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Abstract Computational models have become common tools
in psychology. They provide quantitative instantiations of the-
ories that seek to explain the functioning of the human mind. In
this paper, we focus on identifying deep theoretical similarities
between two very different models. Both models are concerned
with how fatigue from sleep loss impacts cognitive processing.
The first is based on the diffusion model and posits that fatigue
decreases the drift rate of the diffusion process. The second is
based on the Adaptive Control of Thought — Rational (ACT-R)
cognitive architecture and posits that fatigue decreases the util-
ity of candidate actions leading to microlapses in cognitive
processing. A biomathematical model of fatigue is used to con-
trol drift rate in the first account and utility in the second. We
investigated the predicted response time distributions of these
two integrated computational cognitive models for perfor-
mance on a psychomotor vigilance test under conditions of
total sleep deprivation, simulated shift work, and sustained
sleep restriction. The models generated equivalent predictions
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of response time distributions with excellent goodness-of-fit to
the human data. More importantly, although the accounts in-
volve different modeling approaches and levels of abstraction,
they represent the effects of fatigue in a functionally equivalent
way: in both, fatigue decreases the signal-to-noise ratio in de-
cision processes and decreases response inhibition. This con-
vergence suggests that sleep loss impairs psychomotor vigi-
lance performance through degradation of the quality of cogni-
tive processing, which provides a foundation for systematic
investigation of the effects of sleep loss on other aspects of
cognition. Our findings illustrate the value of treating different
modeling formalisms as vehicles for discovery.

Keywords ACT-R - Biomathematical fatigue models -
Cognitive architecture - Diffusion model - Leaky
accumulator - Local sleep - Psychomotor vigilance test (PVT)

Introduction

Fatigue due to sleep loss is associated with a wide range
of deficits in cognitive performance (Jackson & Van
Dongen, 2011; Killgore, 2010; Lim & Dinges, 2010)
and an increased risk of errors and accidents (e.g.,
Dinges, 1995). The effects of fatigue are particularly pro-
found for tasks involving sustained attention (Lim &
Dinges, 2008). However, the effects of fatigue on cogni-
tive performance vary considerably across tasks (Jackson
et al.,, 2013). This variability reflects in part the differen-
tial effects of fatigue on different cognitive processes
(Tucker, Whitney, Belenky, Hinson, & Van Dongen,
2010). Therefore, to better understand the effects of fa-
tigue from sleep loss, it is necessary to consider the range
of cognitive processes evoked during task performance
(Whitney & Hinson, 2010). One way to do so is through
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the use of computational cognitive models (Gunzelmann,
Gross, Gluck, & Dinges, 2009; Gunzelmann et al., 2015;
Jackson et al., 2013).

Computational cognitive models provide a way to examine
task performance in terms of underlying processing mecha-
nisms (Newell, 1990). Models vary in terms of their focus
(e.g., linguistics, learning, perception, motor planning; see
Gray, 2007) and in terms of the level of analysis or represen-
tation they employ (e.g., connectionist models, cognitive
architectures, Bayesian models; see Sun, 2008). Despite the
prevalence of computational models in psychological science,
quantitative models that account for the effects of fatigue from
sleep loss on cognitive processes have only recently appeared
(e.g., Gunzelmann et al., 2009a; Gunzelmann, Gluck, Moore,
& Dinges, 2012; Ratcliff & Van Dongen, 2009, 2011; Veksler
& Gunzelmann, in press). This reflects a longstanding tendency
for models developed in psychology to focus on empirical phe-
nomena and data associated with favorable physiological and
psychological states that are conducive to cognitive processing.

Representing the detrimental effects of fatigue in cog-
nitive models remains a critical challenge for developing
unified theories of cognition (Newell, 1990).
Representing these effects in cognitive models also cre-
ates an opportunity to evaluate theories from the sleep and
sleep deprivation literature. Computational models en-
hance the transparency of theories — including theories
of fatigue — and enable quantitative predictions. Recent
modeling work suggests that fatigue mainly affects central
cognition rather than perceptual and motor processes
(Gunzelmann et al., 2009a; Ratcliff & Van Dongen,
2011). Here we build on that work and examine how
fatigue affects cognitive processes in two distinct compu-
tational models. We show that the quantitative predictions
of both models correspond closely to human performance
data. More importantly, we demonstrate that the models
implement ostensibly different but actually similar theo-
retical accounts of fatigue, despite being realized in dis-
tinct and substantively different conceptual and computa-
tional frameworks. In this way, two disparate models of
fatigue, implemented computationally, map onto one the-
ory. The juxtaposition of models provides an opportunity
to pursue broader understanding of how fatigue impacts
cognition, and illustrates how convergence can be
achieved across alternative modeling approaches.

Psychomotor vigilance deficits due to fatigue

In this paper, we focus on deficits in sustained attention, one of
the most profound and extensively studied aspects of fatigue
from sleep loss. These deficits are frequently measured with
the psychomotor vigilance test (PVT), a performance task in
which stimuli are presented with random inter-trial intervals
(Dinges & Powell, 1985; Lim & Dinges, 2008). The most
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commonly used version of the task is 10 min in duration and
has inter-trial intervals ranging from 2 to 10 s." Participants
watch a blank computer monitor for the sudden onset of a
visual millisecond counter after which they respond with a
key press. The counter starts from zero and continuously in-
crements until the participant responds, or until 30 s have
passed. Elapsed time remains on the screen for 1 s after the
participant responds, serving as performance feedback.
Participants are instructed to respond as quickly as possible,
but to avoid responding before the stimulus appears.

PVT responses are frequently divided into three cate-
gories. False starts occur before the stimulus appears or
within 150 ms of stimulus presentation; alert responses
occur from 150 ms to 500 ms after stimulus presentation;
and lapses occur more than 500 ms after stimulus presen-
tation.” A fourth category, non-responses, is sometimes
included for cases when no response occurs before the
trial automatically terminates after 30 s.

Increased performance instability is a hallmark effect of
fatigue on PVT performance (Doran, Van Dongen, &
Dinges, 2001). The distribution of response times on the
PVT, which has a long right tail even when participants are
well rested, becomes increasingly skewed as participants be-
come more fatigued. Fatigued participants make more ex-
tremely slow responses (i.e., more lapses), and they respond
before the counter appears more often (i.e., more false starts).
The progressive increase in performance variability typified
by extremely slow responses and premature responses, and
the general slowing of responses with time awake, are stan-
dard effects of sleep deprivation on the PVT and other vigi-
lance tasks (Dorrian, Rogers, & Dinges, 2005; Kleitman,
1963). This performance instability contributes to an elevated
risk of errors and accidents in fatigued individuals (Van
Dongen & Hursh, 2010).

The PVT is among the most widely used cognitive assays
of fatigue from sleep loss. PVT performance is highly sensi-
tive to acute total sleep deprivation, sustained sleep restriction,
circadian rhythm, time on task, and a range of fatigue coun-
termeasures (Dorrian, Rogers, & Dinges, 2005; Lim &
Dinges, 2008). Aptitude and practice effects on the PVT are
negligible, making the task suitable for repeated administra-
tion and comparisons both within and between individuals
(Dorrian, Rogers, & Dinges, 2005; Horne & Wilkinson,
1985). PVT performance deficits due to fatigue from sleep
loss vary systematically among participants, reflecting stable

! Though we focus on the 10-min PVT, our description of PVT results and the
integrated cognitive models we present apply to the more recently developed
3-min PVT as well (Basner & Dinges, 2011; Basner, Mollicone, & Dinges,
2011).

2 Various sources define false starts as responses within 100 ms, 130 ms, or
150 ms of stimulus onset. These slight variations did not impact the cognitive
modeling results presented later.
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inter-individual differences in vulnerability to sleep loss (Van
Dongen, Baynard, Maislin, & Dinges, 2004).

Biomathematical models of the temporal dynamics
of fatigue

Biomathematical models of fatigue describe and predict
changes in the level of fatigue over the course of hours and
days. Different models account for different sets of fatigue
factors, but all instantiate two primary processes of sleep reg-
ulation (Hursh & Van Dongen, 2010; Mallis, Mejdal, Nguyen,
& Dinges, 2004). A homeostatic process controls the increas-
ing drive for sleep with continuous time awake, and a circa-
dian process promotes wakefulness during the day and sleep
at night (Borbély & Achermann, 1999). Together these two
primary processes produce dynamic changes in the level of
fatigue. The homeostatic process is modulated by chronic
sleep restriction across days (Hursh et al., 2004; McCauley
et al., 2009, 2013).

Biomathematical models of fatigue are not specifically
concerned with cognitive mechanisms of task perfor-
mance. Rather, model outputs are typically scaled to a
generic summary measure of performance such as an ef-
fectiveness score, or a selected outcome measure such as
the number of lapses on the PVT. The basic trends pro-
duced by the models are observed in a variety of tasks.
However, because the outputs of biomathematical models
are fitted to specific tasks and measures using existing
data, their ability to predict performance in novel tasks
is limited. In addition, biomathematical models of fatigue
are generally silent about underlying changes in cognitive
processing caused by sleep loss and circadian rhythmicity.

Computational cognitive models of fatigue

Two classes of computational models have recently been used
to account for the cognitive effects of fatigue. The first is
based on a diffusion process that simulates the accumulation
of evidence during simple and two-alternative forced-choice
tasks (Laming, 1968; Ratcliff & McKoon, 2008; Stone, 1960).
In this model, evidence accumulates stochastically until
reaching a decision threshold, at which time a response is
initiated. By varying parameter values in the diffusion model,
researchers have reproduced the effects of various experimen-
tal manipulations on choice accuracy and response time dis-
tributions (e.g., Ratcliff & McKoon, 2008).

