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Abstract
The practice of sequentially testing a null hypothesis as data are collected until the null hypothesis is rejected is known as
optional stopping. It is well known that optional stopping is problematic in the context of p value-based null hypothesis
significance testing: The false-positive rates quickly overcome the single test’s significance level. However, the state of
affairs under null hypothesis Bayesian testing, where p values are replaced by Bayes factors, has perhaps surprisingly been
much less consensual. Rouder (2014) used simulations to defend the use of optional stopping under null hypothesis Bayesian
testing. The idea behind these simulations is closely related to the idea of sampling from prior predictive distributions. Deng
et al. (2016) and Hendriksen et al. (2020) have provided mathematical evidence to the effect that optional stopping under null
hypothesis Bayesian testing does hold under some conditions. These papers are, however, exceedingly technical for most
researchers in the applied social sciences. In this paper, we provide some mathematical derivations concerning Rouder’s
approximate simulation results for the two Bayesian hypothesis tests that he considered. The key idea is to consider the
probability distribution of the Bayes factor, which is regarded as being a random variable across repeated sampling. This
paper therefore offers an intuitive perspective to the literature and we believe it is a valid contribution towards understanding
the practice of optional stopping in the context of Bayesian hypothesis testing.

Keywords Bayes factor · Null hypothesis Bayesian testing · Null hypothesis significance testing · Sequential testing · p

value

Introduction

Psychological science is living exciting and quickly
changing days. From the midst of the crisis of confidence
that afflicts our field, it has become clear that part of the
solution is to reform null hypothesis significance testing
(NHST). There are many literature sources stating the
reasons supporting this decision. Here we refer to the
recent special issue published in The American Statistician
(Wasserstein et al., 2019), consisting of a set of 43 (!)
articles that elaborate in detail on these issues.
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One may question whether NHST is to be blamed
for all the problems in our field. Arguably, some of the
problems may be ascribed to practitioners misusing NHST.
Questionable research practices (QRPs; John et al., 2012)
such as post hoc removing of observations, performing
multiple tests but reporting only the very few that ‘worked
out’, and merging conditions are unfortunately all too
common (Simmons et al., 2011). In this paper, we focus on
another such QRP: Collecting more data while continuously
testing for significance until rejection of the null hypothesis
is possible. One aspect that QRPs make salient is that having
the analysis depend on observing the outcome variables of
interest (e.g., under optional stopping, or sequential testing,
procedures) may have deleterious effects on the quality of
the published research.

Proposed solutions to mitigate some of the problems
alluded to above include the preregistration of experiments
(Nosek et al., 2018), the use of registered reports (Nosek
& Lakens, 2014), and the adoption of alternative statistical
approaches to NHST. Here we explicitly consider one
alternative to NHST and p values that has gained increased
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attention in the literature in recent years, namely, that of null
hypothesis Bayesian testing (NHBT) and the Bayes factor
(Jeffreys, 1961; Kass & Raftery, 1995; Tendeiro & Kiers,
2019; van de Schoot et al., 2017). Given two models M0

and M1, the Bayes factor BF10 is the multiplicative term
that updates the prior odds into posterior odds:

p(M1)

p(M0)
︸ ︷︷ ︸

prior odds

× p(D|M1)

p(D|M0)
︸ ︷︷ ︸

BF10

= p(M1|D)

p(M0|D)
︸ ︷︷ ︸

posterior odds

. (1)

In other words, the Bayes factor quantifies the update in our
relative belief about the two entertained models in light of
the observed data D. Alternatively, the Bayes factor can be
interpreted as the relative predictive value of each model.
If, for instance, the observed data are better predicted under
M1 then p(D|M1) > p(D|M0) and as a consequence
BF10 > 1. If M0 represents the null model and M1 an
alternative model, the Bayes factor can be used to quantify
evidence for M1 compared to M0; if a prior probability
ratio is given, a posterior probability ratio can be computed.
For a more thorough discussion of Bayes factors, including
their merits and possible issues, see Tendeiro and Kiers
(2019).

Goal of this paper

In this paper, we consider the problem of optional stopping
by means of NHBT. It is well known that optional stopping
is a real problem under p value-based NHST (Armitage
et al., 1969); we will quickly illustrate the problem
with a simple and well-known example. Interestingly, the
optional stopping problem (or lack thereof) under the
Bayesian framework has been far less consensual. In a
provokingly titled paper (‘Optional stopping: No problem
for Bayesians’), Rouder (2014) suggested that optional
stopping is allowed under the Bayesian paradigm (he
is not alone; see Edwards et al., 1963; Kadane et al.,
1996). Rouder’s main premise is that the Bayesian optional
stopping procedure leads to a well-calibrated decision rule
in a particular sense: Given equal prior model probabilities,
if for example BF10 = 10, then it must happen that data
randomly generated under M1 are ten times more likely to
produce BF10 = 10 than data randomly generated under
M0. It is in this particular sense that Rouder (2014) claims
that the Bayes factor is able to handle optional stopping
(de Heide & Grünwald, 2017). Before proceeding, we note
that other perspectives on the Bayesian optional stopping
problem do exist. At the base of these alternatives is the
multiplicity of ways of operationalizing the idea of being
“able to handle optional stopping” (de Heide & Grünwald,
2017). And in fact, others have argued that the Bayesian
optional stopping procedure can be problematic in some
sense (e.g., Sanborn et al., 2014; Sanborn & Hills, 2014; Yu

et al., 2014; de Heide & Grünwald, 2017). For the current
paper, we will focus exclusively on Rouder’s perspective
on the optional stopping problem (for those interested, see
Rouder & Haaf, 2019 for a recent account of Rouder’s
position on the aforementioned problems).

