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Abstract Children rely on others for much of what they
learn, and therefore must track who to trust for information.
Researchers have debated whether to interpret children’s
behavior as inferences about informants’ knowledgeabil-
ity only or as inferences about both knowledgeability and
intent. We introduce a novel framework for integrating
results across heterogeneous ages and methods. The frame-
work allows application of a recent computational model
to a set of results that span ages 8 months to adulthood
and a variety of methods. The results show strong fits to
specific findings in the literature trust, and correctly fails
to fit one representative result from an adjacent literature.
In the aggregate, the results show a clear development
in children’s reasoning about informants’ intent and no
appreciable changes in reasoning about informants’ knowl-
edgeability, confirming previous results. The results extend
previous findings by modeling development over a much
wider age range and identifying and explaining differences
across methods.

Keywords Bayesian models · Social learning · Selective
trust · Epistemic trust

Children face a difficult problem in learning about the
world. There is much to learn and little time in which to
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learn it. In this context, the benefits of social learning are
self-evident. Self-directed strategies are slow and cannot
be used to acquire some knowledge (e.g. language). It is
quicker to call upon on the knowledge of others. However,
people do not always produce reliable data. A person may
have inaccurate knowledge or may wish to deceive. Thus, it
is necessary for people to trust informants and their infor-
mation selectively (Koenig & Harris, 2005; Pasquini et al.,
2007; Corriveau & Harris, 2009; Corriveau et al., 2009;
Chen et al., 2012). This sort of selective trust in informants
and their information is referred to as epistemic trust.

Research has identified informant and contextual features
that cause children trust informants and their information
differently. Children trust more accurate informants (Koenig
& Harris, 2005; Pasquini et al., 2007). Children are less
likely to ask informants who mislabel common objects
for future information than informants who label common
objects correctly (Koenig & Harris, 2005) and children’s
preference for accurate over inaccurate informants increases
with the relative accuracy between informants (Pasquini
et al., 2007). Additionally, children have been shown to
trust information from groups of informants over dissenters
(Corriveau et al., 2009; Chen et al., 2012) and to prefer
familiar informants (Corriveau & Harris, 2009), informants
with the same native accent (Kinzler et al., 2011), infor-
mants of the same gender (Taylor, 2013) and more attractive
informants (Bascandziev & Harris, 2014).

Research has also shown that children’s epistemic trust
develops. Older children seem to allocate their trust more
flexibly than younger children (Koenig & Harris, 2005;
Pasquini et al., 2007; Corriveau & Harris, 2009). The litera-
ture typically explains this development in terms of changes
in the ability to monitor who is knowledgeable (Pasquini
et al., 2007; Corriveau et al., 2009; Corriveau & Harris,
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2009).1 Others have broadly argued that trust is rational
(Sobel and Kushnir, 2013). An adjacent literature indicates
changes in the ability to reason about deception (Couillard
& Woodward, 1999; Mascaro & Sperber, 2009).

Shafto et al. (2011) proposed a probabilistic model that
formalizes epistemic trust as inferences about informants’
knowledgeability (versus unknowledgeability) and helpful-
ness (versus deception) (see also (Eaves and Shafto, 2012);
(Butterfield et al., 2008)). The computational model was
fit to three studies to investigate possible explanations for
developmental changes in behavior. Contrary to the afore-
mentioned qualitative accounts that attribute developmental
changes to children’s improving ability to monitor infor-
mants’ knowledge, the results showed that the behavioral
differences between three- and four-year-olds are primar-
ily a result of a change in children’s representation of
informants’ helpfulness. Three-year-olds’ data was better
explained by a model that only reasons about informants’
knowledgeability, whereas four-year-olds’ data was better
explained by a model that reasons about both knowledge
and helpfulness. Although provocative, these results are
limited by the reliance on a small subset of the literature.

