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Abstract
Abstract (e.g., characters or fractals) and concrete stimuli (e.g., pictures of everyday objects) are used interchangeably in the 
reinforcement-learning literature. Yet, it is unclear whether the same learning processes underlie learning from these differ-
ent stimulus types. In two preregistered experiments (N = 50 each), we assessed whether abstract and concrete stimuli yield 
different reinforcement-learning performance and whether this difference can be explained by verbalization. We argued that 
concrete stimuli are easier to verbalize than abstract ones, and that people therefore can appeal to the phonological loop, a 
subcomponent of the working-memory system responsible for storing and rehearsing verbal information, while learning. 
To test whether this verbalization aids reinforcement-learning performance, we administered a reinforcement-learning task 
in which participants learned either abstract or concrete stimuli while verbalization was hindered or not. In the first experi-
ment, results showed a more pronounced detrimental effect of hindered verbalization for concrete than abstract stimuli on 
response times, but not on accuracy. In the second experiment, in which we reduced the response window, results showed 
the differential effect of hindered verbalization between stimulus types on accuracy, not on response times. These results 
imply that verbalization aids learning for concrete, but not abstract, stimuli and therefore that different processes underlie 
learning from these types of stimuli. This emphasizes the importance of carefully considering stimulus types. We discuss 
these findings in light of generalizability and validity of reinforcement-learning research.
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Introduction

In reinforcement-learning studies, people learn which 
stimulus yields the highest reward. These stimuli are usu-
ally abstract such as foreign language characters (e.g., Daw 

et al., 2011; Frank et al., 2004; Pessiglione et al., 2006) or 
fractals (e.g., Gläscher et al., 2010). To study reinforcement-

learning processes in developmental and aging popula-
tions, abstract stimuli are often replaced by concrete pictures 
of, for example, everyday objects (e.g., Eppinger et al., 2009; 
Eppinger & Kray, 2011; van de Vijver et al., 2015; van den 
Bos et al., 2009; Xia et al., 2021). This raises the question 
of whether the same learning processes underlie reinforce-
ment learning of abstract and concrete stimuli. In the cur-
rent preregistered study, we therefore tested whether abstract 
and concrete stimuli yield different reinforcement-learning 
performance, and whether potential differences are due to 
verbalization.

A recent reinforcement-learning study (Farashahi et al., 
2020) showed superior learning for concrete as compared 
to abstract stimuli. However, the mechanism underlying 
this superior learning remains understudied. A potential 
mechanism is verbalization, that is, naming stimuli while 
learning, as it is hypothesized to modulate otherwise non-
verbal cognitive processes (Kray et al., 2015; Lupyan, 2012). 
Specifically, verbalization may aid reinforcement-learning 

Jessica V. Schaaf, Annie Johansson contributed equally.

 * Jessica V. Schaaf 
 jessica.schaaf@radboudumc.nl

1 Department of Psychology, University of Amsterdam, 
Amsterdam, The Netherlands

2 Cognitive Neuroscience Department, Radboud University 
Medical Centre, Nijmegen, The Netherlands

3 Donders Institute for Brain, Cognition and Behaviour, 
Nijmegen, The Netherlands

4 Yield, Research Institute for Child Development 
and Education, Amsterdam, The Netherlands

5 ABC, Amsterdam Brain and Cognition Centre, Amsterdam, 
The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-024-02506-3&domain=pdf
http://orcid.org/0000-0002-4856-9592


 Psychonomic Bulletin & Review

performance as it helps keep information in working mem-
ory. According to Baddeley’s classic working-memory 
model (1986; for a more recent review, see Baddeley & 
Hitch, 2019), a part of the working-memory system, called 
the phonological loop, temporarily stores verbal informa-
tion and rehearses this information through inner speech. 
If stimuli are easier to encode phonologically, it is easier to 
appeal to this phonological loop while learning. We argue 
that concrete stimuli are easier to name than abstract ones, 
which makes them easier to encode phonologically, sub-
sequently resulting in better reinforcement-learning perfor-
mance for concrete than for abstract stimuli.

