competitors in human foraging. Psychonomic Bulletin
& Review, 12(1), 81–87.

Helbing, D., Schönhof, M., Stark, H.-U., & Hołyst, J. A. (2005). How
individuals learn to take turns: Emergence of alternating cooperation
in a congestion game and the prisoner’s dilemma. Advances in
Complex Systems, 8(1), 87–116.

Hughes-Croucher, T., & Wilson, M. (2012). Node: Up and running:
Scalable server-side code with JavaScript. O’Reilly Media,
Incorporated.

Lau, S.-H. P., & Mui, V.-L. (2008). Using turn taking to mitigate coordi-
nation and conflict problems in the repeated battle of the sexes game.
Theory and Decision, 65(2), 153–183.

Majumder, S. R., Diermeier, D., Rietz, T. A., & Amaral, L. A. N. (2009).
Price dynamics in political prediction markets. Proceedings of the
National Academy of Sciences, 106(3), 679–684.

Mason, W., & Suri, S. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44(1),
1–23.

Mason,W., &Watts, D. J. (2010). Financial incentives and the performance
of crowds. ACM SigKDD Explorations Newsletter, 11(2), 100–108.

McDonnell, J., Martin, J., Markant, D., Coenen, A., Rich, A., & Gureckis,
T. (2012). psiturk (version 1.02) [Computer software manual]. New
York, NY. Retrieved from https://github.com/NYUCCL/psiTurk

Michinov, N., & Primois, C. (2005). Improving productivity and creativ-
ity in online groups through social comparison process: New evi-
dence for asynchronous electronic brainstorming. Computers in
Human Behavior, 21(1), 11–28.

Miller, N., Garnier, S., Hartnett, A. T., & Couzin, I. D. (2013). Both
information and social cohesion determine collective decisions in
animal groups. Proceedings of the National Academy of Sciences,
110(13), 5263–5268.

Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., &
Theraulaz, G. (2009). Experimental study of the behavioural mech-
anisms underlying self-organization in human crowds. Proceedings
of the Royal Society B: Biological Sciences, 276(1668), 2755–2762.

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and
cooperation in networked multi-agent systems. Proceedings of the
IEEE, 95(1), 215–233.

Paolacci, G., Chandler, J., & Ipeirotis, P. (2010). Running experiments on
Amazon Mechanical Turk. Judgment and Decision Making, 5(5),
411–419.

Pettit, J., Friedman, D., Kephart, C., & Oprea, R. (2014). Software for
continuous game experiments. Experimental Economics. doi:10.
1007/s10683-013-9387-3

Reips, U.-D. (2002). Standards for internet-based experimenting.
Experimental Psychology, 49(4), 243–256.

Spivey, M., & Dale, R. (2006). Continuous dynamics in real-time cogni-
tion. Current Directions in Psychological Science, 15(5), 207–211.

Suri, S., & Watts, D. J. (2011). Cooperation and contagion in web-based,
networked public goods experiments. PLoS One, 6(3), e16836.

Takada, M. (2012). Mixu’s Node book: A book about using Node.js.
Available at mixu.net.

Tilkov, S., & Vinoski, S. (2010). Node. js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing, 14(6),
80–83.

976 Behav Res (2015) 47:966–976

https://github.com/NYUCCL/psiTurk
http://dx.doi.org/10.1007/s10683-013-9387-3
http://dx.doi.org/10.1007/s10683-013-9387-3

	Conducting real-time multiplayer experiments on the web
	Abstract
	Introduction
	Tools
	Node.js
	Serving files over the network with Express
	Maintaining persistent server–client connections with Socket.io
	Graphics with HTML5 canvas
	Collecting user input with jQuery
	Integrating with a database

	Limitations
	Application
	Methods
	Discussion

	Conclusion
	References

