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Abstract
Two main hypotheses regarding the directional flow of visual information processing in the brain have been proposed: feed-
forward (bottom-up) and re-entrant (top-down). Early theories espoused feed-forward principles in which processing was 
said to advance from simple to increasingly complex attributes terminating at a higher area where conscious perceptions 
occur. That view is disconfirmed by advances in neuroanatomy and neurophysiology, which implicate re-entrant two-way 
signaling as the predominant form of communication between brain regions. With some notable exceptions, the notion of 
re-entrant processing has had a relatively modest effect on computational models of perception and cognition, which continue 
to be predominantly based on feed-forward or within-level re-entrant principles. In the present work we describe five sets of 
empirical findings that defy interpretation in terms of feed-forward or within-level re-entrant principles. We conclude by urg-
ing the adoption of psychophysical, biological, and computational models based on cross-level iterative re-entrant principles.
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Introduction

An issue that has generated considerable discussion in the 
fields of perception and cognition is the directional flow of 
information processing within the brain. Visual informa-
tion processing has been modeled as a sequence of steps 
culminating in conscious awareness. Those models have 
been formulated in psychophysical, biological, and compu-
tational terms. Here, we examine the success of these mod-
els in accounting for the empirical evidence. Our principal 
objective was not to provide a comprehensive review of the 
literature. Rather, our approach was selective: studies were 
selected that were most pertinent to – and best illustrated 
– the specific issue under discussion.

Abbreviated history of feed‑forward 
and re‑entrant models (psychophysics 
and biology)

Early psychophysical and biological theories of visual infor-
mation processing expounded a feed-forward – also known 
as “bottom-up” – sequence in which the sensory input was 
said to advance from lower to higher processing levels cul-
minating in a perception. A prime example is Selfridge’s 
(1959) Pandemonium model in which notional demons, 
each specializing in a different cognitive function, direct 
the incoming stimuli to progressively more complex higher-
level demons converging to a decision-making demon that 
determines the observer’s conscious awareness.

In the 1960s and 1970s, feed-forward schemes such as 
Pandemonium were generally accepted as the default model 
of brain functioning. Their acceptance was supported by 
Hubel and Wiesel’s (1962, 1977) discovery of the feed-
forward sequence of visual receptive fields aptly named 
Simple, Complex, and Hypercomplex. A benefit of feed-
forward schemes lies in their simplicity and in their allowing 
subtraction procedures to calculate the timing of different 
processing stages (e.g., Donders, 1969).

Adequacy of the feed-forward scheme as a compre-
hensive theory was questioned by later advances in neu-
roanatomy and neurophysiology that revealed massive 
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re-entrant pathways between brain regions (e.g., Felleman 
& Van Essen, 1991; Posner & Raichle, 1994; Zeki, 1993). 
If region A sends signals to region B, it is invariably the 
case that region B sends signals back to region A. Notably, 
the descending fibers are known to outnumber the ascend-
ing fibers and to be distributed widely, including into the 
spaces between the neurons at the lower level (e.g., Shipp & 
Zeki, 1989). Besides mediating a classical handshake with 
the units at the lower level, the widely distributed re-entrant 
signals can also bias the function of the lower-level units 
in preparation for the next step in the processing sequence 
(e.g., Sillito et al., 1994, see below). This anticipatory role 
of re-entrant processing has been incorporated into several 
models of information processing (e.g., Di Lollo et al., 2000; 
Hawkins & Blakeslee, 2004; Mumford, 1991, 1992).

Biological evidence notwithstanding, feed-forward prin-
ciples continue to be implemented in theories of perception 
and cognition (e.g., de Waal & Ferrari, 2010).1 As noted in 
the next section, most deep learning computational models 
have also been based on exclusively feed-forward principles 
(e.g., Sejnowski, 2018).