In support of this idea, there is ample evidence for a gen-
eral role of working memory in reinforcement learning, that 
is, that people tend to rely on working memory (as opposed 
to associative reinforcement learning) when the number of 
things to learn fall within people’s working-memory capac-
ity (e.g., Collins, 2018; Collins & Frank, 2012). In addition, 
experimental studies already showed that verbalization can 
aid performance in various (otherwise non-verbal) cogni-
tive processes, including working memory (Forsberg et al., 
2020; Souza & Skóra, 2017), category learning (Lupyan 
et al., 2007; Lupyan & Casasanto, 2015; Minda & Miles, 
2010; Vanek et al., 2021; Waldron & Ashby, 2001; Zeitha-
mova & Maddox, 2006; Zettersten & Lupyan, 2020), and 
motor learning (Gidley Larson & Suchy, 2015). Two recent 
studies (Radulescu et al., 2022; Yoo et al., 2023) addressed 
whether verbalization can also aid reinforcement learning. 
Yoo and colleagues (2023) showed that people performed 
worse in a condition in which concrete pictures represented 
the same object than in a condition in which the pictures 
represented different objects, concluding that verbal discrimi-
nability (i.e., distinguishable stimulus names) is particularly 
important for learning. Similarly, Radulescu and colleagues 
(2022) showed that people performed worse in a condition 
in which stimuli were difficult to verbalize than in a condi-
tion in which they were easy to verbalize (see also Waltz 
et al., 2007). Both studies drew conclusions about the effects 
of verbal processes on learning based on indirect measures 
of verbalization, that is, they relied on the assumption that 
verbalization was affected differently in different conditions. 
We implemented a direct measure of the effects of verbaliza-
tion on learning. Specifically, we adopted a dual-task design 
in which people learned abstract and concrete stimuli while 
verbalization was either hindered or unhindered. Such a dual-
task design allows one to assess whether a certain cognitive 
process plays a larger role in one condition than in another 
(Pashler, 1994). As we were specifically interested in whether 
verbalization plays a larger role when learning concrete stim-
uli than when learning abstract stimuli, we adopted a dual 
task that suppresses verbalization, that is, we let participants 
count to three. Doing this while learning, a procedure com-
monly applied when investigating the effects of verbalization 

(Nedergaard et al., 2023), suppresses participants’ ability to 
rehearse verbal information in their phonological loop (e.g., 
Baddeley & Larsen, 2007; Miyake et al., 2004), precluding 
them from using verbalization to aid learning.

Experiment 1

We primarily hypothesized an interaction effect between 
stimulus type and verbalization condition on accuracy, that 
is, that the detrimental effect of hindered verbalization would 
be more pronounced for concrete compared to abstract stim-
uli. In addition, we expected main effects of both stimulus 
type and verbalization condition on accuracy. That is, bet-
ter learning for concrete compared to abstract stimuli (Far-
ashahi et al., 2020) and better learning in the unhindered 
verbalization condition because it only requires performing 
a single task (Pashler, 1994). We also expected to observe 
these effects in interaction with trial, that is, that hindered 
verbalization would especially lead to slower learning for 
concrete stimuli (stimulus type x verbalization condition x 
trial interaction), that learning would be faster for concrete 
than abstract stimuli (stimulus type x trial), and that learning 
would be faster in the absence compared to the presence of 
the verbalization task (verbalization condition x trial).

Method

Preregistration

All procedures and analyses were preregistered within the 
Open Science Framework as Reinforcement learning of 
abstract vs concrete stimuli (https:// osf. io/ qwu3g). These 
analyses are labeled confirmatory analyses. Any other anal-
yses are considered exploratory, and are specified as such. 
Data and analysis code are freely available at https:// osf. io/ 
w9fv4/.

Participants

A power analysis for the multilevel logistic regression on 
accuracy (Olvera Astivia et al., 2019) with medium effect 
sizes for the main effects (i.e., 0.5) and a small effect size 
for the interaction of interest (i.e., 0.25) indicated a required 
sample size of 50 to detect the crucial interaction between 
stimulus type and verbalization condition with a power 
of 0.9. As such, a total of 68 participants were recruited 
through the University of Amsterdam. A total of 18 par-
ticipants were excluded, either because they did not per-
form the verbalization task correctly (either forgetting to 
count on more than six beats in a row or more than 25 beats 
in total, as checked by a present experimenter; n = 16) or 
because of technical failures (n = 2). We did not exclude any 

https://osf.io/qwu3g
https://osf.io/w9fv4/
https://osf.io/w9fv4/
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participants based on their learning performance because we 
anticipated that if hindered verbalization would affect learn-
ing in abstract stimuli, performance in this condition could 
drop to chance level. Thus, the final sample consisted of 50 
participants (24 female, one other, Mage = 21.5 (3.0) years, 
range: 18–33 years). We only recruited participants without 
experience with the Hiragana alphabet or character-based 
languages to minimize individual differences in the ability to 
verbalize these abstract stimuli. We reimbursed participants 
when they completed the long-term retention task within 
36 h after testing (see section Reinforcement-learning task) 
and, as preregistered, performed analyses on data from these 
participants (n = 44).