Ratcliff and Van Dongen (2011) showed that fatigue may
be simulated by adjusting a composite diffusion model param-
eter, drift rate divided by drift rate variability. Varying this
composite parameter allowed the diffusion model to capture
changes in the response time distribution for individuals
performing the PVT with increasing time awake (Ratcliff &
Van Dongen, 2011). The same approach accounted for the

effects of fatigue in a two-choice numerosity discrimination
task (Ratcliff & Van Dongen, 2009).

The second class of models uses a cognitive architecture to
account for how fatigue affects specific components of cogni-
tion (e.g., Gunzelmann et al., 2009a). Cognitive architectures
are general theories of cognition that specify foundational in-
formation processing mechanisms and how they interact with
one another (Gluck, 2010). In the cognitive architecture used
here, Adaptive Control of Thought — Rational (ACT-R), in-
formation enters the system through perceptual modules, af-
fects processing throughout a collection of internal modules,
and ultimately causes the manual module to issue a motor
response (Anderson, 2007).

Gunzelmann et al. (2009a) developed an account of how
fatigue selectively impairs information processing mecha-
nisms in ACT-R. Briefly, fatigue reduced the utility of candi-
date behaviors, causing them probabilistically to fall below
the threshold for action (cf. Gartenberg et al., 2014). This
integrated account captured changes in the complete PVT re-
sponse time distribution, including false starts, alert responses,
lapses, and sleep attacks (Gunzelmann et al., 2009a). The
same account made realistic predictions of the effects of fa-
tigue on dual-task performance (e.g., Gunzelmann, Byrne,
Gluck, & Moore, 2009) and lane deviation in driving
(Gunzelmann, Moore, Salvucci, & Gluck, 2011).

Overview

Despite the many experiments that have documented the ef-
fects of fatigue on cognitive performance, and the increasingly
widespread use of biomathematical models of fatigue in
real-world applications, computational accounts of how fatigue
affects cognitive processing mechanisms remain limited (cf.,
Gunzelmann et al., 2015). Further, there has been no attempt
at a comparative analysis of the few available computational
cognitive models of fatigue. Several basic questions remain
unresolved: How does fatigue impact cognitive processes?
How do different cognitive models account for the effects of
fatigue? And how do these models relate to one another and to
theories of fatigue from the sleep research literature?

We developed and compared two computational cognitive
accounts of the effects of fatigue on cognition — a diffusion
model and an ACT-R model — and we used the PVT as a test
bed for evaluating these accounts. The diffusion model is
based on that of Ratcliff and Van Dongen (2011), which we
augmented with a leaky accumulator (Usher & McClelland,
2001) to capture false starts. Additionally, we merged the dif-
fusion model with a biomathematical model of fatigue
(McCauley et al., 2013) to systematically vary parameters in
the diffusion model that are affected by sleep loss. The ACT-R
model is based on that of Gunzelmann et al. (2009a). We
updated their model for the latest release of the architecture,
ACT-R 7.0 (Anderson, 2007), and fitted it to new data sets.
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The same biomathematical model (McCauley et al., 2013)
was used to systematically vary parameters in the ACT-R
model that are affected by fatigue.

To date, the two accounts are the only computational cog-
nitive models that have been shown to predict the complete
distribution of response times on the PVT. Yet, aside from this
shared capability, the diffusion model and ACT-R have few
obvious similarities. As such, the question arose whether the
two would support a consistent picture of how fatigue affects
psychomotor vigilance performance. The focus of the research
described here is not to evaluate the viability of either ACT-R
or diffusion models as theories of cognitive processes per se.
Nor is the objective to declare one of the models superior in
accounting for the effects of fatigue. Rather, we evaluate what
each model tells us about how fatigue impacts cognitive pro-
cessing. In this way, we take seriously McClelland’s (2009)
statement that models are “vehicles for scientific discovery”
(p. 16) and employ the two models’ different levels of abstrac-
tion to look for converging evidence about the nature of fa-
tigue, not tied to a specific modeling formalism, in the context
of sustained attention.

Integrated models

Diffusion and ACT-R models have previously been proposed
to account for the cognitive effects of fatigue on PVT perfor-
mance, but the models did not focus on the same observed
deficits. We modified and expanded both in order to be able to
compare them directly.

Diffusion model

The diffusion model is based on a random walk sequential
sampling process (Ratcliff & McKoon, 2008). In the diffusion
model, evidence is accumulated over time (Fig. 1). Incoming
information drives the process toward one of two decision
boundaries during two-alternative forced choice tasks, or
one decision criterion (A) during one-choice reaction time
tasks. The rate of evidence accumulation, called drift rate,
varies across trials according to a normal distribution with
mean Vand standard deviation 7). The process terminates when
accumulated evidence reaches a decision criterion, at which
point the decision is made and the response initiated. Decision
time is the elapsed time from when the diffusion process be-
gins until it reaches the decision criterion. Other, non-central
cognitive processes involved in task performance, such as
perceptual and motor processes, make up non-decision time,
which is represented as a uniformly distributed variable with
mean Typ and spread Sz Response time equals the sum of
decision time and non-decision time.

The diffusion model is typically fitted to accuracy rates
and response time distributions for correct and error
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responses. The model parameters capture a wide range
of empirical effects (Ratcliff, 2006; Ratcliff & McKoon,
2008). For example, mean drift rate (V) nominally corre-
sponds to the signal-to-noise ratio in the evidence accu-
mulation process. Low drift rates produce slower, less
accurate responses, and high drift rates produce faster,
more accurate responses. Variations in mean drift rate
can account for the effects of stimulus quality on response
time and accuracy (Ratcliff & McKoon, 2008; Voss,
Rothermund, & Voss, 2004). The decision criterion (A)
controls whether responses are conservative or liberal.
When the decision criterion is high, responses are slower
but more accurate, and when the decision criterion is low,
responses are faster but less accurate. Variations in the
decision criterion can capture, for example, the effects of
incentives or instructions to prioritize speed versus accu-
racy on performance (Ratcliff & McKoon, 2008).

The diffusion model has been applied to performance on
many different tasks, such as perceptual discrimination
(Ratcliff & Rouder, 2000), signal detection (Ratcliff, Van
Zandt, & McKoon, 1999), and lexical decision making
(Ratcliff, Gomez, & McKoon, 2004). In the context of
fatigue research, the model has been applied to numerosity
discrimination and the PVT (Ratcliff & Van Dongen, 2009,
2011; Patanaik, Zagorodnov, Kwoh, & Chee, 2014). For
our purposes, the diffusion model is particularly suitable
for studying the effects of fatigue on the PVT because it
predicts complete response time distributions, and because
its parameters can be manipulated to produce continuous
performance decrements due to fatigue.

Task model

Ratcliff and Van Dongen (2011) developed a diffusion
model of the PVT. Because the PVT is a one-choice re-
action time task, the model includes a single, positive
decision criterion, A (Fig. 1). Although accumulated evi-
dence could become negative during the accumulation
process, the process terminates only upon reaching the
positive decision criterion.

Ratcliff and Van Dongen (2011) fitted this diffusion
model to data from participants who completed the PVT
every 2 h while staying awake for 36 h. They found that
sleep deprivation mainly affected evidence accumulation,
whereas the decision criterion and non-decision time were
only marginally influenced by fatigue. As fatigue in-
creased, drift rate (V) decreased and between-trial vari-
ability in drift rate (1) increased. The temporal dynamics
of the effect of fatigue on PVT performance could be
described by changing a single (composite) diffusion
model scaling parameter, the drift ratio V/n (Ratcliff &
Van Dongen, 2011).
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Fig. 1 Three sample trajectories from a one-criterion diffusion process with mean drift rate V. Evidence accumulation starts at 0 and terminates upon

reaching criterion A. Histograms show example densities of response times

Task model extension

The model of Ratcliff and Van Dongen (2011) makes
predictions about the complete response time distribution.
However, because the model pertains to processing after
the stimulus appears, it does not produce false starts.
Increased numbers of false starts under conditions of sleep
loss are an important phenomenon, as false starts indicate
that fatigue-related performance impairments cannot be
explained solely by general slowing or reduced motiva-
tion (Doran, Van Dongen, & Dinges, 2001). Here we ex-
panded the diffusion model to also predict the proportion
of false starts.

In a typical diffusion model, the decision process is
initiated when a stimulus is presented. This is problematic
because, in theory, it would necessitate a separate decision
process to detect trial onset and to initiate the primary
decision process associated with the trial. Further compli-
cating matters, in tasks where different types of stimuli
necessitate different decision processes (e.g., numerosity
judgments vs. lexical decisions), the pre-trial decision
process would need to include multiple boundaries asso-
ciated with deciding which of the tasks to perform. To
avoid this basic dilemma, we expanded the model so that
the diffusion process began immediately after feedback
from the preceding trial disappeared (i.e., in anticipation
of the next stimulus). The diffusion process persisted
throughout the pre-stimulus interval and after the stimulus
appeared. Although this may seem counterintuitive, we
believe that it represents a plausible characterization of
decision processes. The change allows multiple processes
to operate in parallel, with irrelevant processes remaining
essentially dormant until the appropriate stimuli move
their drift rates from zero.

Conceptually, the signal-to-noise ratio in the PVT
should be zero during the pre-stimulus interval and greater
than zero once the stimulus appears. To produce these dy-
namics, we allowed V to take on positive values once the

stimulus appeared, and we fixed it to zero during the pre-
stimulus interval. Due to within-trial stochastic variability,
the diffusion process is equally likely to move upward or
downward at each point in time when Vis zero. The noisy
accumulation of evidence during the pre-stimulus interval
allows the diffusion process to occasionally reach the de-
cision criterion before the stimulus appears and thereby
cause a false start.