It would be desirable to use the computational model
to generate a more integrative theoretical account of the
literature on development of epistemic trust. Indeed, the
model in principle should apply to findings across the lit-
erature. However, the research questions and methods used
in epistemic trust research are heterogeneous. In addition to
variations in age, researchers have investigated experimen-
tal features such as the modes through which informants
communicate (e.g. verbal testimony, pointing, gaze), the
experimental paradigm (e.g. forced-choice, looking time),
and culture. Shafto et al. (2011) focused on a small subset
of the overall literature to ensure homogeneity of tasks and
ages that would allow all experiments to be explained with
a simple, unified explanation, but this necessarily limits
the explanatory power of the theory. Any integrative the-
ory must deal with not only heterogeneity of tasks and ages,
but correlations between task and age. Methods that work
for very young children—such as looking time—do not
work for older children, and vice versa. Indeed, the correla-
tion between task and age, and the interpretation problems
it poses, are a general problem for integrative theories of
cognitive development.

In this paper we introduce a method for conducting
integrative, model-driven analysis of heterogeneous exper-
iments and apply it to the construction of an integrative
account of the development of epistemic trust. The approach
is based on two components: a domain-specific model
of epistemic trust (Shafto et al., 2011) and a domain-
general approach for integrative analysis (Mansinghka et al.,

1For a review, see Mills (2013).

Accepted pending revision; Shafto et al., 2014). The model
of epistemic trust is used to parameterize the conditions of
heterogeneous experiments—to translate the experimental
results into model parameters. Along with each parameter-
ization, we document the methodological details of each
condition—mean age, experimental paradigm, communica-
tion mode, etc. The collection of conditions, each translated
into a set of model parameters and experimental features
comprise the input into the integrative analysis. The inte-
grative analysis infers a joint probability distribution over
all relevant experimental features and model parameter val-
ues. The resulting joint distribution allows querying of
conditional distributions over parameters and experimental
features. From these conditional distributions we gain the
ability to ask and answer fundamental questions about how
features of conditions such as task and age are related to
the variables in the model, e.g., how do children’s beliefs
about informants’ helpfulness change from age 18 months,
to 3 years, to 4.5 years or how are pointing versus verbal
testimony reflected in children’s beliefs about helpfulness.

We begin by discussing the heterogeneity in the epis-
temic trust literature. We then discuss the model of epis-
temic trust, followed by our approach to aggregating param-
eterized results. We then detail our methods and results,
and conclude by discussing broader implications of this
approach for epistemic trust and broader theories in cogni-
tive development.

Heterogeneity in studies on the development
of epistemic trust

The epistemic trust literature—as defined in terms of the
scope of the computational model (see (Eaves and Shafto,
2012))—is composed of many literatures each of which
is interested in how learners trust informants differently
in different contexts. The set of encompassed literature
includes the selective trust, deception, informant expertise,
and pedagogy literatures. Each of these literatures has its
own conceptual, methodological, and age conventions. In
this section, we briefly review each literature in turn and
to offer a sense of the heterogeneity of the conceptual and
methodological landscape.

The selective trust literature recounts people’s different
trust in informants driven by inferences about their epis-
temic states. As an example, Koenig and Harris (2005) pro-
posed that children monitor the accuracy of informants and
use prior accuracy information when choosing between and
learning from informants. Preschool-aged children observed
two informants label common objects (chair, ball, etc). One
informant labeled all four objects correctly and the other
labeled all four objects incorrectly. After three of these
accuracy trials, unfamiliar objects were placed before the
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informants. The child was then asked which informant she
would like to ask for the novel object’s label (ask trial)
or after having observed each informant provide a label,
was asked to chose a label (endorse trial). Four-year-old
children asked and endorsed the accurate informant most
often. This result demonstrates that children’s preferences
for specific informants and their information is influenced
by informants’ accuracy. A number of other studies have
reproduced this result and have shown that a single inaccu-
racy can shape children’s informant preferences (Fitneva &
Dunfield, 2010) and that children take into account not only
whether an informant has been accurate or inaccurate but
the relative accuracy between informants (Pasquini et al.,
2007) and the magnitude of informants’ errors (Einav &
Robinson, 2010). Even infants appear to learn differently
from reliable and unreliable informants (Tummeltshammer
et al., 2014) and are surprised when informants mislabel
common objects (Koenig & Echols, 2003). The selective
trust literature also indicates that children prefer informants
who are part of a consensus (Corriveau et al., 2009; Chen
et al., 2012), and who are more familiar (Corriveau &
Harris, 2009) (e.g. their preschool teacher over a stranger).
Another, closely related, line of research indicates that
children may choose informants based on their superfi-
cial, non-epistemic, qualities such as their gender (Taylor,
2013), their attractiveness (Bascandziev & Harris, 2014),
and accent (Kinzler et al., 2011). Research also suggests that
selective trust is modulated by cultural factors. For exam-
ple, children of different cultures are differently likely to
accept seemingly unreliable information from a consensus
(DiYanni & Kelemen, 2008).