Reinforcement‑learning task

Experimental design We adopted a 2 x 2 within-subjects 
design in which we manipulated stimulus type (i.e., abstract 
vs. concrete) and verbalization condition (i.e., hindered vs. 
unhindered). Each participant performed one block of each 
combination (four blocks in total) in a randomized order 
with one constraint: only one of the manipulations changed 
between two subsequent blocks. For example, an abstract 
block with verbalization task was followed by either a 
concrete block with verbalization task (different stimulus 
type) or an abstract block without verbalization task (dif-
ferent verbalization condition). Each block was followed 

by a testing block (short-term retention). After 24–36 h 
participants again performed a testing block (long-term 
retention).

Task design As illustrated in Fig. 1, in each learning block, 
we presented participants with four new stimulus pairs from 
which they learned the stimulus with the highest expected 
value, that is, the correct stimulus, based on feedback. Spe-
cifically, we instructed participants that their goal was “to 
win as many points as possible by clicking on one of the 
stimuli” and told them that the more points they earned, the 
higher the monetary bonus they would receive. The stimuli 
in a pair were fixed across the trials of a block and each pair 
was presented 16 times (64 trials per block, four blocks, 
resulting in a fixed total of 256 trials for all participants). 
The order of the pairs was randomized per four trials such 
that pairs were presented a maximum of twice in a row. In 
two of the four blocks (i.e., the unhindered verbalization 
blocks), participants heard a metronome (80 bpm) but did 
not have to say anything. In the other two blocks (i.e., the 
hindered verbalization blocks), we instructed participants to 
say “1, 2, 3” repeatedly out loud on the beat of the metro-
nome during learning. This articulatory-suppression manip-
ulation hinders verbalization by occupying the phonological 
loop (Baddeley et al., 1984; Emerson & Miyake, 2003).

Immediately after each learning block, a testing block fol-
lowed. In this testing block, the same pairs as in the learning 

Fig. 1  Example trial sequence of the reinforcement-learning task. 
Note. In the learning task, each trial started with a fixation cross for 
500–1,000 ms, jittered in steps of 50 ms, to make the metronome 
beats and the timing of the stimulus pair uncorrelated. Hereafter a 
pair was presented from which the participant chose one within either 
2,500 ms (Exp. 1) or 1,500 ms (Exp. 2). Once a participant chose, 
feedback was presented for 1,500 ms; hereafter a fixation cross sig-
naled the next trial. If a participant failed to choose within the 
response window, “Too late! Respond faster!” appeared on the screen 
for 1,500 ms. These trial sequences were the same across the two 

experiments (except for the response window) and across the verbali-
zation conditions. Timed-out responses were excluded from all analy-
ses.  In Experiment 1, the percentage of timed-out responses ranged 
between 0% and 3.1% across participants with 0.6% on average. In 
Experiment 2, it ranged between 0.4% and 10.2% across participants 
with 3.9% on average. In both experiments, including these timed-out 
responses as incorrect responses did not alter the pattern of results; 
significance only changed for a secondary interaction (i.e., between 
verbalization condition and trial) in Experiment 2 (see OSM Table II)
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block were presented, four times each (randomized per four 
trials). Participants were asked to indicate the correct stimu-
lus (formulated as: “Please click on the stimulus you think 
usually resulted in winning 10 points”), but did not receive 
any feedback on their choice. As such, performance in test-
ing blocks did not count towards their reimbursement. The 
testing block was self-paced (i.e., without response dead-
line). After 24–36 h, participants again performed a testing 
block, but now with all 16 pairs (each presented four times, 
randomized per 16 trials).

Practice Before each learning block, participants practiced 
the new stimulus type and verbalization condition combi-
nation. In this practice block, two stimulus pairs were pre-
sented for eight trials each (totaling to 16 trials).

Stimuli We selected stimuli that are commonly used in rein-
forcement-learning studies because we aimed to uncover the 
potential role of verbalization in such studies. As abstract 
stimuli, we used characters from the Hiragana alphabet (for 
examples, see Frank et al., 2004; Hämmerer et al., 2011; 
Simon et al., 2010). As concrete stimuli we used pictures of 
everyday objects1 (for examples, see Eppinger et al., 2009; 
Eppinger & Kray, 2011; van de Vijver et al., 2015; van den 
Bos et al., 2009; Xia et al., 2021) from the MultiPic data-
base (Duñabeitia et al., 2018); we only considered stimuli 
with average visual complexity and one-syllable names in 
both English and Dutch. To only select stimuli with simi-
lar verbalizability and to assess whether the abstract stimuli 
were indeed harder to verbalize than the concrete ones, we 
conducted a pilot study in which we asked participants to 
come up with a name for the stimuli and to indicate how 
difficult it was to do so. To select stimuli that were similarly 
difficult to discriminate, we also asked participants to rate 
how similar they found the stimuli in a pair. For details on 
this stimulus selection procedure and pilot results, we refer 
to Online Supplemental Material (OSM) Text I.