Preliminary simulations with this model extension con-
firmed that stochasticity alone caused the diffusion pro-
cess to nearly always reach the decision criterion prema-
turely, and the predicted number of false starts far
exceeded what is typically seen. Therefore, we imple-
mented an additional process based on the intrinsic decay
present in neural integrator models (Abbott, 1991; Cain &
Shea-Brown, 2012; Goldman, Compte, & Wang, 2009;
Robinson, 1989; Smith & Ratcliff, 2009). We used the
leaky competing accumulator model (LCA; Ossmy et al.,
2013; Usher & McClelland, 2001), in which the diffusion
process depends on two opposing forces: accumulation of
evidence from a stimulus drives the process toward the
decision criterion, while decay (or leakage) pulls the pro-
cess back to zero with a certain decay rate, \.

Decay can be seen as controlling response inhibition.
When the value of A is high, the diffusion process tends
to return to zero and is thus more robust against noise
(greater inhibition), whereas when the value of decay is
low, the diffusion process is more sensitive to noise (less
inhibition). Because decay rate depends on the simulation
step size, we sometimes refer to the diffusion process’s
integration time constant instead, which does not depend
on the simulation step size. The integration time constant
is the time it takes for the diffusion process to reach 1 —
/e of its final (asymptotic) value given a signal of con-
stant intensity.

The frequency of false starts is jointly determined by
the value of A and by the decision criterion, A (Fig. 2).
With the LCA process implemented, the diffusion model

@ Springer
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Fig. 2 Proportion of false starts in simulations as a function of leaky
competing accumulator model (LCA) decay rate, A, and diffusion
model decision criterion, A. The gray band shows the range of the
proportion of false starts committed by participants during the third day
of total sleep deprivation (see Experiment 1 below)

of the PVT is able to produce false starts within the
range of what is typically seen (Doran, Van Dongen, &
Dinges, 2001).

The task model was implemented using a random walk
approximation of the diffusion process with a step size 7=
5 ms (Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001). At
each step j, a displacement A; occurs with probability p,
and a displacement —A; occurs with probability /—p. The
size of the displacement is determined by 7 and the
within-trial stochastic component of the accumulation
process s = 0.1 (Tuerlinckx et al., 2001)3:

The probability of the positive displacement is given by:
\%
p:<l+Tﬁ>/Z. 2)

where V corresponds to drift rate. A within-trial stochastic
component of the process is instantiated in Eq. 2, and a
between-trial stochastic component is produced by drawing
a value v from a normal distribution with a mean of Vand a
standard deviation of 7 for each trial.

To implement decay, we modified the displacement term in
(1), as follows™:

A; = s\/T-\E}, (3)

3 Taking the square root of 7 ensures that v meaningfully corresponds to drift
rate in the continuous diffusion model and in a way not dependent on time-step
size in its discrete approximation (Tuerlinckx et al., 2001).

# For related expressions, see Goldman et al. (2009) and Usher and
McClelland (2001).
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Ej=) 4 (4)
k=1

with Eq = 0. The first step of the diffusion process, j = 1, comes
immediately after the offset of feedback from the preceding trial.

Biomathematical model of fatigue

We combined the extended diffusion model of the PVT
with the biomathematical model of fatigue described by
McCauley et al. (2013). This biomathematical model is
based on the two-process model of sleep regulation
(Borbély & Achermann, 1999), in which a homeostatic
process increases the drive for sleep with time awake,
and a circadian process promotes wakefulness during the
day and sleep at night. The homeostatic and circadian
processes interact in a non-linear manner such that
the amplitude of the circadian process increases in
sleep-deprived individuals (McCauley et al., 2013). A
third process adjusts the set point of the homeostatic pro-
cess in response to long-term sleep/wake history. The bio-
mathematical model is sensitive to fatigue due to total
sleep deprivation, circadian misalignment during shift
work, and sustained sleep restriction (Fig. 3).’

Integration

We integrated the biomathematical model of fatigue with
the diffusion model of the PVT. Ratcliff and Van Dongen
(2011) showed that the dynamic changes in the response
time distribution on the PVT across 36 h of total sleep
deprivation were captured by varying the drift ratio V/n.
Furthermore, they found a high correlation between the
fitted values of V/n and the output of an earlier version
of the biomathematical model of fatigue (McCauley et al.,
2009). We captured this dynamic by fixing 7 across ses-
sions and treating V as a linear function of the predictions
of the biomathematical model of fatigue, F:

V =ayF + by, (5)

where ay and by represent slope and intercept. When the
slope term ay is negative, drift rate decreases with fatigue,
producing longer and more variable response times.
Dynamic changes in false starts could result from tem-
poral changes in the decision criterion, A, or in the decay
rate of the LCA process, A. Ratcliff and Van Dongen

> For a complete description of the model and its equations, see Table 1 of
McCauley et al. (2013). A DOS executable of the model is available at https://
pounce.spokane.wsu.edu/data/public/9d87cl
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Fig. 3 Biomathematical model predictions of fatigue. Top-left panel:
Predicted fatigue across 3 days of total sleep deprivation versus a
control condition with daily time in bed (TIB) from 22:00 until 08:00.
Top-right panel: Predicted fatigue across 5 days of a shift schedule with
daily TIB from 22:00 until 08:00 (day shift) versus a shift schedule with
daily TIB from 10:00 until 20:00 beginning on day 2 (night shift).

(2011) reported that A did not change significantly in re-
sponse to sleep deprivation. We therefore fixed A, and
treated A as a linear function of the predictions of the
biomathematical model of fatigue, F:

)\:a)\F+b/\7 (6)

where a, and b, represent slope and intercept.® When the
slope term a, is negative, the decay rate decreases with
fatigue. This partially offsets the effect of fatigue on drift
rate. However, this also offsets the dampening effect of
decay during the pre-stimulus interval, which potentiates
false starts.

In total, the extended, integrated diffusion model
contained eight free, participant-specific parameters
(Table 1). Ratcliff and Van Dongen (2011) reported that
three diffusion model parameters (V, , and A) were not
uniquely determinable for the PVT. Rather, the two ratios
A/V and V/n were approximately constant over different

®In a later set of reported simulations, we examined the results of instead
allowing A to vary with fatigue while holding A constant. Although the fits
were nearly as good, they were slightly better when A was allowed to vary with
fatigue.

7

8 9 10 11 12 13 14
Day

Bottom panel: Predicted fatigue across 14 days for schedules with 4 h,
6 h, or 8 h TIB daily, with TIB ending at 07:30 for all three conditions.
Colored bars at the base of each panel show TIB for the corresponding
conditions. In this model (McCauley et al., 2013), Fatigue Score is the
predicted number of lapses in a 10-min Psychomotor Vigilance Test
(PVT)

model fits. In our extended model, the interplay between
decay () and drift rate make the values of all three pa-
rameters consequential. In our simulations, A and 7 were
estimated for individuals and held constant across ses-
sions, while V was estimated for individuals and allowed
to vary across sessions by Eq. 5.

Table 1  Diffusion model parameters

Parameter Definition

ay Drift rate scaling slope

by Drift rate scaling intercept
ay Decay rate scaling slope

by Decay rate scaling intercept
n Drift rate variability

A Decision criterion

Tnp Mean of non-decision time
SD Spread of non-decision time

Note. The first and second parameters (ay by) scale the effects of fatigue
on drift rate, and the third and fourth parameters (a,, b,) scale the effects
of fatigue on decay. The remaining parameters and corresponding pro-
cesses are not involved in capturing fatigue in the model
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Adaptive Control of Thought — Rational (ACT-R)

The cognitive architecture ACT-R (Anderson, 2007) contains
a set of specialized information processing modules (Fig. 4).
These include a visual module for locating and identifying
objects in the visual field, a manual module for producing
motor responses, a declarative module for storing and retriev-
ing information in memory, an imaginal module for holding
current problem representations, a goal module for maintain-
ing information about context and intent, and a procedural
module for coordinating other modules’ behavior. Buffers al-
low information and commands to pass from the specialized
information processing modules to the central procedural
module and back.

In ACT-R, procedural knowledge is represented in the form
of production rules. Each rule has a set of conditions that must
be met for it to be selected, and a set of actions that modify the
external world and the internal state of the architecture. Each
rule also has real-valued utility, corresponding to the reward
the rule is expected to lead to with respect to task performance
and completion. Cognitive performance unfolds across a se-
quence of production cycles lasting on the order of tens of
milliseconds. During each cycle, conditions for different pro-
ductions are compared against the contents of the buffers, and
the production with the highest utility is selected and enacted.
The resulting state of the world and architecture, represented
by the contents of the buffers, serves as the starting point for
the next production cycle.

ACT-R has been used to model cognitive performance
on dozens of laboratory tasks (see Anderson, 2007) and to

simulate complex skills such as air traffic control, algebra
problem solving, and driving (Anderson et al., 2004;
Salvucci, 2006). In the context of fatigue research, ACT-R
has been applied to dual-tasking (Gunzelmann et al.,
2009b), arithmetic retrieval (Gunzelmann et al., 2012),
driving (Gunzelmann et al., 2011), flying (Gunzelmann &
Gluck, 2009), and the PVT (Gunzelmann et al., 2009a).
Like the diffusion model, ACT-R is particularly suitable
for studying the effects of fatigue on the PVT because it
predicts complete response time distributions, and because
its parameters can be manipulated to produce continuous
performance decrements due to fatigue.

Task model

Gunzelmann et al. (2009a) developed an ACT-R model of the
PVT. The model contains four productions: (1) wait for the
stimulus to appear, (2) attend to the stimulus, (3) respond, and
(4) press key. Each production is eligible for selection in cer-
tain conditions. Wait is eligible when nothing is present on the
screen, attend is eligible when the stimulus is present on the
screen but has not yet been attended, respond is eligible when
the stimulus is present on the screen and has been attended,
and press key is always eligible. Thus, during each production
cycle a choice is made between one of the first three produc-
tions, and the press key production. Logistically distributed
noise is added to production utilities (U)),

U,=U +e, (7)

Declarative Module
(Prefrontal Cortex)

]

Declarative Buffer

J

A

 /

Procedural Module
(Caudate Nucleus)

~
Goal Module
(Anterior Cingulate)
Goal Buffer
Visual Buffer
Visual Module
(Fusiform Gyrus)
\
1
1
1
1
1

Imaginal Module
(Parietal Cortex)

Imaginal Buffer

Manual Buffer

Manual Module
(Motor Cortex)

Fig. 4 Schematic representation of the modules and buffers of the Adaptive Control of Thought — Rational (ACT-R) cognitive architecture and their

associations with brain regions
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and the production with the greatest resulting utility value U’;
is selected. The occasional selection of press key before the
stimulus appears permits false starts.