Recently, Deng et al. (2016) and especially Hendriksen
et al. (2020) have offered mathematical proofs showing that
the Bayesian optional stopping procedure is well calibrated
in the sense of Rouder (2014). These papers further
extended the realm of situations under which Bayesian
optional stopping is expected to work (including in
cases involving improper priors and nuisance parameters).
Unfortunately, both of these papers are mathematically too
technical for the common readership in the applied social
sciences.

Rouder (2014) defended his assertions by means of
simulated data. For fixed Bayes factors (called ‘nominal’
Bayes factors), many datasets were generated under either
model and the ratio of cases under each model leading
to (approximately) that Bayes factor was computed (this
is the ‘observed’ Bayes factor). Our current contribution
consists of offering worked-out examples that complement
Rouder’s conjectures (which are proved in general terms by
Hendriksen et al., 2020). Whenever possible, closed-form
mathematical derivations of distributions of random vari-
ables which complement Rouder’s simulated distributions
are provided. To the best of our knowledge, our contribution
is unique in its modus operandi. Thus, we expect that our
approach can offer help to further understand the optional
stopping problem under the Bayesian framework, in the
sense advocated by Rouder (2014).

The remainder of the paper is organized as follows. In the
next section, we introduce the optional stopping procedure
in detail, both under the frequentist and the Bayesian
paradigms. We motivate Rouder’s reasoning by illustrating
the connection between his idea and the definition of the
Bayes factor as a ratio of two prior predictive distributions
(e.g., Etz et al., 2018). Next, we show our results for
the two hypotheses tests considered in Rouder (2014).
Each section includes theoretical derivations of distributions
of the Bayes factor. This is possible by looking at the
Bayes factor as a function of randomly drawn data. Thus,
effectively, what we offer is sampling distributions for the
Bayes factor under either model under comparison. This
approach complements that of Rouder, which is exclusively
based on simulation. We compare our theoretically derived
distributions with approximated distributions found by
simulation, thus making clear that our precise results
actually strengthen the simulation-based results by Rouder.
We finish the paper with a discussion of the main theoretical
findings in our derivations and some of the limitations of
our approach. Most of the mathematical derivations are
included in the Supplemental Material, to ease the reading
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of the paper. Furthermore, we provide all the R code that
implements our results and produces all figures in OSF
(https://osf.io/5z92h/).

Optional stopping

Under the frequentist paradigm

In this setting, the optional stopping (or sequential testing)
procedure amounts to looking regularly at the statistical
significance as data come in, and stopping once the p value
falls below the critical threshold α (typically .05 or .01). The
problem with this approach is that it leads to proportions
of false-positive results above the nominal type I error
rate α (typically .05). This is a well-known result (e.g.,
Armitage et al., 1969; Jennison and Turnbull, 1990). We
used a simulation to illustrate the situation. The following
procedure was replicated 1000 times: randomly draw n = 2
observations from N (0, 1) and compute the p value of a
two-tailed one-sample t test (M0 : μ = 0 versusM1 : μ �=
0); stop if p is below α = .05, otherwise collect one more
observation and recompute p; proceed until either p < α

or n is 1,000,000. Figure 1 shows the cumulative proportion
of replications that terminated due to statistical significance
(i.e., a false positive) as a function of the sample size. As
can be seen, the proportion of false positives increases1 with
n, and even at low sample sizes the error rates are already
deemed unacceptably large (e.g., .36 at n = 50). Therefore,
optional stopping under the frequentist paradigm leads to
serious biases in favor of rejecting the null hypothesis.

Although there are proposals under the frequentist
framework to try to remedy the situation (e.g., Armitage,
1960; Botella et al., 2006; Fitts, 2010; Frick, 1998; Jennison
& Turnbull, 1999; Lakens, 2014; Pocock, 1983; Wald,
1945), these are largely ignored in psychology (Lakens,
2014). If such corrections are not used, researchers must
adhere to designs based on predefined (i.e., fixed) sample
sizes and sample until completion. Unfortunately, there is
ample empirical evidence supporting the hypothesis that
data collection decisions made by researchers are often
dependent on the magnitude of the p value (John et al.,
2012; Yu et al., 2014). For example, Yu et al. (2014)
found evidence indicating that researchers are willing to
prematurely terminate data collection upon observing either

1As a matter of side-interest, we observe that the increase of the false-
positive rate decelerates as n increases (see Armitage et al., 1969,
p. 243), and is approximately log-linear. Thus, the false-positive rate
is still about 80% even after (potentially) sampling up to 1 million
observations. The common saying ‘sampling to reach a foregone
conclusion’ (Anscombe, 1954) that is often used to criticize the
frequentist optional stopping procedure might therefore not accurately
describe the situation.

Fig. 1 Proportion of false positives as a function of sample size under
the frequentist optional stopping procedure, for a one-sample t test.
The x-axis is in log-scale. The grayed area shows high agreement with
results previously shown by Jennison & Turnbull (1990, Table 1)

a low or a large p value. The problem is severe, and one may
rightfully question whether similar limitations hold with
Bayesian statistics.

Under the Bayesian paradigm

An optional stopping procedure similar to that under
the frequentist paradigm is now considered. Unlike the
frequentist procedure, now the p value is replaced by the
Bayes factor BF10. After observing the n-th datum and
computing BF10, one decides to stop data collection and
retain M1 if BF10 is larger than a threshold BFU (thus,
data evidence is deemed sufficiently compelling for M1).
Alternatively, one decides to stop data collection and retain
M0 if BF10 is smaller than a threshold BFL (data evidence
is deemed sufficiently compelling for M0). Finally, data
collection should proceed in case BFL < BF10 < BFU .