Feedback In all learning blocks, choices for one, which we 
coin the correct, stimulus would usually lead to winning 
10 points (75% of trials), and only sometimes to losing 10 
points (25% of trials). Choices for the other, incorrect, stim-
ulus would usually lead to losing 10 points (75% of trials), 
and only sometimes to winning 10 points (25% of trials). 
Which stimulus was correct was determined randomly per 
participant.

Procedure Participants were tested individually in a lab cubi-
cle. They sat in front of a laptop with mouse and keyboard 
and received on-screen instructions about the learning and 
short-term retention tasks. An experimenter was always pre-
sent during testing to check whether the participant performed 
the verbalization task (i.e., saying “1, 2, 3” on the beat of the 
metronome) correctly. This on-site experiment took approxi-
mately 30 min. At the end of the on-site experiment, partici-
pants saw the bonus they earned on the screen, were asked how 
they experienced the experiment (both on-screen and by the 
experimenter), and were informed about the long-term reten-
tion task. After 24 h, participants received a link to this task via 
email. They were instructed to complete it at home within 12 
h (i.e., 24–36 h after the learning task). If participants did not 
complete the long-term retention task in time, they received 
€5 or course credits as reimbursement. If participants did com-
plete the task in time, they received the reimbursement plus a 
bonus equal to the number of points won in the learning task 
divided by the number of trials (i.e., 256). This resulted in a 
bonus between €0 and €10 (Mbonus = €1.39 (€0.95)). We told 
participants that winning more points would lead to a higher 
reimbursement, but they were unaware of the formula used to 
convert points into money. After completing the learning task, 
they were informed that bonus money would only be paid out 
when the long-term retention task was completed in time.

Data analyses

Learning To test whether abstract and concrete stimuli yield 
different reinforcement-learning performance and whether 
potential differences are due to verbalization, we performed a 
multilevel logistic regression analysis on trial-by-trial choice 
accuracy in the learning blocks of the reinforcement-learning 
task; we did so using the glmer function from the lme4 pack-
age (Bates et al., 2015). We modeled fixed effects of stimu-
lus type (abstract (coded as -1) versus concrete (coded as 
1)), verbalization condition (hindered (coded as -1) versus 
unhindered (coded as 1)), trial (linear, centered, such that all 
effects excluding trial are estimated in the middle of learn-
ing), and all two- and three-way interactions, as well as ran-
dom intercepts and random slopes for the main effects. We 
fixed covariances between random effects to zero.

Retention To test for these same effects on retention rates, 
we performed a multilevel linear regression analysis on 
short- and long-term retention rates, defined as the average 
proportion correct in the testing blocks, that is, collapsed 
across pairs and trials; we did so using the lmer function 
from the lme4 package (Bates et al., 2015). We modeled fixed 
effects of stimulus type, verbalization condition, delay (short 
vs. long) and all two- and three-way interactions, as well as 
random intercepts and random slopes for the main effects. 
Covariances between random effects were fixed to zero.

1 Note that in commonly-used stimulus sets in the reinforcement-
learning literature abstract/concrete is confounded with verbalizabil-
ity (i.e., abstract stimuli are usually less verbalizable than concrete 
ones). This, however, does not take away from our main message: 
people may verbalize stimuli to aid learning, which is easier for ver-
balizable stimuli.
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Response times Finally, we performed an exploratory mul-
tilevel linear regression analysis on trial-by-trial response 
times (irrespective of choice accuracy). We modeled fixed 
effects of stimulus type, verbalization condition, trial, and 
all two- and three-way interactions, random intercepts and 
random slopes for the main effects, and fixed covariances 
between random effects to zero. Also, we modeled first-order 
autoregression to take the autocorrelation between the error 
term across trials into account. We did this using the lme 
function from the nlme package (Pinheiro et al., 2022).

Results

Confirmatory analyses: Learning and retention

Learning Most importantly, as illustrated in Fig. 2, results 
showed no interaction between stimulus type and verbali-
zation condition (p = .51) and no three-way interaction 

between stimulus type, verbalization condition, and trial 
(p = .76). Thus, in contrast to our expectations, the effect of the 
verbalization task did not differ for abstract and concrete 
stimuli. Results did show a main effect of stimulus type (z = 
4.03, p < .001), indicating higher accuracy for concrete than 
abstract stimuli, and an interaction between stimulus type 
and trial (z = 3.2, p = .001), indicating accuracy improved 
faster across trials for concrete as compared to abstract 
stimuli. Finally, results showed neither a main effect of ver-
balization condition (p = .27) nor an interaction between 
verbalization condition and trial (p = .52).