The deception literature recounts people’s different trust
in informants driven by inferences about knowledgeable
informants’ helpfulness. The deception literature is vast,
addressing issues related to false belief, sarcasm and more.
Here we consider only the simplest case, which is most
closely related to tasks described above: informants who
are knowledgeable but nonetheless provide inaccurate infor-
mation. Research indicates that three-year-olds have diffi-
culty handling deceptive data compared with older children
(Couillard & Woodward, 1999; Mascaro & Sperber, 2009).
For example, three-year-olds, but not four-year-olds are
repeatedly fooled by an informant who, for ten trials indi-
cates, by way of pointing, the one of two cups under
which no prize is hidden (Couillard & Woodward, 1999).
In addition to age, reasoning about deception varies with
communicative mode. The same study found that children’s
ability to choose the correct cup was improved if the infor-
mant indicated cups by placing markers on them rather than
pointing at them.

The above studies focus on cases where the informant’s
testimony provides information about their trustworthiness.
It is common to experience cases where an informant’s

trustworthiness is implied by social decree, as is the case
with expertise. Research has investigated the development
of trust in experts by pitting two informants labeled as
experts in contrasting domains against each other. Children
begin to correctly attribute domain knowledge fairly early,
at about age four (Lutz & Keil, 2002; Aguiar et al., 2012),
and these abilities improve as children learn more about how
knowledge domains are organized (Danovitch & Keil, 2004;
Keil et al., 2008). Four-year-olds, but not three-year-olds,
more often endorse novel object labels from informants who
demonstrate accurate knowledge of those objects’ functions
and internal properties (Sobel & Corriveau, 2010). Addi-
tionally, preschoolers hold a domain-general view of igno-
rance and a domain-specific view of expertise (Koenig &
Jaswal, 2011) and more often endorse information from nice
non-experts than information from mean experts (Landrum
et al., 2013).

The pedagogy literature recounts people’s different
learning from informants when informants are assumed to
be helpful and knowledgeable. For example, the Natural
Pedagogy theory (Csibra & Gergely, 2006; Gergely et al.,
2007) asserts that children have a strong, in-born belief that
all informants are helpful and knowledgeable and that relax-
ing this belief is a primary task in early development. Hence,
the pedagogy literature looks at how children make differ-
ent inferences about the world given data from teachers than
they do given unintentional data (Bonawitz et al., 2014)
or given data generated by self–directed strategies (Shafto
et al., 2012; Shafto et al., 2012). Recent research has demon-
strated that children can identify when these assumptions do
not apply and use self-directed means to fill in gaps left by
poorly-performing pedagogs (Gweon et al., 2014).

The different literatures employ different methods on
different age groups. Trust-in-testimony research primar-
ily focuses on two age groups: infants up to 18 months,
and preschoolers from three to four years. Studies with
preschoolers typically employ forced-choice paradigms,
asking children which informants they prefer or what infor-
mation they believe; and research on infants is carried out
using looking-time and simple motor paradigms, observ-
ing which informants or actions infants are surprised by
or which actions they imitate. Deception research typically
focuses on three- and four-year-olds, but research into more
subtle questions goes on well beyond those ages. Expertise
research focuses on children old enough to allow the use
of language to inform children about informants’ expertise.
Pedagogy researchers seek to evaluate children as young as
possible, using ostensive cues such as gaze to cue trust. The
epistemic trust literature is broad and the age groups investi-
gated and methods employed are highly variable. To create
an account of the development of epistemic trust we must
not only account for performance across ages, but across
fundamentally different tasks and phenomena.
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Modeling epistemic trust

Leveraging theoretical work on the teleological stance
(Gergely & Csibra, 2003; Dennett, 1989; Baker et al., 2009),
Shafto et al. (2011) proposed a computational model of
epistemic trust that in principle applies to all of these phe-
nomena. The model explains epistemic trust in terms of
inferences about informants’ knowledgeability and helpful-
ness (Eaves and Shafto, 2012; Shafto et al., 2011; Landrum
et al., 2015). A trustworthy informant must both posses
accurate knowledge about the world (be knowledgeable),
and be willing and able to share his or her knowledge (be
helpful). Knowledgeable informants may not act consis-
tently with their knowledge through lack of communicative
skill or malicious intent; helpful informants may hold mis-
conceptions, which may lead them to produce inaccurate
information.