The thresholds BFU and BFL should be chosen before
data collection. In our analyses, we use the same threshold
values as Rouder (2014): BFU = 10 and BFL =
1
10 (see also Schönbrodt et al., 2017). These values can
be considered as strong evidence, according to Jeffreys
(1961).2 Thus, similar amounts of evidence are required
to terminate data collection in favor of either model when
Bayesian optional stopping is employed. We notice that
the Bayesian optional stopping procedure differs from the
frequentist counterpart in one crucial aspect: The Bayesian
procedure can stop due to sufficiently strong evidence in
favor ofM0. This is not possible by means of p value based
NHST, where evidence can only be gathered against M0.

2We do caution researchers to take qualitative labels such as ‘strong’
evidence with a grain of salt. Such labels serve no purpose other than
benchmarking amounts of evidence.
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Thus, the Bayesian optional stopping procedure has this one
clear advantage over the frequentist method.

The Bayesian optional stopping procedure outlined
above has been recurrently proposed in the literature (as
early as Lindley, 1957; see also Kass and Raftery, 1995;
Edwards et al., 1963). Several studies implemented and
further extended this method (e.g., Matzke et al., 2015;
Schönbrodt et al., 2017; Schönbrodt &Wagenmakers, 2018;
Wagenmakers et al., 2012; Wagenmakers et al., 2015).
There is general agreement that, under the Bayesian frame-
work, the stopping rule is unrelated to the interpretation of
the results (Rouder, 2014; Sanborn & Hills, 2014); this is a
consequence of the likelihood principle (Berger & Wolpert,
1988). However, some have questioned frequentist prop-
erties related to the procedure, that is, how the procedure
works in the long run (Sanborn et al., 2014; Yu et al., 2014).
Therefore, the issue of whether the procedure ‘works as
advertised’ has been a matter of contention.

In an attempt to clarify matters, Rouder (2014) presented
an argument according to which the Bayes factor is said
to be well calibrated under Bayesian optional stopping. To
understand the reasoning behind Rouder’s simulation study,
we make use of the concept of a prior predictive distribution
(see e.g., Etz et al., 2018 for a more elaborate exposition).
Assume entertaining two competing models in order to
infer about the mean μ of a normally distributed population
with known variance σ 2: M0 : μ = 0 versus M1 :
μ ∼ N (0, σ 2

1 ) with σ1 known (the corresponding Bayes
factor is worked at length in this paper). We can generate
values of μ from both of these models.3 Subsequently, we
can generate sample data based on these μ parameters.
The distributions of the resulting sample means (i.e., the
prior predictive distributions) for 100,000 simulations, each
simulation consisting of a sample of size 10, are shown in
panel A of Fig. 2 (sample means larger than .25 in absolute
value are not shown to ease the visualization).

The Bayes factor BF10 quantifies the relative probability
of the observed data under M1 versus M0. In other words,
the Bayes factor equals the ratio of the two prior predictive
distributions (for an arbitrary sample mean X). Thus, we
can compare the relative heights of the two distributions for
different points along the x-axis to get the corresponding
Bayes factors; see panel C.

The two-sided alternative modelM1 is symmetric in the
sense that its within-model prior is symmetric around 0. The
green arrows in panel A indicate the observed frequencies
under either model of sample means of (about) .19 in
magnitude. As shown in panel C, the associated Bayes
factor is approximately the same (.63 at X = −.19 and .59
at X = .19; the exact value (solid line) is BF10 = .63).

3Note that forM0, all generated μ parameters will be zero.

Observe that the Bayes factor is a mathematical function
of the sample mean (for the running example, see Eq. 13).
Panel B in Fig. 2 displays the frequencies of the (logarithm
of) BF10. Each bin in panel B (with a particular ln(BF10)

value) is matched by the pair of bins in panel A with sample
means corresponding to that BF10 value via Eq. 13. For
example, X = ±.19 corresponds to ln(BF10) = −.46; the
frequency associated to ln(BF10) = −.46 is the sum of the
frequencies associated to X = ±.19, under each model (see
the green arrows in panel B). Their ratio should therefore
also equal the Bayes factor; that is displayed in panel D.

More generally, let’s consider prior model odds of 1-to-
1, thus assume that both models are equally likely a priori.
In this case, the Bayes factor is equal to the posterior odds
(by Eq. 1):

p(D|M1)

p(D|M0)
︸ ︷︷ ︸

BF10

= p(M1|D)

p(M0|D)
︸ ︷︷ ︸

posterior odds

. (2)

The distribution of the left-hand side of Eq. 2 under either
M0 or M1 for a given sample size can be approximated
by simulation (as illustrated by panel B in Fig. 2). But the
Bayes factor is equal to the posterior odds by Eq. 2. Thus,
for each generated data set (under either model) we know
that M1 is more likely than M0 by a factor corresponding
to the resulting BF10 for that data set. Rouder’s reasoning
is the following (Assertion 1): The previous interpretation
must hold even when one does not know under which model
the data were generated. In other words, given a data set
generated under either M0 or M1 (unknown to us), the
Bayes factor can still be interpreted as the corresponding
posterior odds. It is in this sense that Rouder claims that
the Bayes factor (i.e., the posterior odds) is well calibrated
(de Heide & Grünwald, 2017). Rouder used simulations to
make his point. For any given BF10 value, he tallied the
number of simulations that resulted in approximately4 that
Bayes factor, under either model (i.e., panel B in Fig. 2).
The ratio of obtained Bayes factors under both models must
then equal the Bayes factor itself under Rouder’s assertion
(i.e., panel D in Fig. 2). For instance, the number of replicate
experiments with a fixed sample size that produce BF10 =
10 underM1 should be approximately ten times larger than
the number of replicate experiments that produce BF10 =
10 underM0.