Abbreviated history of feed‑forward 
and re‑entrant models (computational)

The historical evolution of psychophysical/biological mod-
els is paralleled by the evolution of computational models. 
Early computational models employed strictly feed-forward 
architectures (McCulloch & Pitts, 1943; Hebb, 1949). Some 
of these models included the concept of back propagation 
(Rumelhart, Hinton, & Williams, 1985; Hecht-Nielsen, 
1992) which may be regarded as involving re-entrant activ-
ity. We hasten to note, however, that back propagation can-
not be regarded as the type or re-entrant activity that under-
lies perceptual and cognitive processes beyond the learning 
stage. This is because the re-entrant activity in back propa-
gation mediates the establishment of a neural network with 
its hidden layers. Once established, however, that network 
functions in an exclusively feed-forward mode. After its 
establishment, a network may require updating by means 
of back propagation; once updated, however, that network 
continues to function in an exclusively feed-forward mode.

As a coda to the discussion on back propagation, we 
should note two ways in which the system may optimize the 
processing of the input. Back propagation can be regarded 
as a way of configuring the system in readiness for a given 

input. A similar objective is achieved in the laboratory by 
the instructions given to the observer. In both cases, incom-
ing stimuli are processed “off-line” within a system whose 
configuration had been set before the arrival of the visual 
input. This way of configuring the system has been termed 
task-set reconfiguration.

In an alternative “on-line” procedure, the system’s config-
uration is altered as the input is being processed. An exam-
ple of “on-line” processing has been proposed by Lamme 
and Roelfsema (2000; see below). In “on-line” processing 
the configuration of the system is not fixed as in “off-line” 
processing; rather, each step in the processing sequence is 
said to reconfigure the system in readiness for the next step. 
This sequence of automatic reconfigurations then leads 
to conscious awareness of the initial input. It needs to be 
emphasized that the present work deals exclusively with 
“on-line” processes.2

Returning to the discussion of models based on re-entry, 
it is important to distinguish re-entry within a given level in 
a multi-level system from re-entry between levels.3 Mod-
els based on within-level re-entry have been proposed by 
Fernandez et al. (Recurrent Multilayer Perceptron (RMLP), 
1990), by Liang and Xiaolin (Recurrent Convolutional Neu-
ral Network (RCNN), 2015) and by Alom et al. (Inception 
Recurrent Convolutional Neural Network (IRCNN), 2021). 
The type of re-entry advocated in these models, however, is 
strictly within levels. This prevents them from accounting for 
the behavioural findings – discussed below – all of which 
involve re-entry between levels.

1 Indeed, there has been at least some measure of reluctance in 
accepting the concept of re-entrant processing. At a major interna-
tional conference, a speaker proffering a feed-forward model referred 
to the biological evidence for re-entry as an “evolutionary mistake.”

2 We thank Roberto Dell’Acqua for pointing out the distinction 
between “off-line” and “on-line” processing.
3 In biological settings, the term “level” refers to any given brain 
region. Whether a level is to be considered “high” or “low” depends 
on the context. Thus, a level defined as “low” in one context may be 
defined as “high” in a different context. This can best be illustrated by 
example. Pascual-Leone and Walsh (2001) used transcranial magnetic 
stimulation to study the timing and function of feedback between a 
relatively high-level region (V5) and a relatively low-level region 
(V1). Similarly, Sillito et al. (1994) investigated the temporal course 
of signals between a high-level region (V1) and a low-level region 
(Lateral Geniculate Nucleus).
 In computational settings, the term “level” has been used to refer 
to distinct processes performed at given stages of information pro-
cessing. For example, McClelland and Rumelhart (1981, page 377) 
remarked as follows:
 …we assume that perceptual processing takes place within a system 
in which there are several levels of processing, each concerned with 
forming a representation of the input at a different level of abstrac-
tion. For visual word perception, we assume that there is a visual fea-
ture level, a letter level, and a word level, as well as higher levels of 
processing that provide "top-down" input to the word level.
 We thank an anonymous reviewer for requesting a more informative 
definition of the term “level” in both biological and computational 
contexts.
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Models based on re-entry between levels have been pro-
posed less frequently. An early instance was the fast-learning 
algorithm for deep belief nets (Hinton et al., 2006). That 
model contains multiple levels. The lower levels feed infor-
mation forward to higher levels in an initial sweep but have 
no further feed-forward function. Rather, they convey only 
descending signals between levels. In contrast, the top lev-
els exhibit full two-way connections between levels. Hinton 
et al.’s model was elaborated by Lee et al.’s (2011) Convo-
lutional Deep Belief Network (CDBN) that postulated full 
two-way connections between all levels in the system. These 
between-level models are consistent with the empirical evi-
dence discussed below.