The production with the greatest value is enacted if its
utility exceeds the threshold,

Production = max(U;) ; enactedifmax(U;) >T. (8)

When no production’s utility exceeds the threshold, the
model becomes briefly inactive before initiating the next pro-
duction cycle — a microlapse. The period of inactivity equals
the duration of one production cycle (i.e., tens of milliseconds).

Gunzelmann et al. (2009a) fitted this ACT-R model to data
from participants who completed the PVT every 2 h while
staying awake for 88 h. They found that sleep deprivation
affected production utilities and the utility threshold; as time
awake increased, production utilities and the utility threshold
decreased. Changes in the duration of perceptual and motor
processes, production execution time, and production noise
were not needed to account for the effects of fatigue.

Task model update

Subsequent to the development of the ACT-R model of the
PVT, a mechanism called production partial matching was
introduced in ACT-R. With production partial matching, pro-
ductions whose conditions are not perfectly met are eligible
for selection, but their utility values are penalized:

U,= (U~MMP,) +¢. (9)

MMP; is the mismatch penalty charged if the conditions for
the production are not perfectly met. The production with the
greatest value U'; is selected and enacted provided its utility
exceeds the threshold (Eq. 8). This is true even when the
production with highest utility does not perfectly match the
conditions, but exceeds the threshold.

The addition of production partial matching to ACT-R ob-
viated the need for the press key production in the PVT model
of Gunzelmann et al. (2009a); with this addition, respond can
be selected at any time. Consequently, the updated model we
advance contains a total of three productions: (1) wait, (2)
attend, and (3) respond to the stimulus, When respond is se-
lected before the stimulus appears, a false start occurs.
However, because the utility of respond is penalized before
the stimulus appears, this happens infrequently.

Productions’ baseline utilities (U;) were treated as a single
free parameter — one value of U was estimated and used for all
productions. U could be acquired from experience using
ACT-R’s procedural learning equation (Anderson, 2007; Fu
& Anderson, 2006), but we disabled utility learning because
learning effects on the PVT are negligible (Van Dongen et al.,
2003). To simplify matters, the mismatch penalty (MMP, Eq. 9)

was set to the value of production utility. The resulting payoff
matrix was symmetric with zero assigned to mismatches and U
assigned to matches (see Eq. 9).” The mean and standard devi-
ation of the logistically distributed noise added to these values
during each production cycle were set to the default ACT-R
values of 0.0 and 0.453 (Anderson et al., 2004).

Integration

We integrated the biomathematical model of fatigue
(McCauley et al., 2013) with the updated ACT-R model of
the PVT. In the integrated model, the effects of fatigue play
out through three component interactions. First, fatigue re-
duces productions’ utility values (Fig. 5):

U; = FP-(Ui*MMP,‘) + &, (10)

where FP (i.e., Fatigue in Procedural Knowledge) is a linear
function of the predictions of the biomathematical model of
fatigue, F:

FP=a,F +1. (11)

The parameter ap is a slope parameter. In the absence of
fatigue, FP equals one (i.e., utilities are unchanged). When the
slope parameter ap is negative, production utilities decrease
with fatigue.® Consequently, selections are increasingly driven
by noise. Also, productions increasingly fall below the utility
threshold, causing more microlapses.

Second, fatigue lowers the utility threshold, T (Fig. 5):

T = FT-T. (12)

FT (i.e., Fatigued Threshold) is a linear function of the pre-
dictions of the biomathematical model of fatigue:

FT =arF + 1. (13)

The parameter a7 is a slope parameter. In the absence of
fatigue (F = 0), FT equals one. When the slope term a7 is
negative, the utility threshold decreases with fatigue. This par-
tially compensates for the effect of fatigue on utility values.
However, this also reduces the inhibitive effect of the mis-
match penalty on the respond production, allowing more false
starts.

7 The mismatch penalty between the conditions for the wait and respond
productions could conceivably be set to a different value than the mismatch
penalty between the conditions for the atfend and respond productions.
However, such adjustments were not necessary to capture the results of the
experiments modeled here.

8 For large negative values of ap FP could conceivably become negative, and
U" could become negative as well. Based on estimates of ap from the reported
simulations, however, FP did not approach negative values even after 62 h of
total sleep deprivation. Future work could explore bounding FP at zero, or
using a non-linear function to map the output of the biomathematical model to
cognitive model parameter estimates to eliminate this possibility.
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Fig. 5 In the integrated Adaptive Control of Thought — Rational (ACT-
R) model of the Psychomotor Vigilance Test (PVT), fatigue reduces
utility values (distributions), and to a lesser extent the utility threshold
(vertical lines)

Third, when no production’s utility exceeds the threshold
and a microlapse occurs, FP is decreased by a small amount:

FP—FP-FPy, (14)

where 0 < FPg.. < 1. This small change makes it more likely
that microlapses will occur in subsequent production cycles.
Across such a series of cycles, the probability of responding
progressively decreases, leading to behavioral lapses. The val-
ue of FP is restored when a stimulus next appears.

In total, the updated, integrated ACT-R model contained
six free, participant-specific parameters (Table 2). The one
parameter not yet discussed, cycle time, controls the amount
of time to evaluate and select a production during each pro-
duction cycle, and has a default value of 50 ms (Anderson,
2007). We allowed cycle time to vary across individuals, con-
sistent with the notion that this parameter reflects stable dif-
ferences in processing speed (Deary, Der, & Ford, 2001;
Larson & Alderton, 1990). The interplay between these pa-
rameters and the biomathematical model of fatigue account
for the complete RT distribution in the PVT, including false
starts and lapses (Supplementary Fig. 1). Although the dura-
tions of events in the ACT-R model are on the order of tens of
milliseconds, the summation of time across events and the

Table2 ACT-R parameters

Parameter Definition

U Utility

ap Utility scaling slope

T Threshold

ar Threshold scaling slope
FPye. Utility decrement after lapse
Cycle Cycle time

Note. The second parameter (ap) scales the effects of fatigue on produc-
tion utilities, and the third parameter (a7) scales the effects of fatigue on
the utility threshold. The remaining parameters and corresponding pro-
cesses are not involved in capturing fatigue in the model

@ Springer

millisecond-level variability in event durations produces con-
tinuous reaction-time distributions.

Experiments and results

We investigated whether the integrated diffusion and ACT-R
models could each account for the effects of fatigue stemming
from total sleep deprivation, simulated shift work, and
sustained sleep restriction on PVT performance. We compared
simulations to observations from three experiments (Van
Dongen, Belenky, & Vila, 2011; Van Dongen, Maislin,
Mullington, & Dinges, 2003; Whitney, Hinson, Jackson, &
Van Dongen, 2015).

Fitting procedure

In each of the experiments reported below, we collapsed data
across multiple 10-min PVT sessions to form probability den-
sity functions. We binned response times corresponding to the
0.1-interval quantiles of responses that occurred after 150 ms
for each participant. The 0.1 quantile contained the fastest
10% of responses after 150 ms, and the 1.0 quantile contained
the slowest 10% of responses after 150 ms (including the few
trials with no response after 30 s). We then calculated the
overall proportion of responses that occurred before 150 ms
(i.e., false starts), and the overall proportions of responses
within the 10 quantiles.’ This provided 11 proportion values
against which to compare the models for each participant.

We used the models to create corresponding expected prob-
ability density functions. To do so, we simulated participants’
performance during each 10-min PVT session, and collapsed
predictions across sessions as was done with the observations.
We then calculated the proportion of predicted responses that
occurred before 150 ms, and the proportions of responses
within the 10 quantiles defined by boundaries derived from
observed response times. Predictions were based on 1,000
simulations for each PVT session.

The observed and expected probability density functions
were used to compute the likelihood ratio chi-square (G7),
which is asymptotically equivalent to the chi-square,

G=2% > N,j-log<]7:"f>.
ij

i=l:day j=1:bin

(15)

Nj; is the observed number of responses in the /™ bin on the /™
day, p;; is the predicted proportion of responses in that bin for
that day, and 7; is the observed proportion of responses
(Smith & Ratcliff, 2009). A simplex search algorithm with

? Each quantile contained 10% of responses that occurred after 150 ms of
stimulus onset. This is slightly less than 10% of all responses, which also
include false starts (responses that occurred before or within 150 ms of stim-
ulus onset).
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Fig. 6 Psychomotor Vigilance Test (PVT) response time distributions
across 62 h of total sleep deprivation, aggregated over each day of
Experiment 1. The first bin shows the proportion of false starts (FS), the
final bin shows the proportion of lapses (LA), and the middle bins show
the proportion of responses occurring in 10 ms intervals from 150—

multiple start points was used to find parameter values that
minimized G° for each participant and model. Simulations
were conducted using large-scale computational resources
(Harris, 2008)." The supplementary material contains addi-
tional information about model fitting procedures.

We used two criteria to assess model fit: the G* statistic and
the Bayesian Information Criterion (BIC). The BIC is calcu-
lated from the G7 statistic according to

BIC = G* + m-log(n), (16)

where m is the number of free parameters and # is the total
number of observations per participant aggregated across all
PVT sessions.