Retention Most importantly, as illustrated in Fig. 3, results 
showed neither a stimulus type x verbalization condition 
interaction (p = .21), indicating no difference in the effect 
of the verbalization task across stimulus types, nor a stim-
ulus type x verbalization condition x delay interaction (p 
= .74), indicating this effect did not differ between short 
and long delay. Results did show a main effect of stimulus 

Fig. 2  Learning: Participants learned to choose the correct stimulus  
across trials and did this better for concrete than abstract stimuli. Hin- 
dered verbalization did not affect learning for either abstract or con- 
crete stimuli. Note. The shaded area corresponds to one standard error of  
the mean. The x-axis represents trials collapsed across the four pairs 

presented in each block. Results from exploratory multilevel logistic  
regression analyses on accuracy in all four conditions separately indi-
cated that participants learned in all conditions, with linear trial esti-
mates ranging from 1.2 to 2.2 and all ps < .001

Fig. 3  Retention: Participants recalled the correct stimulus better 
for concrete than abstract stimuli, but not better in the unhindered 
as compared to the hindered condition. Note. Error bars represent 

one standard error of the mean. To obtain the proportion of correct 
choices, choice accuracy was averaged across pairs and trials
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type (t(48.1) = 4.6, p < .001), indicating better retention for 
concrete than abstract stimuli, but no stimulus type x delay 
interaction (p = .11). In addition, results showed neither a 
main effect of verbalization condition (p = .31), nor a ver-
balization condition x delay interaction (p = .86). Finally, 
they did show slightly better retention after short than long 
delay (main effect of delay: t(228) = -2.0, p < .05).

Taken together, these results suggest no differential effect 
of the verbalization task on learning from, and retention of, 
abstract versus concrete stimuli. They show in addition that 
both learning and retention were better for concrete as com-
pared to abstract stimuli, and that learning and retention 
were unaffected by the verbalization task.

Exploratory analyses: Response times

One possible explanation for the lack of effect of the ver-
balization task on accuracy is that participants slowed down 
in order to keep up their performance, that is, that partici-
pants traded off their speed and accuracy (e.g., Wickelgren, 
1977). We therefore performed an exploratory multilevel 
regression analysis on response times. Most importantly, as 
displayed in Fig. 4, results showed an interaction between 
stimulus type and verbalization condition (t(12743) = -2.3, 
p = .02) and a three-way interaction between stimulus type, 
verbalization condition, and trial (t(12743) = -3.4, p = .001). 
Follow-up analyses in each stimulus type separately only 
indicated a detrimental effect of hindered verbalization on 
response times for concrete stimuli (main effect of verbali-
zation condition: p = .77; verbalization x trial interaction: 
t(6347) = -4.8, p < .001), not for abstract ones (both ps > 
.50). In addition, results showed no main effect of stimulus 

type (p = 0.10), but did show an interaction between stimu-
lus type and trial (t(12743) = -6.3, p < .001), indicating that 
response times decreased faster for concrete as compared to 
abstract stimuli. Finally, results did not show a main effect of 
verbalization condition (p = .73), but did show an interaction 
between verbalization condition and trial (t(12743) = -2.8, 
p = .006), indicating that response times decreased faster in 
the unhindered than the hindered verbalization condition.

Interim conclusion

We predicted that the detrimental effect of hindered verbali-
zation on learning and retention would be more pronounced 
for concrete than for abstract stimuli. However, results did 
not show any effects of the verbalization task on learning 
or retention. Rather, exploratory analyses revealed our pre-
dicted interactions between stimulus type and the verbaliza-
tion task on response times.

Experiment 2

The result that we found our predicted interactions on 
response times instead of on accuracy may be explained by 
a speed-accuracy trade-off. To test this explanation, we per-
formed a second experiment in which we prevented partici-
pants from slowing down by reducing the response window 
(as commonly done in the response-time literature; Wick-
elgren, 1977) and investigated stimulus type and hindered 
verbalization effects on accuracy, retention, and response 
times. We followed the same preregistered procedure as in 
Experiment 1 with three changes: we reduced the response 

Fig. 4  Response times: Participants responded slower to concrete stim-
uli when verbalization was hindered than when it was not. This was 
not the case for abstract stimuli. Note. The shaded area corresponds  

to one standard error of the mean. The x-axis represents trials col-
lapsed across the four pairs presented in each block



Psychonomic Bulletin & Review 

window in the learning task from 2.5 to 1.5 s, we added 
a practice retention block, and performed the exploratory 
analysis on response times in a confirmatory manner (see 
section Reinforcement-learning task and data analyses).

With such a short response window, we expected the 
results found in Experiment 1 on response times to now 
become apparent on accuracy. Thus, with respect to accu-
racy, we predicted a detrimental effect of hindered verbaliza-
tion on learning specifically in concrete stimuli. With respect 
to response times, we predicted no differential effect of hin-
dered verbalization on abstract and concrete stimuli.