In summary, there is no question that feed-forward pro-
cesses are an essential part of perceptual and cognitive 
processes if for no other reason than to provide the initial 
sensory input to the system. Also, as discussed below in the 
context of face processing, they may underlie a distinct mode 
of information processing. But do they provide a suitable 
– or even acceptable – explanatory basis for the empirical 
findings? A negative answer to that question is demanded by 
a range of perceptual and cognitive phenomena that cannot 
be fully explained in terms of feed-forward processes or of 
processes constrained to re-entry within levels. Five such 
cases are reviewed below.

Phenomena that require between‑levels 
re‑entrant accounts

Metacontrast masking

Visual masking occurs when the perception of a target 
stimulus is impaired by the presentation of a subsequent 
visual stimulus (the mask). This form of masking is known 
as backward masking because the mask appears to act back-
wards in time. Two types of backward masking have been 
recognized, depending on the spatial relationship between 
the target and the mask: pattern masking and metacontrast 
masking. In pattern masking the contours of the mask are 
spatially superimposed on the target; in metacontrast mask-
ing the contours of the mask are closely adjacent to – but do 
not overlap – the contours of the target. Metacontrast is the 
main form of masking considered in the present work. For 
metacontrast masking to occur, the mask must follow the tar-
get in time. The optimal stimulus-onset asynchrony (SOA) 
between the target and the mask has been estimated to be 
about 100 ms in daylight viewing (Breitmeyer & Öğmen, 
2006). Notably, no masking occurs when the target and the 
mask are displayed simultaneously.

Theoretical accounts of metacontrast masking have been 
formulated in terms of feed-forward processes. For exam-
ple, a well-known theory proposed that the fast transient 

activity triggered by the onset of the mask overcomes and 
suppresses the slower sustained activity triggered by the tar-
get (Breitmeyer & Ganz, 1976). Here, we claim that feed-
forward accounts of metacontrast masking are disconfirmed 
by recent evidence obtained in studies that used a variety of 
experimental paradigms. We begin with studies of event-
related potentials (ERPs).

Fahrenfort, Scholte, and Lamme (2007a) recorded ERPs 
in a study of metacontrast masking. Observers were required 
to detect the presence of a square target figure that was fol-
lowed (or not followed) by a metacontrast mask. The tar-
get was clearly visible when it was not masked but was 
invisible when followed by the mask. The corresponding 
ERPs revealed that the neural activity in the feed-forward 
sweep was the same when the target was masked as when it 
wasn’t masked. This indicates that no masking occurred in 
the feed-forward sweep. In contrast, the ERP components 
associated with the re-entrant activity – which were very 
much in evidence when the target was not masked – were 
entirely missing when the target was masked. This pattern 
of results strongly suggests that metacontrast masking acts 
by disrupting the re-entrant signals while leaving the feed-
forward signals intact.

Further evidence that metacontrast masking depends crit-
ically on re-entrant processes has been reported by Fahren-
fort, Scholte, and Lamme (2007b), who found that conscious 
awareness of the target in a metacontrast study correlated 
with re-entrant but not with feed-forward activity. More evi-
dence along these lines has been reported by Lamme, Zipser, 
and Spekreijse (2002) and by Supèr, Spekreijse, and Lamme 
(2001), who found that feedback from extrastriate areas was 
critical for the stimuli to reach consciousness. Furthermore, 
Zhaoping and Liu (2022) found that metacontrast masking 
is weaker for stimuli displayed in the peripheral retina where 
feedback from higher to lower brain regions is thought to 
be weaker. Clearly, metacontrast masking cannot be wholly 
explained in terms of feed-forward processes.