Experiment 1: Acute total sleep deprivation

The first experiment involved a 62-h total sleep deprivation
condition and a well-rested control condition in a laboratory
(Whitney et al., 2015). Participants in the sleep deprivation
condition (n = 13) remained awake for 62 h, starting at
08:00 after two baseline days, whereas participants in the con-
trol condition (r = 13) received 10 h time in bed (TIB; 22:00—
08:00) each night (Fig. 3, top left). Participants performed the
PVT approximately once every 2 h during scheduled wake-
fulness. Because each session contained relatively few re-
sponse time observations (mean + SD: 94 + §), we collapsed
data across sessions that occurred within each 24-h period of
the experiment (22:00-22:00) for each participant. This
yielded aggregate data sets for day 0 (0—15 h awake, baseline),
day 1 (16-39 h awake in the sleep deprivation condition), and
day 2 (40—62 h awake in the sleep deprivation condition).
Figure 6 shows the average proportions of responses that
occurred before or within 150 ms of stimulus presentation (i.e.,

10 See http://www.mindmodeling.org

Response time (10 ms bins)

Response time (10 ms bins)

500 ms. The gray area shows + 1 SD around the mean for the
observations. The red and blue curves show the predictions of the
diffusion model (DM) and the Adaptive Control of Thought — Rational
(ACT-R) model, respectively

false starts), from 150-500 ms after stimulus presentation (i.e.,
alert responses), and more than 500 ms after stimulus presenta-
tion (i.e., lapses) during each day of the experiment. As time
awake increased, participants in the sleep deprivation condition
responded more slowly, committed more false starts, and expe-
rienced more lapses (see Supplementary Fig. 2 for individuals’
data). None of these effects appeared for participants in the con-
trol condition (see Supplementary Fig. 3 for individuals’ data).

Figure 6 also shows the fits of the diffusion and ACT-R
models to the observations. Fits for individual participants are
shown in Supplementary Figs. 2 and 3, and cumulative distribu-
tions based on quantile response times are shown in
Supplementary Figs. 44 and 5. Table 3 contains measures of
model fit to the quantile response times of the individuals in
the sleep deprivation and control conditions, and Tables 4 and
5 contain the parameter estimates. The G statistic was lower for
the diffusion model in both conditions; however, this measure
does not take model complexity into account. The BIC, which
does take model complexity into account, favored the ACT-R
model in the control condition and the diffusion model in the
sleep deprivation condition, but the absolute differences between
the model fits were small. Comparison of the models’ outputs to
one another reinforces this conclusion (Supplementary Table 3).

The diffusion model closely matched the observed re-
sponse time distributions (Fig. 6). The sum of squared errors
for each participant ranged from .007 to .017 with a mean (+
SE) of .010 (£ .001). Correlations between the predicted and
observed proportions of responses in 10-ms bins for each par-
ticipant ranged from = .90 to .97 (Supplementary Fig. 2). As
time awake increased, the diffusion model responded more
slowly and produced more lapses. This occurred because of
changes in the rate of evidence accumulation. The drift rate
scaling slope (ay) was significantly less than zero, #(12) =
16.86, p < .001 (Table 4, Experiment 1). Consequently, the
response time distribution shifted to the right and the distribu-
tion became more skewed with increasing time awake.
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Table 3  Average model fits to individuals in Experiments 1 and 2 (+1 standard error across individuals)

Model Model df Experiment df G Observations BIC
Experiment 1: Diffusion 8 29+.1 120 £ 11 2623 + 15 182 £ 11
Sleep deprivation ACT-R 6 137+9 184 +9
Experiment 1: Diffusion 8 28+.3 89 +8 1698 £3 148 £ 8
Control ACT-R 6 94+ 11 138 £ 11
Experiment 2: Diffusion 8 78 +1 431+33 7700 + 21 502 +33
Night shift ACT-R 6 451 £52 505 £ 52
Experiment 2: Diffusion 8 79+ .6 366 +25 7692 +31 437425
Control ACT-R 6 394 +£27 447 £26

The diffusion model also committed more false starts
across days. This occurred because of changes in stability
during the pre-stimulus interval. The decay rate scaling slope
(a,) was significantly less than zero, #(12) = 3.80, p < .01.
Reduced decay rate partially compensated for the effect of
fatigue on drift rate once the stimulus appeared. However,
reduced decay rate also inadvertently allowed noise to drive
the diffusion process beyond the decision criterion during the
pre-stimulus interval, causing more false starts. The average
value of the decay rate scaling slope (—.0010; Table 4) is small
because the term is multiplied by relatively large values from
the biomathematical model (up to 24; Fig. 3), and because
small changes in decay have a large impact on performance.
With an average value of —.0010 for reduced decay, the inte-
gration time constant changes from 264 ms at baseline to
192 ms after 3 days of total sleep deprivation.

The ACT-R model closely matched the observed response
time distributions as well (Fig. 6). The sum of squared errors
for each participant ranged from .008 to .014 with a mean (+
SE) of .011 (£ .001). Correlations between the observed and
predicted response time distributions in 10-ms bins for each
participant ranged from r = .91 to .96 (Supplementary Fig. 2).
The ACT-R model responded more slowly and generated
more lapses with increasing time awake. This was because
of the rising frequency of microlapses. The utility intercept

Table 4 Diffusion model parameters estimates for individual
participants (+1 standard error across individuals) for Experiments 1
and 2

Parameter Experiment 1: Sleep deprivation Experiment 2: Shift work

ay —.024 +.001 —.027 +.003
by 1.35+.03 1.34+.02

ay —.0010 +.0001 —.0016 +.0001
by .040 +.002 .043 +.002

n 23 +£.01 21+.01

A 101 £.002 107 £.003
Tnp .146 £ .006 136 £.005
SD 101 £.007 .077 £.006

was greater than the threshold intercept, #(12) = 6.98, p <
.001 (Table 5; Experiment 1). Consequently, production util-
ities predominantly exceeded the utility threshold during early
sessions, minimizing microlapses. However, the utility scaling
slope (ap) was more negative than the threshold scaling slope
(ap), 1(12) = 11.93, p < .001. Consequently, production utili-
ties fell below the threshold during later sessions with increas-
ing probability, resulting in more microlapses. Microlapses
slowed alert responses, and sometimes delayed responses be-
yond 500 ms, causing lapses.

The ACT-R model also committed more false starts across
days. This occurred because of changes in the threshold. The
threshold scaling slope (a7) was significantly less than zero,
#(12) =7.02, p < .001. Reducing the utility threshold partially
compensated for the effect of fatigue on production utilities.
However, lowering the threshold also reduced the influence of
the mismatch penalty on the respond production, leading to
more false starts.

Analyzing the response time distributions by day em-
phasizes the homeostatic process of sleep regulation; per-
formance declines across days of sleep deprivation.
Performance also varies within days in accordance with
the circadian process. To examine the dynamics across
time of day, we calculated the proportions of false starts
and lapses and the median times of alert responses for
each session during the 3 days (Fig. 7). Due to the inter-
action between the homeostatic and circadian processes,
participants committed more false starts and lapses and

Table 5 ACT-R parameter estimates for individual participants (£1
standard error across individuals) for Experiments 1 and 2

Parameter Experiment 1: Sleep deprivation Experiment 2: Shift work

U 5.07 +£.05 498 + .11
ap —.014 +.001 —.022 +.001
T 4.59 £ .06 4.51+.07
ar —.010 +.001 —.015+.001
FPgy,. .984 £ .003 .983 £.006
Cycle .041 +£.003 .034 +.002
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Fig. 7 Proportion of false starts (top panel), proportion of lapses
(middle panel), and median times of alert responses (bottom panel)
for each session in Experiment 1. Filled shapes correspond to the 62-h

they responded more slowly during the early morning
hours. As instantiated in the biomathematical model of
McCauley et al. (2013), the circadian process interacted
nonlinearly with the homeostatic process, such that
time-of-day effects were greater in the sleep deprivation
condition than in the control condition.

The diffusion and ACT-R models reproduced the effects of
the circadian process and its interaction with the homeostatic
process. Fits to the proportion of false starts (diffusion model:
r =.92 ACT-R: r = .92), lapses (diffusion model: » = .91;
ACT-R: r=.91) and median response times (diffusion model:
r =.95; ACT-R: r = .95) were close to the observations for
both models.

Experiment 2: Simulated night shift work

Night shift work is associated with increased fatigue and def-
icits in cognitive performance due to circadian misalignment
(Akerstedt, 1988; Van Dongen, 2006). The second experiment
we modeled involved a simulated night shift condition and a
control condition in a laboratory (Van Dongen et al., 2011c¢).

total sleep deprivation condition; open shapes correspond to the control
condition (for which there was no testing during the nights). Error bars
indicate + 1 standard error

Participants in the night shift condition (z = 13) completed
two S5-day night-time duty cycles with duty time spanning
from 20:00 until 10:00 (Fig. 3, top right). The two duty cycles
were separated by a 34-h break from the primary task of driv-
ing a high-fidelity driving simulator."' The 34-h break includ-
ed a 5-h nap opportunity from 10:00 until 15:00, a night of
sleep from 22:00 until 08:00, and another 5-h nap opportunity
from 15:00 until 20:00. Participants in the control condition (n
= 14) completed two 5-day daytime duty cycles with duty
time spanning from 08:00 until 22:00. The two duty cycles
were separated by a 34-h break from the primary task of driv-
ing as well, but the sleep schedule was unaltered.
Participants performed the PVT eight times per duty day.
Because each session contained relatively few observations
(mean + SD: 96 + 1), we combined data from sessions that
occurred at the same time of day across duty days and duty
cycles. In the control condition, sessions occurred at 09:05,

f igure 3 only shows the output of the biomathematical model through the
first duty cycle and break. The output for the second duty cycle is nearly
identical.
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09:55, 12:05, 12:55, 15:05, 15:55, 18:05, and 18:55. In the
night shift condition, session times were offset from these
times by 12 h. The fitting procedure and evaluation metrics
were identical to those used in Experiment 1.