Method

Participants

We recruited 58 participants who did not participate in Exper-
iment 1 through the University of Amsterdam using the same 
exclusion criteria as in Experiment 1. Data from eight partici-
pants were excluded because they failed to perform the verbal-
ization task correctly (n = 7) or because of technical failures 
(n = 1). The final sample thus consisted of 50 participants 
(26 female, Mage = 21.1 (2.4) years, range = 18–30 years). 
Participants received €5 or research credits as reimbursement 
plus a variable bonus between €0 and €10 (Mbonus = €1.21 
(€1.06)). We only paid participants their earned bonus when 
they completed the long-term retention task within 36 h after 
testing and, as preregistered, performed analyses on the long-
term retention data from this smaller sample (n = 42).

Reinforcement‑learning task and data analyses

We administered the same reinforcement-learning 
task as described in Experiment 1 (see section 

Reinforcement-learning task), but reduced the response 
window from 2.5 s to 1.5 s and added a practice short-term 
retention block. We did the former to prevent participants 
from slowing down to keep up their performance, potentially 
explaining the absence of verbalization effects on accuracy 
in Experiment 1. We did the latter to familiarize participants 
with the task design before learning in the first block. We 
then performed confirmatory multilevel regression analyses 
on accuracy, short- and long-term retention rates, and 
response times (see section Data analyses).

Results

Confirmatory analyses: Learning, retention, and response 
times

Learning Most importantly, as illustrated in Fig. 5, results 
showed a stimulus type x verbalization condition interaction 
(z = 3.1, p = .002), but no three-way interaction between 
stimulus type, verbalization condition, and trial (p = .98). 
Follow-up analyses in each stimulus type separately showed 
that the verbalization task only lowered accuracy in concrete 
stimuli (main effect of verbalization condition: z = 3.1, p = 
.002), not in abstract ones (p = .12). Thus, in accordance 
with our hypothesis, results showed that hindering verbali-
zation specifically affected accuracy in concrete stimuli. In 
addition, results showed a main effect of stimulus type (z = 
4.6, p < .001) and an interaction between stimulus type and 
trial (z = 4.4, p < .001), indicating higher accuracy and a 
faster improvement across trials for concrete than for abstract 
stimuli. Results also showed a main effect of verbalization 
condition (z = 3.0, p = .003), indicating higher accuracy in 
the absence than presence of the verbalization task, and a 

Fig. 5  Learning: When learning concrete stimuli, participants chose 
the correct stimulus less often when verbalization was hindered than 
when it was unhindered. When learning abstract stimuli, this was not 
the case. Note. The shaded area corresponds to one standard error of 
the mean. The x-axis represents trials collapsed across the four pairs 

presented in each block. Results from exploratory multilevel logistic 
regression analyses on accuracy in all four conditions separately indi-
cated that participants learned in all conditions, with linear trial esti-
mates ranging from 0.5 to 1.9 and all ps < .003
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verbalization condition x trial interaction (z = 2.9, p = .004), 
indicating accuracy improved faster in the absence of the 
verbalization task as compared to in its presence.

Retention As illustrated in Fig. 6, results showed no effects 
including verbalization condition (all ps > .32), indicating 
hindered verbalization did not interfere with retention for 
either abstract or concrete stimuli. Results did show a main 
effect of stimulus type (t(51) = 3.6, p = .001), indicating 
better retention for concrete than abstract stimuli, but no 
stimulus type x delay interaction (p = .91). Finally, they 
showed better retention after short than long delay (t(226) 
= -3.8, p < .001).

Response times As displayed in Fig. 7, response-time 
results showed a stimulus type x verbalization condi-
tion interaction (t(12743) = -3.2, p = .001) and a three-
way interaction between stimulus type, verbalization 

condition, and trial (t(12743) = 2.4, p = .02). However, 
follow-up analyses in each stimulus type separately indi-
cated that all verbalization condition and verbalization 
condition x trial effects were non-significant (all ps > 
.07). In addition, results showed neither a main effect of 
stimulus type (p = .31) nor a stimulus type x trial interac-
tion (p = .83), and neither a main effect of verbalization 
condition (p = .85) nor a verbalization condition x trial 
interaction (p = .92).

Interim conclusion

Results from Experiment 2, in which we reduced the 
response window, showed the predicted detrimental effect 
of hindered verbalization on accuracy for concrete stimuli, 
but not abstract ones. In addition, they did not show this 
effect on response times.