Rouder then further suggested the following (Assertion
2): The above property also holds under optional stopping.
Thus, using the Bayesian optional stopping procedure in
each replication should preserve the property above of
the Bayes factor. This goes beyond Assertion 1 in that
it lets go of the fixed sample size. Instead, data gets

4Because the Bayes factor is a continuous measure of evidence, a small
interval around BF10 has to be considered for this approximation to
work.
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Fig. 2 Prior predictive distributions (A and B) and the corresponding ratios (C and D), for normally distributed data (Xi ∼ N (μ, σ 2) for
i = 1, . . . , n and known variance σ 2), when comparingM0 : μ = 0 versusM1 : μ ∼ N (0, σ 2

1 ), with σ1 known. In A and B, the prior predictive
distributions for either model are plotted back-to-back for easier visual comparison. The (logarithm of) the Bayes factor is a mathematical function
of the sample mean X, thus we can think of it as being a random variable. The prior predictive distributions for X (A) and for ln(BF10) (B) under
each model are closely related, as indicated by the absolute frequencies. Therefore, the ratios of both pairs of prior predictive distributions give
the Bayes factor (C and D). See text for details

continuously sampled until the BF10 hits one of two
thresholds (for instance, BF10 = 10 or BF10 = 1/10).
Again, the number of replicate experiments under optional
stopping that produce BF10 = 10 under M1 should be
approximately ten times larger than the number of replicate
experiments that produce BF10 = 10 underM0.

Our rationale

Rouder (2014) provided evidence for his statements by
means of simulations and approximations. We now offer a
mathematical view on this problem and derive probability
distributions instead of approximate histograms of frequen-
cies. We considered the same hypothesis testing procedures
as Rouder. These are based on testing hypotheses about

the mean of a normal distribution N (μ, σ 2), for which
the variance is assumed known. The first test is given by
M0 : μ = 0 versus M0 : μ = μ1, which tests two-point
hypotheses; we refer to this case as the ‘point null versus
point alternative test’. The second test isM0 : μ = 0 versus
M0 : μ ∼ N (0, σ 2

1 )with σ 2
1 known; we refer to this case as

the ‘point null versus interval alternative test’. In what fol-
lows, we will consider each of these two tests in turn. In our
derivations, we provide a proof for Assertion 1 for a fixed
sample size n. For Assertion 2, we only provide a proof for
a particular situation, namely, that the assertion holds after
exactly one step of the optional stopping procedure. For a
general mathematical proof of the adequacy of the calibra-
tion of Bayes factors under Bayesian optional stopping we
again refer the reader to Hendriksen et al. (2020).

74 Psychon Bull Rev  (2022) 29:70–87



Point null versus point alternative test

Suppose data are independently normally distributed: Xi ∼
N (μ, σ 2) for i = 1, . . . , n and known variance σ 2. Our
goal is to compare the predictive value of the following two
models for parameter μ: M0 : μ = 0 and M1 : μ = μ1.
The Bayes factor BF10 is given as follows (see Theorem 1
in the Supplemental Material for a derivation):

BF10 = exp

[

nμ1(2X − μ1)

2σ 2

]

. (3)

Working with logarithms simplifies the derivations, thus
consider the following expression instead:

ln(BF10) = nμ1(2X − μ1)

2σ 2
. (4)

We next derive the sampling distribution of ln(BF10) under
each model, M0 and M1, and then divide both densities
and show that it results in the Bayes factor. This proves
Assertion 1.

Initial n observations

In general, the sampling distribution of X when the
population mean is fixed (say, at μX) is given by

X ∼ N
(

μX,
σ 2

n

)

. (5)

ln(BF10) is a linear transformation of X, thus the density of
ln(BF10) can be found by means of the change of variable
theorem (see Lemma 2 in the Supplemental Material for a
derivation):

fln(BF10)(y) = σ√
nμ1

φ

(

σ√
nμ1

y +
√

nμ1

2σ
−

√
n

σ
μX

)

,

(6)

where y is a realization of ln(BF10) and φ denotes
the probability density function of the standard normal
distribution. We therefore conclude that the sampling
distribution of ln(BF10) under M0 and M1 is given by
Eq. 6 for μX equal to 0 and μ1, respectively.

Dividing the densities

The final step consists of showing that
f
M1
ln(BF10)

(y)

f
M0
ln(BF10)

(y)
=

exp(y). Since y is a realization of ln(BF10), exp(y) is the
realization of BF10 for the corresponding observed data,

which concludes the proof of Assertion 1.

f
M1
ln(BF10)

(y)

f
M0
ln(BF10)

(y)
=

exp

[

− 1
2

(

σ√
nμ1

y −
√

nμ1
2σ

)2
]

exp

[

− 1
2

(

σ√
nμ1

y +
√

nμ1
2σ

)2
]

= exp

[

−1

2
(−4)

σ√
nμ1

y

√
nμ1

2σ

]

= exp(y). (7)

Proceed with optional stopping

We need a rule to decide whether the evidence provided
by the first n observations is decisive (warranting the
interruption of the optional stopping). As explained above,
we set up the same rule as Rouder (2014): Stop if BF10 >

BFU = 10 (retain M1) or BF10 < BFL = 1
10 (retain

M0), otherwise proceed sampling. Equation 4 allows
reexpressing the decision rule in terms of the observed
sample mean. LetX0 andX1 denote the sample mean values
associated with BFL and BFU , respectively. Solving Eq. 4
with respect to X gives

X = 1

2
μ1 + σ 2

nμ1
ln(BF10). (8)

We conclude that X0 = 1
2μ1 − σ 2

nμ1
ln(10) and X1 =

1
2μ1 + σ 2

nμ1
ln(10). The sequential testing procedure stops

after the first n observations when X ≤ X0 (retain M0) or
X ≥ X1 (retain M1). The test is indecisive for all sample
means in the interval I = (X0, X1).