Object substitution masking

Object substitution masking (OSM) is also known as com-
mon onset masking because, unlike metacontrast masking, 
the target stimulus and the mask come into view simultane-
ously. The display consists of a target item, a variable num-
ber of distractor items, and a mask (typically, four small dots 
surrounding the target). No masking occurs if the entire dis-
play disappears after a brief exposure. Masking does occur, 
however, if the target and the distractors are removed after a 
brief exposure, and only the mask remains in view (Di Lollo, 
Enns, & Rensink, 2000; Lleras & Moore, 2003; Woodman 
& Luck, 2003).

On the strength of this evidence, Di Lollo et al. (2000) 
concluded that OSM cannot be explained by the kind of 
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transient feed-forward activity that was held to account 
for metacontrast masking (Breitmeyer & Ganz, 1976; see 
above). This is because the simultaneous onset of the target 
and the mask in OSM precludes the mask from producing 
a separate onset transient that might suppress the ongoing 
sustained processing of the target. The conclusion that re-
entry is involved in OSM has been corroborated by Boehler, 
Schoenfeld, Heinze, and Hopf (2008), who employed mag-
netoencephalography (MEG) to show that OSM is mediated 
by re-entrant activity to primary visual cortex.

Figure‑ground segregation

In a series of ingenuous experiments with awake monkeys, 
Lamme and Roelfsema (2000) investigated a train of visual 
processes that culminated in figure-ground segregation. 
They recorded the activity of neurons in primary visual 
cortex in response to a brief visual display. The display 
consisted of a square patch of oriented line segments on a 
background of line segments of the opposite orientation. The 
main finding was that re-entrant signals from extrastriate 
cortex altered the tuning of the neurons in V1 to perform 
several different functions in successive phases of the pro-
cessing cycle. About 40 ms after stimulus onset the neurons 
were tuned to line orientation (loosely speaking, they acted 
as line-orientation detectors). About 40 ms later the same 
neurons became tuned to the subjective boundaries of the 
square patch (boundary detectors). Finally, about 40 ms after 
that, the same neurons became tuned to the square figure 
as distinct from the background (figure-ground detectors).

Ablation of extrastriate cortex caused the neurons to 
remain sharply selective for line orientation and figure 
boundaries, but the activity corresponding to figure-ground 
selection was missing. These findings confirm that, within 
a processing cycle, signals from higher centres re-enter the 
primary visual cortex and are essential in implementing the 
figure-ground selectivity of the neurons at the lower level. 
The re-entrant nature of the activity from extrastriate to stri-
ate cortex makes these results not amenable to accounts in 
terms of feed-forward processes.

Enhancing the perception of directional motion

Another set of results that defies a feed-forward account 
has been reported by Sillito, Jones, Gerstein, and West 
(1994). The study involved monitoring the activity along 
the two-way

pathways between lateral geniculate nucleus (LGN) and 
primary visual cortex in the cat in response to moving grat-
ings. The firing threshold of LGN neurons located just ahead 
in the motion path – but not yet activated by the moving grat-
ing – was significantly lowered by re-entrant signals from 
primary visual cortex.

Because of the lowered threshold, the primed neurons in 
LGN fired more readily and more strongly when eventually 
stimulated by the moving grating. As the authors note, this 
sequence of events may be regarded as the neurophysiologi-
cal correlate of an expectation about the future location of 
a moving object. It goes without saying that this enhance-
ment of motion processing in LGN stems exclusively from 
re-entrant signals between levels.

Homologous conclusions have been drawn from a series 
of experiments by Hupé et al. (1998), who studied the modu-
lation of motion-selective units in Regions V1, V2, and V3 
of macaque monkeys by re-entrant signals from Region V5. 
The main manipulation was to cool Region V5 to reduce 
the strength of re-entrant signals. The main finding was that 
the activity of neurons in the lower regions was reduced by 
as much as 95% when the activity of neurons in the higher 
region was suppressed by the reversible lesion. Clearly, 
feed-forward signals are not sufficient. Rather, appropri-
ate functioning of motion-selective neurons in the lower 
regions depends critically on the re-entrant signals from 
higher areas. Beyond enhancing the functioning of neurons 
in the lower regions, Hupé et al. (1998) note that “… feed-
back projections serve to improve the visibility of features 
… in the stimulus and may thus contribute to figure–ground 
segregation, breaking of camouflage, and psychophysically 
demonstrated ‘pop-out’ effects” (p. 786).