Fig. 6  Retention: Participants recalled the correct stimulus better 
for concrete than abstract stimuli, but not better in the unhindered 
as compared to the hindered condition. Note. Error bars represent 

one standard error of the mean. To obtain the proportion of correct 
choices, choice accuracy was averaged across pairs and trials

Fig. 7  Response times: Participants responded similarly fast, irre-
spective of whether they learned abstract or concrete stimuli and of 
whether or not verbalization was hindered. Note. The shaded area 

corresponds to one standard error of the mean. The x-axis represents 
trials collapsed across the four pairs presented in each block
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General discussion

In this preregistered study, we assessed whether abstract 
and concrete stimuli yield different reinforcement-learning 
performance, and whether potential differences are due to 
verbalization. To do so, we administered a reinforcement-
learning task in which participants learned either type 
of stimuli while we hindered verbalization or not. Most 
importantly, our results showed that hindering verbali-
zation interfered more with learning concrete than with 
learning abstract stimuli, as reflected in response times in 
Experiment 1, in which the response window was long, and 
in choice accuracy in Experiment 2, in which the response 
window was short. The results thus suggest that people 
rehearse stimulus names while learning stimuli that are 
easy to verbalize, which in turn aids their learning.

Our main result, that is, a more pronounced detrimental 
effect of hindered verbalization on concrete than abstract 
stimuli, corroborates recent studies suggesting that learning 
is difficult when stimuli are verbally difficult to discriminate 
(Yoo et al., 2023) and that stimuli that are easy to verbalize 
are easier to learn than difficult-to-verbalize ones (Radulescu 
et al., 2022). We extend these findings by directly showing 
that verbalization underlies this superior learning for ver-
balizable stimuli and by showing that this effect is specific 
to learning, not to retention. As our data showed that par-
ticipants learned in all conditions (i.e., when verbalization 
was both hindered and unhindered, and for both abstract and 
concrete stimuli) and that hindered verbalization only affects 
learning for concrete stimuli, this implies that only reinforce-
ment learning underlies learning abstract stimuli, whereas 
both reinforcement learning and verbalization underlie learn-
ing concrete stimuli. Our main result thus provides additional 
evidence that working-memory processes are involved in 
reinforcement-learning tasks (Collins & Frank, 2012, 2018; 
Yoo & Collins, 2022), at least in concrete stimuli.

This finding has far-reaching implications for the rein-
forcement-learning field and related fields that use various 
stimulus types. Specifically, it suggests that studies using 
different types of stimuli may be incomparable, affecting 
the generalizability of results. For instance, brain processes 
associated with learning abstract stimuli (e.g., Daw et al., 
2011; Frank et al., 2005; Palminteri et al., 2015; Pessiglione 
et al., 2006) may not be generalizable to such processes asso-
ciated with concrete stimuli (e.g., Eppinger et al., 2008; van 
den Bos et al., 2009). Also, this finding suggests that stimu-
lus choice affects the validity of results. For instance, when 
a study using concrete stimuli finds developmental effects 
on learning, it is unclear which development it measures: 
the development of reinforcement-based learning, or the 
development of verbalization, an ability shown to increase 
from childhood to young adulthood (Yeates, 1994) and to 

decrease again in older adulthood (Au et al., 1995; Zec et al., 
2007). We therefore believe it valuable to assess the com-
parability of existing studies by performing meta-analyses 
in which stimulus type is included as fixed or random effect 
(Yarkoni, 2022).

Our main questions pertained to the differential role of 
verbalization in learning different types of stimuli. Other 
results are worth discussing as well. In line with previous 
studies, we found that learning was easier for concrete than 
abstract stimuli (Farashahi et al., 2020). Using our dual-
task design, we showed that concrete stimuli are easier 
to verbalize and therefore easier to learn. However, there 
may be coexisting explanations of this stimulus-type effect. 
First, results from a pilot study showed that the abstract 
stimuli were less discriminable than the concrete ones (see 
OSM Text I). It could thus be that the concrete stimuli 
were easier to learn because the two concrete stimuli in a 
pair were visually more discriminable than the two abstract 
ones, as previously shown to affect learning (Schutte et al., 
2017). Second, we used everyday objects as concrete stim-
uli while we excluded participants that were familiar with 
the Hirigana alphabet (our abstract stimuli) prior to testing. 
As such, superior learning for concrete stimuli could be 
explained by higher familiarity (e.g., Epstein et al., 1960; 
Stern et al., 2001). It is beyond the scope of the paper to 
further investigate which reason applies because we pur-
posely stuck to stimuli commonly used in the literature 
and because we were mainly interested in the processes 
underlying learning from abstract and concrete stimuli, 
that is, in the interaction between stimulus type and the 
verbalization task. However, future studies could try to 
replicate our results using different designs. For instance, 
by replacing the characters by more discriminable fractals 
(see, e.g., Gläscher et al., 2010) or by comparing hindered 
verbalization effects between abstract and concrete stimuli 
after familiarizing participants with the stimuli (see, e.g., 
Radulescu et al., 2022).