In case X ∈ I, we need to collect more data and reassess
the relative evidence between both models. Suppose k

(k ≥ 1) more observations are collected. It is important
to distinguish between the first n observations (now fixed)
from the k new observations (to be sampled). We therefore
express the sample mean value of the (n + k) observations
as follows:

Xn+k = n

n + k

(

Xn +
∑n+k

i=n+1 Xi

n

)

, (9)

where we now introduce the general notation Xt to refer to
the sample mean based on the first t observations. After the
k new observations are available, we use Eq. 4 to recompute
ln(BF10):

ln(BF10) = (n + k)μ1(2Xn+k − μ1)

2σ 2

= (n + k)μ1

2σ 2

[

2n

n + k

(

Xn +
∑n+k

i=n+1 Xi

n

)

− μ1

]

. (10)
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Fig. 3 Distribution of various random variables after n observations, for the point null versus point alternative test. A: X under M0 (upper
distribution; Eq. 5 with μX = 0) and under M1 (inverted distribution; Eq. 5 with μX = μ1). B: ln(BF10) under M0 (upper distribution; Eq. 6
with μX = 0) and underM1 (inverted distribution; Eq. 6 with μX = μ1). C: Relation between the nominal and observed ln(BF10) values based
on approximation by simulation (points) and on the exact values (line) (Eq. 7)

The remaining of the proof consists of deriving the density
of ln(BF10) given by Eq. 10 under each model, and then
relate the ratio of both densities to the Bayes factor. We
note that this is the distribution conditional on indecisive
evidence after the first n observations. We first derive the

distribution of the sum S = Xn +
∑n+k

i=n+1 Xi

n
; ln(BF10) is

simply a linear transformation of S.
Firstly, and again assuming that the true population mean

is μX (a general unknown quantity), we observe that Xn

now follows a truncated normal distribution:

Xn ∼ NT

(

μX,
σ 2

n
; I

)

. (11)

Moreover, from Xi ∼ N (μX, σ 2) it follows that

∑n+k
i=n+1 Xi

n
∼ N

(

k

n
μX,

k

n2
σ 2

)

. (12)
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Fig. 4 Distribution of various random variables under M0 after (n + k) observations, for the point null versus point alternative test. These
random variables correspond to intermediate results that facilitate the proof of Assertion 2 (Supplemental Material, Lemma 6). A: Xn (Eq. 11 with

μX = 0). B:
∑n+k

i=n+1 Xi

n
(Eq. 12 with μX = 0). C: S = Xn +

∑n+k
i=n+1 Xi

n
(Supplemental Material, Lemma 3)

Random variables Xn and
∑n+k

i=n+1 Xi

n
are independent, since

sampling the k new observations is independent from the
sampling of the first n observations. Hence, the distribution
of S is given by the convolution of both densities (e.g.,
Blitzstein and Hwang, 2019, Section 8.2). We derive
the closed form expression of the density of S in the
Supplemental Material (see Theorem 3 for the general case,
and Lemmas 3 and 4 for the particular cases under M0

and M1, resp.). Finally, the density of ln(BF10) is found
by means of the change of variable theorem (Supplemental
Material, Lemma 5).

Dividing the densities

Finally, we show that the ratio of the densities of ln(BF10)

under either model, after (n + k) observations, leads to the
Bayes factor (Supplemental Material, Lemma 6).

Unconditional distribution

What we just established above is the closed-form
expression of the distribution of ln(BF10) under either
model, conditional on an indecisive test result after the first
n observations. Theorem 4 in the Supplemental Material
can now be used to ascertain that the Bayes factor is well
calibrated overall, that is, after the initial n observations (in
case the first test was decisive) or after (n + k) observations
(in case the first test was indecisive).

Example 1

We illustrate our derivations by means of an example.
We use simulations as in Rouder (2014) and compare the
approximate results from the simulations with our precise
derivations. Let n = 10, k = 5, σ = .3, and μ1 = .1. For
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each simulation (total = 100,000 simulations), we followed
this procedure:

1. Randomly draw n observations from N (0, σ 2) (i.e.,
under M0). Compute X and ln(BF10); compare with
the corresponding exact distributions (Eqs. 5 and 6 with
μX = 0).

2. Randomly draw n observations from N (μ1, σ
2) (i.e.,

under M1). Compute X and ln(BF10); compare with
the corresponding exact distributions (Eqs. 5 and 6 with
μX = μ1).

3. Approximate the ratio of the densities of ln(BF10)

under either model and compare it to BF10. The
approximation is achieved by partitioning the support
interval in small subintervals5 and then computing the
ratio of the observed frequencies in each subinterval.
This gives the observed (approximate) density ratio,
which we compare to its exact counterpart (Eq. 7).

4. Stop in case BF10 is larger than 10 or smaller than 1
10 ,

otherwise: Collect k more observations, recompute X

and ln(BF10) under each model, and approximate the
ratio of the densities of ln(BF10) under either model
and compare it to BF10.

Panels A and B of Fig. 3 show the approximate distribution
(histogram) and exact distribution (solid line) of X

and ln(BF10) under M0 and M1, after the initial n

observations. As can be seen, our exact distributions work
as intended. In panel C we plot the approximate (points)
and exact (solid line) density ratio. Our results imply that
the line in panel C is the exponential function (see Eq. 7).
The conclusion is that, as proved, the ratio of frequencies
of observed Bayes factor values under either model (as also
done by Rouder, 2014) is just an approximation to that very
same nominal Bayes factor value.

Figures 4 and 5 show the distributions of Xn,
∑n+k

i=n+1 Xi

n
,

and S under M0 and M1, respectively. Figure 6 illustrates
the most relevant result for the point null versus point
alternative test considered here: After optional stopping, the
ratio of the densities of the Bayes factor values under each
model does indeed lead to the Bayes factor, as proved above.