In Experiment 2, performance varied primarily by time of
day (Van Dongen et al., 2011c). Performance remained rela-
tively constant across time of day in the control condition, but
degraded across duty hours in the night shift condition
(Fig. 8). The number of false starts increased significantly,
albeit slightly, from the initial to the final testing session in
the night shift condition, but not in the control condition. The
number of lapses and the median response times also in-
creased across time of day in the night shift condition, but
not in the control condition.

Table 3 contains measures of model fit to the quantile re-
sponse times from the daytime and night-time conditions. The
G? statistic was slightly lower for the diffusion model in both
conditions, as was the BIC. However, model fits were skewed
by the poor correspondence between their outputs and the data
of one participant (Participant 13, Supplementary Fig. 6).
Neither model was fully able to account for the peakedness
of'the participant’s RT distributions. Excluding this participant
reduced the average G? values (DM = 439; ACT-R = 422),
and the resulting BIC scores (DM = 491; ACT-R = 451).

Model parameter estimates for Experiment 2 were similar
to those for Experiment 1 (Tables 4 and 5), indicating gener-
ality of the models across different experimental manipula-
tions inducing fatigue. We used the best fitting parameter es-
timates to generate response time distributions for the diffu-
sion and ACT-R models for each participant (Supplementary
Figs. 6 and 7). We calculated the expected proportions of false
starts and lapses, and the median times of alert responses dur-
ing each of the scheduled testing sessions. Both models pre-
dicted an effect of duty hour in the nighttime condition only
(Fig. 8), characterized by progressively worse performance
throughout the night shift. Fits to the proportions of false starts
(diffusion model: » = .85; ACT-R: r = .82), lapses (diffusion
model: r = .89; ACT-R: r = .66) and median response times
(diffusion model: » = .92; ACT-R: r = .93) were comparable
between the models.

Experiment 3: Sustained sleep restriction

Sleep restriction, when sustained across multiple nights, re-
sults in cumulative deficits in cognitive performance (Belenky
et al., 2003; Van Dongen et al., 2003). The homeostatic pro-
cess in the McCauley et al. (2013) biomathematical model
tracks cumulative fatigue due to sustained sleep restriction,
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Fig. 8 Proportion of false starts (top panel), proportion of lapses
(middle panel), and median times of alert responses (bottom panel)
for each session in Experiment 2. Black circles show observations, red
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and can thus capture the resulting deficits. The third experi-
ment we modeled involved restricting sleep to 4, 6, or 8 h TIB
each night over 14 days (Van Dongen et al., 2003). The ex-
periment began after 3 days of baseline adaptation, and con-
tinued for 14 consecutive days (Fig. 3, bottom).

To examine whether the integrated diffusion and ACT-R
models extend to sustained sleep restriction, we generated
predictions using the parameter sets recovered from the total
sleep deprivation condition of Experiment 1. We followed this
approach because the published data on sustained sleep re-
striction only included the number of lapses, which was not
adequate to fit the model. We collapsed predictions across
PVT sessions that occurred within each 24-h period of
Experiment 3, and computed the expected proportions of false
starts and lapses, and the median response times, for the three
experiment conditions (Fig. 9). In agreement with the results
from Van Dongen et al. (2003), both models predicted
dose-dependent, mounting impairment across days for partic-
ipants in the 4- and 6-h conditions, but not for participants in
the 8-h condition (see also Belenky et al., 2003).

Alternate parameterizations
In the preceding sections, we considered theoretically-
constrained parameterizations of each model. The model fits

provided evidence that allowing two parameters (v and A in

Diffusion Model
.08

the diffusion model and Utility and Threshold in the ACT-R
model) to vary with fatigue was sufficient to capture the ef-
fects of fatigue on PVT performance. We next examined
whether these parameterizations were adequate by fitting var-
iants of the diffusion and ACT-R models where each param-
eter was allowed to vary alone with fatigue, or all combina-
tions of two parameters were allowed to vary with fatigue.

For this purpose we used the data from the sleep depriva-
tion condition of Experiment 1, where the effects of fatigue
were most substantial. We fitted 21 versions of the diffusion
model (six where one parameter varied and 15 where all com-
binations of two parameters varied) and 11 versions of the
ACT-R model (four where one parameter varied and seven
where all combinations of two parameters varied). We com-
pared fits among diffusion model variants and ACT-R model
variants using BIC scores calculated from the G values
(Supplementary Tables 4 and 5).

Of the diffusion models, the best fitting variant was the
one used in the previous sections, in which drift rate and
decay varied with fatigue (BIC = 182). Other variants that
performed well included ones where fatigue affected drift
rate alone (BIC = 190), drift rate and drift rate variability
(BIC = 191), and drift rate and decision criterion (BIC =
193). Of the ACT-R models, the best fitting variant was
the one used in the previous sections as well, in which
utility and threshold varied with fatigue (BIC = 184). All
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Fig. 9 Proportion of false starts (top panel), proportion of lapses (middle panel), and median time of alert responses (bottom panel) for each day in

Experiment 3
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other variants fitted substantially more poorly. In the next
best-fitting variants, fatigue affected utility and FPpgc
(BIC = 226), or utility and cycle time (BIC = 226). In
sum, the a priori model variants explored in the previous
sections, which were based on existing computational the-
ories of fatigue (Gunzelmann et al., 2009a; Ratcliff & Van
Dongen, 2011), also provided the best fits to the experi-
mental data.

One might also wonder whether a different implemen-
tation of the diffusion model in which RTs arise from the
convolution of a distribution from the diffusion process
and a separate contaminant distribution based on random
guesses better fits the data (Ratcliff & Van Dongen, 2009;
Ratcliff & Tuerlinckx, 2002). According to this account,
false starts could be a consequence of fatigue increasing
the probability of random guesses rather than decreasing
inhibition. This possibility implies two ancillary assump-
tions: (1) Guesses are distributed over some interval both
preceding and following stimulus onset, and (2) the prob-
ability of random guesses increases with fatigue, produc-
ing more false starts. We explored this possibility by re-
placing the LCA process with a random guesses process
(see Ratcliff & Van Dongen, 2009). To capture false
starts, which occur before the stimulus is presented, we
treated the interval of assumption 1 as elapsed time from
the offset of feedback from the previous trial to the length
of the slowest response after the stimulus — that is, the ITI
plus the duration of the slowest response. We fitted the
model to data from participants in the total sleep depriva-
tion condition of Experiment 1, and found that the esti-
mated proportion of random guesses increased with fa-
tigue, contributing to the rise in false starts. Still, the
goodness-of-fit was lower in the diffusion model with
random guesses than in the model with the LCA process
on average (BIC = 204 vs. BIC = 182), and for nine of 12
participants. As such, we favored the diffusion model
with the LCA process.

Baseline Performance

Vulnerability to Fatigue

Sources of individual differences

Inter-individual differences in PVT performance may be due
to baseline performance differences and/or differences in the
dynamic changes across time awake and time of day (Van
Dongen et al., 2004; Van Dongen, Bender, & Dinges, 2012).
We investigated which parameters in the integrated diffusion
and ACT-R models accounted for these sources of
inter-individual variability.

We first identified parameters that produced
inter-individual differences in baseline performance, mea-
sured as the proportion of lapses during Day 0 of
Experiment 1. Across the total sleep deprivation and control
conditions, non-decision time (7yp) from the diffusion model
significantly correlated with the proportion of lapses (r = .61,
p <.01), as did cycle time (Cycle) from the ACT-R model (r =
.51, p < .01). The estimates of individuals’ non-decision and
cycle times were correlated (» = .79, p < .001) (Fig. 10), indi-
cating that these parameters produced similar effects.

We then identified parameters that produced inter-individual
differences in vulnerability to fatigue, measured as the increase
in lapses and false starts from Day 0 to Day 3 in Experiment 1.
Drift rate scaling slope (ay) from the diffusion model signifi-
cantly correlated with the increase in lapses (» = .80, p <.001),
as did the utility scaling slope (ap) from the ACT-R model (» =
.70, p < .01). Across individuals, drift rate and utility slopes
were correlated (» = .63, p <.05) (Fig. 10), indicating that these
parameters produced similar effects. Further, the decay rate
scaling slope (a,) in the diffusion model and the threshold
scaling slope (a7) in the ACT-R model were correlated with
the increase in false starts from Day 0 to Day 3 (decay slope: r=
.66, p < .05; threshold slope: = .70, p < .01), but not with the
increase in lapses. Across individuals, decay and threshold
slopes were correlated (r = .59, p < .05), again indicating that
these parameters produced similar effects.

The inter-individual differences in non-decision time
(Tnp), drift rate scaling slope (ay) and decay rate scaling slope

Vulnerability to Fatigue
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Fig. 10 Model parameters in the diffusion model (DM) and the Adaptive
Control of Thought — Rational (ACT-R) model capturing inter-individual
differences in baseline performance (left) and vulnerability to fatigue
(middle and right). Each gray point in the left scatter plots represents

@ Springer

an individual participant from the control condition of Experiment 1, and
each number in plots represents an individual from the total sleep
deprivation condition, whose data are plotted in Supplementary Fig. 2
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(ay) of the diffusion model were all moderately interrelated
(Typvs.ay:r=.45,Typvs.ay.r=.05;ayvs. ay: r=.17). The
individual differences in cycle time (Cycle), utility scaling
slope (ap) and threshold scaling slope (a7) of the ACT-R mod-
el were also moderately interrelated, with the exception of ap
and az; which were strongly interrelated (Cycle vs. ap: r=.52;
Cycle vs. ar: r= 42; ap vs. ap r = .92).