We also found that participants learned better when they 
were not required to perform the verbalization task while 
learning. This is in line with a large literature on dual-task 
interference, suggesting that people have a hard time per-
forming two tasks concurrently (e.g., Pashler, 1994).

Although non-significantly, our results suggested that the 
verbalization task not only interfered with learning concrete 
stimuli, but also with learning abstract ones. It is unclear 
whether this is because of general dual-task interference 
or because people specifically tend to verbalize abstract 
stimuli. Judging from participants’ comments after they 
completed the experiment, it seems like the latter explana-
tion holds: participants indicated they tried to verbalize the 
abstract stimuli, but were less able to do so as compared to 
the concrete ones, making it harder to learn them. To experi-
mentally test this, future studies could add a condition in 
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which participants perform a concurrent task that does not 
involve verbalization – for example, a foot-tapping task (e.g., 
Emerson & Miyake, 2003) – and compare task effects across 
the three tasks. If people learn worse from abstract stimuli 
because they concurrently perform a second task, one would 
expect interference from both the verbalization and the foot-
tapping task. If people learn worse from abstract stimuli 
because they cannot use verbalization to aid learning, one 
would only expect interference from the verbalization task.

Relatedly, because we administered one type of dual 
task, one may argue that the observed dual task interfer-
ence was due to a process other than verbalization. First, 
one could argue that interference was merely due to general 
task interference. This account, however, does not explain 
our result that the dual task interfered more with learning 
concrete than abstract stimuli. Second, one could argue 
that interference was due to the dual task taking up general 
working-memory capacity instead of verbalization per se. 
However, as we used the same number of stimuli in both 
abstract and concrete conditions, this account also does not 
explain why the dual task interfered more with learning 
concrete than abstract stimuli. Third, one could argue that 
the concrete stimuli were visually more complex than the 
abstract ones and that interference was due to the dual task 
taking up visual instead of verbal working memory. How-
ever, as the dual task did not involve visual information, it 
is very unlikely that it interfered with visual storage. Fourth, 
one could argue that the dual task interfered with learning 
through long-term memory. That is, it could be that learn-
ing concrete stimuli requires learners to retrieve informa-
tion from long-term memory more so than learning abstract 
stimuli, and that the dual task interferes with this process. 
As we used everyday objects as concrete stimuli, it could 
indeed be that learners take advantage of the familiarity of 
these objects and thus appeal to their long-term memory 
during learning. This would, however, not affect learning as 
this process doesn’t help them retrieve which stimulus is the 
correct one and can thus also not explain our main result.

Results from a pilot study, in which we assessed the ver-
balizability of the considered abstract and concrete stimuli, 
showed that, in general, concrete stimuli were easier to ver-
balize than abstract ones (see OSM Fig. II). Yet, explora-
tory analyses did not indicate effects of the degree of ver-
balizability on learning (see OSM Text II). It may be that 
this was because the stimuli within each stimulus type had 
similar degrees of verbalizability. To further investigate the 
effect of verbalization on learning, it may be worthwhile 
to investigate the effect of the degree of verbalizability in 
concrete stimuli. For instance, by administering a set of 
concrete stimuli with differing degrees of verbalizability. 
It may be that the effects of verbalization increase with the 
verbalizability of the concrete stimuli. However, it may also 
be that verbalizability only aids learning to a certain degree.

Finally, to investigate whether the same processes under-
lie learning from abstract and concrete stimuli, we adopted 
a dual-task design in which we hindered verbalization. Spe-
cifically, we occupied participants’ phonological loop (by 
letting them count while playing), making it more difficult 
for them to use verbalization to aid learning. In future stud-
ies, one may apply computational modeling to assess the 
origins of the differential effect of hindered verbalization on 
learning from the two types of stimuli. Ideally, one would 
want to disentangle the different components of the work-
ing-memory system by formulating computational models 
that separate general working-memory processes from ver-
bal and visual processes. This would allow one to draw 
conclusions about the specific contributions of the different 
working-memory systems to learning without administering 
a concurrent verbalization task. However, to our knowledge, 
only models assessing general working-memory processes 
(e.g., Collins & Frank, 2012) have been developed for rein-
forcement-learning data, not models specifically explaining 
verbal working-memory processes.

Conclusion

To conclude, our results suggest that learning concrete 
stimuli involves verbalization in addition to basic reinforce-
ment learning. These findings emphasize the importance of 
carefully considering which stimuli to use in order to ensure 
the generalizability of results and to validly answer research 
questions.
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