Probability of interesting events

One added value of knowing the distribution of BF10 under
either model is that it allows quantifying the probability
of interesting events. For example, by means of Eq. 8 we
know that the procedure is inconclusive after n observations
when Xn is in I = (−0.157, 0.257). We can quantify the
probability of each possible outcome (i.e., retainM0, retain

5Twenty-one subintervals of equal length were used. This number of
subintervals provided enough accuracy for our purposes (each random
variable is based on samples of 100,000 draws).

M1, or inconclusive) under each model through either the
distribution of X (Eq. 5) or, equivalently, the distribution
of ln(BF10) (Eq. 6); see Table 1 (top panel). Similarly,
we can compute the overall probabilities of each event
after the k extra observations are collected (Table 1, bottom
panel). Because both hypotheses being tested are of the
same type, the probabilities in Table 1 are symmetric (e.g.,
p(retain M0|M0, n obs.) = p(retain M1|M1, n obs.) =
.049). It can be observed that, in this situation, the addition
of k extra observations increases the probability of making
a correct decision.

Point null versus interval alternative test

We now look at a different alternative model for μ and
consider testing M0 : μ = 0 versus M1 : μ ∼ N (0, σ 2

1 ),
with σ1 known. This test has been studied before (e.g.,
Berger and Delampady, 1987; Berger & Pericchi, 2001;
Rouder, 2014; Rouder et al., 2018). The Bayes factor BF10

is given by (for a derivation see, e.g., Tendeiro & Kiers,
2019, Appendix B):

BF10 = σ
√

σ 2 + nσ 2
1

exp

[

n2σ 2
1 X

2

2σ 2(σ 2 + nσ 2
1 )

]

, (13)

or in terms of logarithms,

ln(BF10) = λ + n2σ 2
1 X

2

2σ 2(σ 2 + nσ 2
1 )

, (14)

where λ = ln

(

σ
√

σ 2+nσ 2
1

)

does not depend on the observed

data.
We will follow a similar strategy as for the point null

versus point alternative test. First, we derive the sampling
distribution of ln(BF10) under each model after the first n

observations, and show that the ratio of both densities results
in the Bayes factor. Second, we collect k more observations
for the cases where evidence is inconclusive and reassess
the distributions of ln(BF10) under each model. Once more,
we will establish that the ratio of both densities results in the
Bayes factor.

UnderM0

When μ = 0, the sampling distribution of X is given by

X|M0 ∼ N
(

0, σ 2

n

)

(Eq. 5 with μX = 0). It then follows

that X−0
σ/

√
n

∼ N (0, 1) and
(

X−0
σ/

√
n

)2 = nX
2

σ 2 ∼ χ2
1 . Finally,

observe that ln(BF10) (Eq. 14) is a linear function of nX
2

σ 2 ,
thus the distribution ln(BF10) can be found by the change
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Fig. 5 Distributions of various random variables under M1 after (n + k) observations, for the point null versus point alternative test. These
random variables correspond to intermediate results that facilitate the proof of Assertion 2 (Supplemental Material, Lemma 6). A: Xn (Eq. 11 with

μX = μ1). B:
∑n+k

i=n+1 Xi

n
(Eq. 12 with μX = μ1). C: S = Xn +

∑n+k
i=n+1 Xi

n
(Supplemental Material, Lemma 4)

of variable theorem (see Lemma 7 in the Supplemental

Material, with σ 2
X = σ 2

n
):

f
M0
ln(BF10)

(y) = 2(σ 2 + nσ 2
1 )

nσ 2
1

fχ2
1

[

2(σ 2 + nσ 2
1 )(y − λ)

nσ 2
1

]

, for y > λ.

(15)

UnderM1

The sampling distribution of X is given by

p(X|M1) =
∫ ∞

−∞
p(X|μ,M1)p(μ|M1) dμ,

where X|μ,M1 ∼ N
(

μ, σ 2

n

)

and μ|M1 ∼ N (0, σ 2
1 ). In

the Supplemental Material (Lemma 8) we solve the integral

and conclude that

X|M1 ∼ N
(

0,
σ 2

n
+ σ 2

1

)

. (16)

It then follows that X
√

σ2
n

+σ 2
1

∼ N (0, 1) and

(

X
√

σ2
n

+σ 2
1

)2

=
nX

2

σ 2+nσ 2
1

∼ χ2
1 . Again, observe that ln(BF10) (Eq. 14)

can be expressed as a linear function of nX
2

σ 2+nσ 2
1
, thus the

distribution ln(BF10) can be found by the change of variable
theorem (see Lemma 7 in the Supplemental Material, with

σ 2
X = σ 2

n
+ σ 2

1 ):

f
M1
ln(BF10)

(y) = 2σ 2

nσ 2
1

fχ2
1

[

2σ 2(y − λ)

nσ 2
1

]

, for y > λ. (17)
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Fig. 6 Visualization of Assertion 2 for the point null versus point alternative test. A: ln(BF10) under M0 (upper distribution) and under M1
(lower distribution) (Supplemental Material, Lemma 5). B: Relation between the nominal and observed ln(BF10) values based on approximation
by simulation (points) and on the exact values (line) (Supplemental Material, Lemma 6), after (n + k) observations for the point null versus point
alternative test

Dividing the densities

As a final step, we show that
f
M1
ln(BF10)

(y)

f
M0
ln(BF10)

(y)
= BF10, that is,

the realization of BF10 for the corresponding observed data
(Supplemental Material, Lemma 9).