Face recognition

Feed-forward models encounter significant problems in 
modeling the findings in the face-recognition literature, 
especially those involved in identifying individual faces or 
specific facial expressions. We believe that those problems 
have arisen from the omission of re-entry as a critical factor 
in models of face recognition. Evidence consistent with the 
critical role of re-entry comes from recordings from tempo-
ral cortex of macaque monkeys (Sugase, Yamane, Ueno, & 
Kawano, 1999; Sugase-Miyamoto, Matsumoto, & Kawano, 
2011). Specifically, Sugase et al. (1999) found that face rec-
ognition occurs in two distinct stages. In the words of Sugase 
et al. (1999, p. 869):

We found that single neurons conveyed two different 
scales of facial information in their firing patterns, 
starting at different latencies. Global information, 
categorizing stimuli as monkey faces, human faces 
or shapes, was conveyed in the earliest part of the 
responses. Fine information about identity or expres-
sion was conveyed later, beginning on average 51 ms 
after global information. We speculate that global 
information could be used as a ‘header’ to prepare des-
tination areas for receiving more detailed information.
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In agreement with Sugase et al. (1999), we suggest that 
generic faces are probably detected on the feed-forward 
sweep, perhaps along the dorsal pathway for the low spatial 
frequency contents of the image, as proposed by Bar et al. 
(2006). In contrast, identification of individual faces, or of 
specific facial expressions, requires re-entrant signalling 
from other cortical and subcortical brain regions. Sugase 
et al.’s findings should be considered in the broader context 
provided by Chow et al. (2022), in which different levels of 
categorization are shown to follow different time courses.4 
Consistent with the theme of the present work, face percep-
tion cannot be wholly explained in terms of feed-forward 
processes alone.

Concluding comments

Considerable evidence has been cited in the foregoing for 
phenomena that defy explanation in strictly feed-forward or 
within-level principles. Yet, despite this evidence, accounts 
of visual processing couched in feed-forward or within-level 
concepts continue to be proposed. For example, models 
based on essentially feed-forward principles can be found 
in a recent special issue of the journal Vision Research 
concerning deep neural network accounts of human vision 
(Heinke, Leonardis, & Leek, 2022).

On the other hand, the idea that between-levels re-entry 
is an important component of visual information processing 
has been around for some time. For example, Bridgeman 
(1980) anticipated the multiplexing function of re-entrant 
signals that was later proposed by Lamme and Roelfsema 
(2000, see above). In Bridgeman’s study monkeys performed 
a visual discrimination task under conditions of metacontrast 
masking. Consistent with Lamme and Roelfsema’s findings 
and conclusions, Bridgeman (1980, p. 347) proposed that 
“The results suggest an iterative or recurrent coding of visual 
information, where the same cells participate in early, late, 
and pre-response coding in different ways.”

Although most models of visual processing are couched 
in terms of feed-forward or within-level re-entrant processes, 
between-levels models offer a more realistic perspective. 
Among the latter class of models are the ALOPEX model 
of Harth, Unnikrishnan, and Pandya (1987), the ARTMAP 
model by Carpenter, Grossberg, and Reynolds (1991) and 
the CDBN model of Lee et al. (2009; described above). 
More recently, Hawkins and colleagues have put forth a 
systematic theory of brain functioning based on iterative 
re-entrant processes between levels (Hawkins & Blakeslee, 
2004; Hawkins, Ahmad, & Cui, 2017; Hawkins, 2021).

In summary, models based on feed-forward or within-
level re-entry principles cannot account for the empirical 
findings. In contrast, models based on iterative re-entry 
between levels offer a more promising perspective. To 
account for the empirical findings, however, such models 
need to include unique parameters tailor-made for each indi-
vidual phenomenon. This said, the major objective of the 
present work was not to propose a novel model based on 
between-level re-entry. Rather, it was to draw attention to 
empirical findings that are beyond what can be explained 
in terms of feed-forward or within-level principles alone.

Open practices statement No new experiments are reported in this 
paper. Thus, no preregistration was possible.
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