Taken together, these observations suggest that individual
differences in baseline performance are fundamentally distinct
from individual differences in vulnerability to performance
impairment from sleep loss (Van Dongen et al., 2004).'* The
relatively weak interrelationships among the individual sub-
jects’ diffusion model parameters also suggest that individual
differences in degradation of the decision process (after stim-
ulus presentation) and degradation of inhibition (before stim-
ulus presentation) during sleep deprivation are distinct, which
may be indicative of different mechanistic pathways. This
would not seem to be confirmed by the ACT-R model, in
which individual differences in degradation of the decision
process and degradation of inhibition are highly correlated.
However, strong interrelationships between individual differ-
ences in parameter estimates may also be caused by intrinsic
correlation among the parameter estimates in the model
fitting. An experimental manipulation of the PVT that delib-
erately dissociates the decision process from the inhibition
process will be needed to resolve this issue.

Discussion

Fatigue from sleep loss degrades cognitive performance. The
effects of fatigue are especially pronounced for tasks that in-
volve sustained attention, such as the PVT (for others, see e.g.,
Killgore, 2010). The PVT is commonly used in sleep research
because of its high sensitivity to fatigue from sleep loss and
circadian rhythms. This sensitivity suggests that understand-
ing the mechanisms associated with performance degradation
on the PVT may provide insight regarding the impact of sleep
loss and circadian rhythms on cognition more generally.

We used two computational cognitive models to study how
fatigue affects cognitive performance: the first is based on the
diffusion model (Ratcliff & Van Dongen, 2011), and the sec-
ond on ACT-R (Gunzelmann et al., 2009a). We integrated
each cognitive model with a biomathematical model of fatigue
(McCauley et al., 2013). We then investigated the perfor-
mance of the integrated models across three PVT experiments
that measured the effects of fatigue arising from total sleep
deprivation, simulated shift work, and sustained sleep restric-
tion. The integrated diffusion and ACT-R models reproduced

12 Even $0, it has been reported that baseline diffusion model drift rate can be
used to predict PVT performance during total sleep deprivation (Patanaik
etal., 2015).

three key phenomena in the PVT under conditions of fatigue:
increased lapses, increased false starts, and slower alert re-
sponses. The two models were also able to account for the
complete response time distribution in detail.

We did not reject either model; that was neither the aim nor
were we prompted by our findings to do so. Both models
provided excellent fits to a wide range of empirical data.
They involve fundamentally different levels of abstraction,
but we found that they account for the effects of fatigue in
surprisingly equivalent ways. This result may have broader
implications than would rejecting either model. Juxtaposing
the two models and examining why they produce such similar
outcomes despite their substantive differences is informative
both theoretically and from an applied computational point of
view.

Mechanistic effects of fatigue

That the same biomathematical model was used to induce
fatigue in the diffusion and ACT-R models did not mean,
prima facie, that the two integrated accounts would yield con-
verging results. Each account’s predictions emerged from in-
teractions among (1) the biomathematical model, (2) the cog-
nitive processing mechanisms instantiated in the accounts,
and (3) the manner in which fatigue impacted these mecha-
nisms. Thus, although using different biomathematical
models would produce varying results, using the same model
does not guarantee convergence. This further depends on how
fatigue impacted processing mechanisms in each account, as
we discuss next.

With regard to their theoretical basis, the diffusion and
ACT-R models are quite distinct. The diffusion model is de-
void of specifics about the performance task at hand. The
onset of a stimulus drives the continuous accumulation of
evidence toward a decision criterion. The ACT-R model, in
contrast, contains a set of cognitive processes thought to be
involved in performing a given task. The onset of a stimulus
alters which processes occur and in what order.

The diffusion and ACT-R models are also quite distinct in
terms of their computational implementations. The models
differ in whether they treat the decision to respond as a unitary
or repeated event. Decision time in the diffusion model is
determined by the duration of the diffusion process, which is
implemented as one ongoing process. Slow responses arise
from low values of the drift rate, which prolong decision time.
In contrast, decision time in the ACT-R model corresponds to
aggregate time across multiple, short-duration production cy-
cles preceding selection of the atfend and respond produc-
tions. The duration of one production cycle is relatively brief
(between 30 and 50 ms, Table 5). But because a production
can be enacted only when its value exceeds the utility thresh-
old, many production cycles may occur before the model re-
sponds. Slow responses arise from reduced utility values,
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which tend to cause microlapses and thereby increase the
number of production cycles.

Related to this, the diffusion and ACT-R models differ in
whether they treat evidence accumulation as continuous or
discrete. In the diffusion model, a response is initiated when
accumulated evidence exceeds the decision criterion’ If a re-
sponse has not yet occurred and drift rate is positive, the prob-
ability of responding increases over time. In the ACT-R mod-
el, a response is initiated when the utility value of the respond
production exceeds that of all other productions and the utility
threshold. If a response has not yet occurred and the state has
not changed, the probability of responding during the next
production cycle essentially remains the same (Eq. 10).

Against the backdrop of these differences, the accounts
capture the detrimental effects of fatigue through two essen-
tially identical component interactions (Table 6). First, in both
models, fatigue reduces the signal-to-noise ratio in the deci-
sion process, albeit in computationally different ways. In the
diffusion model, the signal-to-noise ratio in the decision pro-
cess is reduced because of the decreasing mean drift ratio,
which nominally corresponds to the signal-to-noise ratio in
the evidence accumulation process (Ratcliff & Van Dongen,
2011). In ACT-R, the signal-to-noise ratio in the decision pro-
cess is reduced because of the decreasing production utilities
relative to the utility threshold. In both models, dynamic de-
creases in the signal-to-noise ratio produce increasingly
skewed response time distributions with longer right tails.

Second, in both models, fatigue reduces response inhibi-
tion — the ability to suppress actions that are inappropriate in
the current context and that interfere with goal-driven behav-
ior (Mostofsky & Simmonds, 2008) — but again in computa-
tionally different ways. In the diffusion model, the reduction
in response inhibition arises from the decreasing decay rate in
the LCA component. As decay decreases, so too does the
suppression of responses prior to stimulus onset. In ACT-R,
the reduction in response inhibition arises from the decreasing
utility threshold. This allows actions that were previously sup-
pressed on the basis of their low utility to be enacted. In both
models, dynamic changes to response inhibition partially
compensate for the primary effect of fatigue and increase the
probability that a response will eventually be made after the
stimulus appears. These changes also cause more responses to
occur before the stimulus appears.

The sufficiency of these two mechanisms in accounting for
the effects of fatigue on cognitive performance is shown by
our simulations of experiments involving total sleep depriva-
tion, circadian misalignment, and sleep restriction (see above,
Experiments 1, 2, and 3). The necessity of the two mecha-
nisms is corroborated by our exploration of alternate model
variants (see above, Alternate parameterizations ). Allowing
only a single parameter or any other combination of two pa-
rameters in each model to vary with fatigue reduced the good-
ness of fit. It is also noteworthy that the relationship between
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how the models implemented fatigue, evident at the group
level, held at the level of individual participants. The positive
correlations between parameter values in the two models
across individuals (drift rate slope and utility slope; decay
slope and threshold slope) provide further evidence for equiv-
alent effects in the two modeling frameworks.

The ACT-R model can be thought of as approximating a
discrete diffusion process with 38-ms time steps 7 (i.e., the
mean duration of a production cycle), a decision criterion of
0.1y/7, and a decay of 1.0."* For all combinations of utility
and threshold in the ACT-R model, there is a corresponding
drift rate in the diffusion model that yields an identical proba-
bility of the process terminating after one step (Fig. 11). As seen
in the figure, decreasing utility with fatigue in the ACT-R model
has the same effect as decreasing drift rate in the diffusion
model, a point confirmed in an earlier model mimicry simula-
tion study (Fisher, Walsh, Blaha, & Gunzelmann, 2015). This is
not to say that ACT-R is merely a special case of the diffusion
model (or vice versa). The two approaches are motivated by
entirely different considerations, and they are implemented in
completely different ways. Yet despite these differences, the
conceptual relationship between utility and threshold in the
ACT-R model, and drifi rate in the diffusion model underlies
their similar behavior with respect to the PVT.

There is also a relationship between threshold in the
ACT-R model and decay in the diffusion model. Decay
dampens accumulated evidence, which arises from both signal
and noise. When decay is low, the probability of noise driving
the decision process beyond the decision criterion increases.
Likewise, utilities in ACT-R reflect a production’s underlying
value in addition to noise (Eq. 7). When threshold is low, the
probability of noise causing a non-matching production to
exceed the threshold increases.

Although the diffusion and ACT-R models describe the
mechanisms underlying PVT performance at different levels
of abstraction and in distinct ways, they capture the detrimen-
tal effects of fatigue through essentially equivalent component
interactions. The insight gained here from comparing the
two modeling frameworks — that fatigue reduces the
signal-to-noise ratio in the decision process (after stimulus
presentation) as well as response inhibition (both before and
after stimulus presentation) during performance of the PVT —
is a new finding.

Relationship to neuronal theories of fatigue

The substantial convergence between models helps to con-
strain possibilities for the neuronal mechanisms underlying
the effects of fatigue on PVT performance. The wide

13 Setting decay to 1.0 renders the process memoryless, and setting the deci-
sion criterion to 0.1,/7 causes the process to terminate immediately once
positive evidence is accumulated.
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Table 6  Primary and secondary effects of fatigue in diffusion model and ACT-R model

Diffusion model ACT-R Behavioral outcome
Primary effect Decreased drift rate Decreased utility Slower alert responses
Increased lapses
Secondary effect Decreased decay Decreased threshold Increased false starts

applicability of the diffusion model across different perfor-
mance tasks as documented in the literature (see Ratcliff &
McKoon, 2008) implies that a single generic underlying
mechanism may be able to account for the impact of fatigue
on performance. However, ACT-R simulations of fatigue ef-
fects across different task platforms underline the importance
of differentiating the cognitive processes involved
(Gunzelmann et al., 2005, 2009b, 2012; Halverson,
Gunzelmann, Moore, & Van Dongen, 2010; see also
Jackson et al., 2013). At the neuronal level, these consider-
ations point to mechanisms in which fatigue degrades cogni-
tive processing in a generic fashion (i.e., common to many
neuronal pathways) that is nonetheless process-specific (i.e.,
in neuronal pathways involved in select cognitive processes).
Current paradigms positing that subcortical brain mechanisms
induce global cortical changes responsible for the effects of
fatigue on cognitive performance (Aston-Jones, Chen, Zhu, &
Oshinsky, 2001; Doran et al., 2001; Saper et al., 2005;
Thomas et al., 2000) fail to explain this process-specificity
of fatigue effects (Jackson et al., 2013).