Proceed with optional stopping

More data are collected in case evidence from the first n

observations is indecisive. Equation 14 allows reexpressing
the decision rule in terms of the observed sample mean;

Table 1 Point null versus point alternative test, Example 1 (n = 10, k = 5, σ = .3, and μ1 = .1): Probability of each decision after n observations
(top panel) and overall after (n + k) observations (bottom panel), under either model

After... Model Stop and Proceed Stop and

retainM0 data collection retainM1

n M0 .049 .948 .003

observations M1 .003 .948 .049

n + k M0 .137 .854 .009

observations M1 .009 .854 .137
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Fig. 7 Data evidence for either model after assessing the first batch of n observations, for the point null versus interval alternative test. A: The
case when λ < − ln(10). B: The case when − ln(10) < λ

Fig. 8 Distribution of various random variables after n observations, for the point null versus interval alternative test. A: X under M0 (upper

distribution; N
(

0, σ 2

n

)

) and under M1 (inverted distribution; Eq. 16). B: ln(BF10) under M0 (Eq. 15). C: ln(BF10) under M1 (Eq. 17).

D: Relation between the nominal and observed ln(BF10) values based on approximation by simulation (points) and on the exact values (line)
(Supplemental Material, Lemma 9)
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Fig. 9 Distribution of various random variables under M0 after (n + k) observations, for the point null versus interval alternative test. A: Xn

(Eq. 20). B:
∑n+k

i=n+1 Xi

n
(Eq. 12 with μX = 0). C: S = Xn +

∑n+k
i=n+1 Xi

n
(Supplemental Material, Lemma 11). D: S2 (Supplemental Material,

Lemma 13)

solving Eq. 14 with respect to X gives

X
2 = [ln(BF10) − λ]

2σ 2(σ 2 + nσ 2
1 )

n2σ 2
1

X = ± σ

nσ1

√

2(σ 2 + nσ 2
1 ) [ln(BF10) − λ], (18)

under the constraint that λ < ln(BF10). Let X0 and
X1 denote the value of X when BF10 = BFL = 1

10
and BF10 = BFU = 10, respectively. Observe that X1

always exists because σ
√

σ 2+nσ 2
1

< 1 < 10 = BF10 and

so λ = ln

(

σ
√

σ 2+nσ 2
1

)

< ln(BF10). X0 exists if λ <

ln(BF10) = − ln(10); this is possible when small enough
absolute values of X are associated to values of BF10

smaller than 1
10 , allowing to draw enough support for M0

and thus interrupting the optional stopping process. When
− ln(10) < λ then even X = 0 is associated to a value of
BF10 not below 1

10 , which means that it is impossible to

draw enough support for M0 after n observations. In this
case we set X0 = 0, which is the limiting case of the first
situation. Figure 7 shows the two possible situations that
may arise. In particular, the test after the first n observations
is indecisive when X ∈ J = (−X1, −X0) ∪ (X0, X1).

In case evidence is indecisive after the initial n obser-
vations, then the optional stopping procedure continues:
Collect k more observations and reassess the evidence by
means of the Bayes factor:

ln(BF10) = λ + (n + k)2σ 2
1 X

2
n+k

2σ 2
[

σ 2 + (n + k)σ 2
1

]

= α + β

(

Xn +
∑n+k

i=n+1 Xi

n

)2

, (19)

where α = ln

[

σ
√

σ 2+(n+k)σ 2
1

]

and β = n2σ 2
1

2σ 2
[

σ 2+(n+k)σ 2
1

]

do not depend on the observed data, and Eq. 9 was
used to decompose Xn+k . In what follows, we derive the
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Fig. 10 Distributions of various random variables under M1 after (n + k) observations, for the point null versus interval alternative test. A:

μ|Xn ∈ J (Eq. 21). B: Xn|μ = .1 (NT

(

μ, σ 2

n
;J

)

). C:
∑n+k

i=n+1 Xi

n
|μ = .1 (N

(

k
n
μ, k

n2
σ 2

n

)

). D: S = Xn +
∑n+k

i=n+1 Xi

n
|μ = .1 (Supplemental

Material, Lemma 16). E: S, by means of numerical integration

distribution of ln(BF10) given by Eq. 19 under each model,
and then relate the ratio of both densities to the Bayes factor.

UnderM0

In this case, Xn follows a truncated normal distribution:

Xn|M0 ∼ NT

(

0,
σ 2

n
;J

)

, (20)

where the support for the truncation is the union of

two intervals. Moreover,
∑n+k

i=n+1 Xi

n
is normally distributed

(Eq. 12 with μX = 0). Therefore, the distribution of the

sum, S = Xn +
∑n+k

i=n+1 Xi

n
, is given by the convolution of

both densities; the closed-form expression for this density
is given in the Supplemental Material (Lemma 11). Finally,
observe that ln(BF10) in Eq. 19 is a linear function of the
square of S. Hence, the density of ln(BF10) can be found
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in two steps: First find the density of S2 (Supplemental
Material, Lemma 13) and then find the density of the linear
transformation of S2 (Supplemental Material, Lemma 14).

UnderM1

The distribution of the summation in Eq. 19 is more difficult
to derive under M1. The reason is that the sampling
distribution of a new observation is affected by conditioning
on an indecisive test result after the initial n observations.
Observe that, by Bayes’ rule,

p(μ|Xn ∈ J ) = p(μ)p(Xn ∈ J |μ)

p(Xn ∈ J )
, (21)

where μ ∼ N (0, σ 2
1 ), Xn|μ ∼ N

(

μ, σ 2

n

)

, and p(Xn ∈
J ) =

∫

R

p(μ)p(Xn ∈ J |μ) dμ. We derived the density of

μ|Xn ∈ J (Supplemental Material, Lemma 15). This is the
distribution of μ after the first optional stopping step, that
is, after an inconclusive test result based on the first n data
points.

Now consider the summation in Eq. 19, but conditional

on μ. We have that Xn|μ,M1 ∼ NT

(

μ, σ 2

n
;J

)

and
∑n+k

i=n+1 Xi

n

∣

∣

∣

∣
μ,M1 ∼ N

(

k
n
μ, k

n2
σ 2

)

. The sum of these

two independent conditional distributions, say S|μ =
Xn|μ +

∑n+k
i=n+1 Xi

n

∣

∣

∣

∣
μ, is the convolution of both densities;

the distribution is given in the Supplemental Material,
Lemma 16. To find the density of the unconditional sum we

need to evaluate fS(s) =
∫

R

p(S = s|μ)p(μ|Xn ∈ J ) dμ.

The exact closed form of this integral has evaded us. Instead,
we resourced to numerical integration to approximate the
integral. We next proceeded using numerical integration to
approximate the density of S2 and the density of ln(BF10) as
a linear function of S2. Finally, we numerically divided the
densities of ln(BF10) (under M1 and M0) and compared
the result with the Bayes factor. Also here, Theorem 4 in
the Supplemental Material ascertains that the previous result
holds overall (i.e., after the initial n observations or after
(n+ k) observations, depending on the first test result). The
example below illustrates what is happening.

Example 2

Let n = 10, k = 5, σ = .3, and σ1 = 1.1. For each
simulation (total = 100,000 simulations), we followed this
procedure:

1. Randomly draw n observations from N (0, σ 2) (i.e.,
under M0). Compute ln(BF10) and compare with the
exact distribution (Eq. 15).

2. Sample one μ value from N (0, σ 2
1 ). Randomly draw n

observations fromN (μ, σ 2) (i.e., underM1). Compute
ln(BF10) and compare with the exact distribution
(Eq. 17).

3. Approximate the ratio of the densities of ln(BF10)

under either model and compare it to BF10 and com-
pare to its exact counterpart (Supplemental Material,
Lemma 9).

4. Stop in case BF10 is larger than 10 or smaller than
1
10 , otherwise: Collect k more observations, recompute
ln(BF10) under each model, and approximate the ratio
of the densities of ln(BF10) under either model and
compare it to BF10.

Figure 8 shows the approximate distribution (histogram)
and exact distribution (solid line) of X and ln(BF10) under
M0 and M1, as well as the density ratio of the Bayes
factors under either model, after the initial n observations.

Figure 9 shows the distributions of Xn,
∑n+k

i=n+1 Xi

n
, S, and

S2 under M0, after (n + k) observations. Figure 10 shows
the distributions of μ|Xn ∈ J (Eq. 21), Xn|μ = .1 (as one

example of such a conditional distribution),
∑n+k

i=n+1 Xi

n
|μ =

.1, S|μ = .1, and S under M1. Finally, Fig. 11 shows that
the ratio of the densities of the Bayes factor values under
each model is given by the Bayes factor.

In the current setting, the sequential testing procedure
is inconclusive after the initial n observations when Xn ∈
J = (−.294,−.052) ∪ (.052, .294) (Eq. 18). As before,
we can quantify the probability of retaining M0, retaining
M1, or proceeding data collection under each model,
after n and after (n + k) observations (see Table 2). The
conclusion is similar to that from the previous example,
namely, increasing the sample size increased the probability
of finding support for the correct model.

Discussion

In this paper, we worked out two examples introduced by
Rouder (2014) that were originally used to motivate why
Bayes factors are well calibrated under Bayesian optional
stopping (recently dubbed ‘Sequential Bayes Factor’ (SBF)
by Schönbrodt et al., 2017). A completely general proof of
this result is already offered by Hendriksen et al. (2020,
Corollary 3), but the technical nature of this paper makes it
rather inaccessible to less math-savvy readers. Our results
offer a less ambitious but perhaps more insightful approach
to understanding the findings presented in Rouder (2014),
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Fig. 11 Visualization of Assertion 2 for the point null versus interval alternative test. A: ln(BF10) under M0 (upper distribution; Supplemental
Material, Lemma 14) and under M1 (lower distribution, by means of numerical integration). B: Relation between the nominal and observed
ln(BF10) values based on approximation by simulation (points) and on the exact values (line), after (n + k) observations for the point null versus
interval alternative test

which were entirely simulation-based. Our contribution
leaves us one step closer to understanding the Bayes factor
and its properties under optional stopping.

Our results are limited in various ways. Firstly, we
focused exclusively on the two tests used by Rouder (2014).
Secondly, our approach is not easily generalizable to more

complex cases. We note that we could not fully work out
the last part of the mathematical derivation in the point
null versus interval alternative case. Thirdly, our theoretical
results apply to the first and second batches of data. If, as
is often the case, the evidence is still inconclusive after the
second data batch is taken into account, then the optional

Table 2 Point null versus interval alternative test, Example 2 (n = 10, k = 5, σ = .3, and σ1 = 1.1): Probability of each decision after n

observations (top panel) and overall after (n + k) observations (bottom panel), under either model

After... Model Stop and Proceed Stop and

retainM0 data collection retainM1

n M0 .420 .578 .002

observations M1 .038 .172 .790

n + k M0 .677 .320 .003

observations M1 .059 .113 .828
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stopping procedure should be able to proceed. Our proof
does not provide the full answer in this case. This could be
the goal of a future extension of our results.

Our paper attempts to build a bridge between the
practical simulation results offered by Rouder (2014), and
the theoretical proofs provided by Hendriksen et al. (2020).
We generalize Rouder’s simulation results such that they do
not rely on specific values and present them in a way that
are, hopefully, digestible to social scientists.

Open Practices Statement The R scripts including the code required
to reproduce all computations and figures available in this paper are
available at https://osf.io/5z92h/. No experiments were conducted and
therefore preregistered.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13423-021-01962-5.
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