An emerging theoretical view of how sleep deprivation
may affect cognitive task performance posits that while the
brain as a whole is awake, individual cortical columns in-
volved in task performance may independently “fall asleep”
(Jackson et al., 2013; Van Dongen, Belenky, & Krueger,
2011a). Based on the concept of local, use-dependent sleep
(Krueger et al., 2008), this paradigm postulates that as a con-
sequence of prior use, cortical columns may temporarily fail to
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Fig. 11 Difference between utility and threshold in the Adaptive Control
of Thought — Rational (ACT-R) model (x-axis) and value of drift rate that
produces identical probability of reaching the decision criterion after one
38-ms time step (y-axis). Grayscale shows probability of reaching the
criterion after one step

process information, effectively reducing functional connec-
tivity and thereby degrading the quality of cognitive process-
ing (Krueger, Huang, Rector, & Buysse, 2013; Van Dongen,
Belenky, & Krueger, 2011a). Prior use is a function of time
awake and is further modulated by task load (Van Dongen,
Belenky, & Krueger, 2011b), which is determined by stimulus
density and time on task (i.e., cumulative cognitive processing
requirement) and is particularly high in repetitive, attention-
demanding tasks such as the PVT. The effects of local sleep on
performance depend on the number of functional neuronal
circuits available to process information for a given task — that
is, level of redundancy, or cognitive capacity — which may
vary across tasks and among individuals (Chee & Van
Dongen, 2013).

The concept of local, use-dependent sleep is consistent
with the results of the computational cognitive models consid-
ered here, and fits well with the notion of reduced signal-to-
noise ratio in the decision process. The transient loss of a
subset of neural columns involved in task performance would
be expected to reduce the quality of stimulus processing and
evidence accumulation (as in the diffusion model), or to
Jproduce microlapses (as in the ACT-R model). The idea of
local, use-dependent sleep also fits with the notion of reduced
response inhibition, provided that inhibition is viewed as an
active process that is also susceptible to local sleep. The im-
plication that PVT performance relies not only on the ability to
sustain attention but also on the ability to maintain inhibition,
and that these are distinct aspects of cognition that may each
separately instill vulnerability to PVT performance impair-
ment due to fatigue, is a novel insight derived from our com-
putational model comparison.

Predictive generalizability

By examining how fatigue impacts specific underlying mech-
anisms in each model, the accounts allow exploration of how
fatigue may impact cognitive processing in other task con-
texts. The integrated diffusion model we developed explains
the effects of fatigue from sleep loss on performance in terms
of temporal changes in degradation of information processing
in central cognition. Dynamic changes in drift ratio during
sleep deprivation or night work are associated with reduced
signal-to-noise ratio and, consequently, degraded quality of
cognitive processing. This perspective is supported by neuro-
imaging data, which indicate that sleep deprivation is
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associated with a reduction in neuronal connectivity (Verweij
etal., 2014) or available functional neuronal circuits, especial-
ly those that are most intensively used for the task at hand
(Chee & Asplund, 2013).

However, the integrated diffusion model does not elucidate
which circuits are most intensively used during performance
of a given task. Thus, it is a priori unclear to what extent the
model’s predictions may generalize from one task to another.
The integrated ACT-R model, on the other hand, is explicit
regarding which aspects of cognition (i.e., ACT-R modules)
are assumed to be involved in task performance, and how
intensively. Furthermore, ACT-R modules have been linked
to specific brain regions (Borst & Anderson, 2013), suggest-
ing which neuronal circuits may be involved in performance
of a given task. Most relevant for the PVT, production rules
are thought to be instantiated by networks involving basal
ganglia structures including the striatum, the pallidum, and
the thalamus (Anderson, 2007). The utility threshold and the
compensatory response to fatigue have been posited to be
associated with the thalamus (Gunzelmann et al., 2009a), as
supported by findings of decreased thalamic activation during
sleep deprivation (Chee et al., 2008; Thomas et al., 2000).

As such, it is reasonable to assume that, while the a priori
predictive generalizability of the integrated diffusion model is
limited to generic changes in scaled performance outcomes
over time, the integrated ACT-R model could generalize to
novel tasks and contexts in terms of absolute performance
predictions (see Gunzelmann et al., 2015). Additionally, un-
like the diffusion model, the scope of ACT-R extends beyond
one- and two-alternative forced-choice tasks. As a first step
toward demonstrating these capabilities, we recently com-
bined an ACT-R account of fatigue with validated ACT-R
models of multi-tasking and driving behavior to make a priori
predictions about the effects of extended wakefulness on task
performance (Gunzelmann et al., 2009b; Gunzelmann et al.,
2011; Khosroshahi, Salvucci, Veksler, & Gunzelmann, 2016).
This is not to say the diffusion model cannot play an important
role in simulations of complex tasks as well. For example, in
the driving domain, brake light detection can be modeled as a
signal detection process. In this way, the diffusion model can
be used to simulate braking, one component of driving perfor-
mance (Ratcliff & Strayer, 2014).

Integrated theories of cognition

Computational models have been applied to myriad topics in
cognitive science. Integrative and comparative approaches such
as those used here provide a pathway towards unification and
the development of a coherent whole (Newell, 1990). In this
paper, we integrated between cognitive capacities and a cogni-
tive moderator, fatigue. To achieve this integration, we lever-
aged existing cognitive computational models (Gunzelmann
et al., 2009a; Ratcliff & Van Dongen, 2011) and a
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biomathematical model of fatigue (McCauley et al., 2013).
Such model reuse has been recommended as a practice to ac-
celerate cognitive architecture research (see Gluck, 2010).

The constituent models had previously been validated in
isolation, and many of the constraints that shaped their devel-
opment, though typically unrelated to the PVT, limited the
number of assumptions we needed to make in order to create
an account of the effects of fatigue on PVT performance.
Integrating existing models thus allowed us to reduce the dan-
ger of the irrelevant-specification problem (Newell, 1990) —
that is, needing to make a large number of under-constrained
design decisions to allow the simulation to run.

Rather than adding new knowledge to the cognitive com-
putational models (i.e., constructing new agents) to capture
performance under conditions of fatigue, we used the same
computational cognitive models and adjusted the settings of
architectural parameters. Others have used this approach. For
example, Ritter et al. (2007) adjusted the values of declarative
memory and motor parameters to simulate the effects of caf-
feine and anxiety on serial subtraction performance. Likewise,
published accounts of arousal capture the effects of fatigue by
manipulating aspects of ACT-R’s utility calculation
(Belavkin, 2001; Jongman, 1998; Gonzalez, Best, Healy,
Kole, & Bourne, 2011). Our approach goes a step further by
linking parameter values with an underlying physiological
account — the effects of fatigue on architectural parameters
vary continuously over time and in the manner specified by
a validated biomathematical model (McCauley et al., 2013).
In doing so, the cumulative models get “further down the list”
(Newell, 1990, p. 16) of areas to be covered by a unified
theory of cognition.

The practice of implementing moderators by directly
adjusting parameter values, though suitable for studying fa-
tigue in isolation, may prove to be impractical for studying the
combined effects of multiple moderators. One promising di-
rection for future work is to integrate physiological models of
the body — models that represent the combined effects of mul-
tiple moderators — with cognitive architectures (Dancy, Ritter,
Berry, & Klein, 2015). A similar approach has been used to
model the combined and often conflicting effects of emotions
such as fear, anger, sadness, and happiness on architectural
parameters (Hudlicka, 2007).

Integration is a potentially fruitful approach for leveraging
multiple non-overlapping models. This was the case for the
diffusion and ACT-R models, and the biomathematical model.
However, the diffusion model and the ACT-R model account
for the same decision process. When such a “zone of
contention” exists, the typical approach is to try to falsify
one of the models (McClelland, 2009). In this regard, our
results do not point to a clear victor. At the same time, the
models share an underlying theoretical interpretation, empha-
sizing the complementary rather than contradictory nature of
their mechanisms (see also, Lebiere, Gonzalez, & Warwick,
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2009). Because both theories have utility in advancing our
understanding of the mechanisms of fatigue, we chose to focus
on their shared perspective rather than their individual limita-
tions. Only by determining how to best account for the effects
of fatigue on PVT performance using both modeling formal-
isms did we recognized their theoretical correspondence.

Conclusion

The adverse effects of fatigue from sleep loss on cognitive
performance are substantial, yet most computational models
of performance do not include fatigue as a cognitive modera-
tor. We leveraged existing models to explore how fatigue from
sleep loss affects cognitive processes. Integrating a biomathe-
matical model of fatigue with computational cognitive models
produced a more comprehensive account than either approach
alone: the integrated diffusion and ACT-R models captured in
detail how fatigue impairs psychomotor vigilance perfor-
mance. Juxtaposition of the integrated models, which provide
accounts of cognitive performance at fundamentally different
levels of abstraction, revealed a surprisingly consistent picture
of how fatigue affects central cognition during PVT perfor-
mance: (1) by reducing the signal-to-noise ratio in decision
processes, and (2) by reducing response inhibition. Further, by
considering response inhibition as an active process, both of
these effects can be seen as arising from the loss of processing
resources due to local sleep. These findings advance our the-
oretical understanding of fatigue and illustrate the synergy that
can be achieved by comparing computational cognitive
modeling at different levels of abstraction, focusing not only
on how they differ, but also on how and why they converge.
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