The model is represented as a Bayesian Network (Pearl,
2000; Spirtes et al., 1993): a set of variables (nodes) causally
linked by probabilistic relationships (edges). Edges link par-
ent nodes to their child nodes. Figure 1a shows a graphical
representation of the learner’s model of how informants
choose data. Informants’ beliefs, b, about the world, w,
are determined by their knowledgeability, k, about the
world. Knowledgeable informants’ beliefs align with the
true state of the world; unknowledgeable informants’ beliefs
are determined randomly. An unknowledgeable informant’s
beliefs may follow a uniform distributions corresponding to
a completely random guess or may follow a distribution that
allows some beliefs to be less likely. For example, given the
animal, lion, an informant should be less likely to guess the
label car, than to guess the label tiger.

Informants’ actions, a, are determined by their beliefs,
b, and their helpfulness, h. Helpful selection of evidence is

modeled using the pedagogical sampling model in Shafto
et al. (2012). Helpful informants act to induce their own
beliefs in learners; unhelpful informants act to induce other
beliefs in learners. This is captured by the recursive equa-
tions:

Plearner(b|a) ∝ Pinformant(a|b)P (b), (1)

Pinformant(a|b) ∝
{

Plearner(b|a) if helpful
1 − Plearner(b|a) if not helpful.

(2)

Informants’ actions are selected conditional on their beliefs
about the world. Because informants only control the action
that they choose, they must consider all the possible effects
of their actions. The effects are thus marginalized (summed)
out. Equation 2 captures the idea that actions are selected
purposefully, with a goal (helping or deceiving), based on
the informant’s beliefs. Actions on the world result in effects
e. The effect is determined by the true state of the world,
w, and the action, a. In word learning, we do not model an
effect, for unless the speaker is a wizard or has uttered some
extraordinarily breathy statement, words do not themselves
elicit observable effects from the world.

Prior distributions are placed on informants’ helpfulness
and knowledgeability, corresponding to learners’ beliefs
about individual informants and informants in general,

h|θh ∼ Bernoulli(θh) (3)

θh ∼ beta(αh, βh) (4)

and similarly for knowledgeability,

k|θk ∼ Bernoulli(θk) (5)

θk ∼ beta(αk, βk). (6)

The value of h and k are determined by flips of θ -
weighted coins. The θs are drawn from beta distributions.

a b c

Fig. 1 A graphical representation of the epistemic trust model. Infor-
mants’ beliefs, b about the world, w, are determined by their knowl-
edgeability, k. Informants’ actions, a, are determined by their beliefs
and their helpfulness, h. Actions on the world result in effects, e. θk

and θh represent individual informants’ probability of being knowl-
edgeable and helpful, respectively. θs have beta distribution priors that
represent expectations about informants in general. a A representation

of the intentional stance (Dennett, 1989) in which beliefs and desires,
in this case to help or not, lead to actions. The mob) Single-informant
model. c Multi-informant model for reasoning about groups of infor-
mants. Note that beta priors on knowledgeability and helpfulness and
the true state of the world, w, are shared across informants. Arrows
and nodes are colored-coded for clarity
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These beta distributions leave the model with four free
parameters: αk , βk , αh, and βh. We use the standard beta
distribution parametrization, beta(α, β), which distributes
probability according the function

f (x|α, β) = xα−1 (1 − x)β−1

B (α, β)
. (7)

where B(·, ·) is the beta function.
Beta distributions represent the distribution of people and

each informant is a draw of θ from that distribution (see
Fig. 1b). θ values persist across multiple demonstrations by
a single informant. Keeping these rules in mind, we can link
several single-informant graphs by their beta priors and by
the state of the world to form a group demonstration (see
Fig. 1b). We can also link a number of single informant
graphs by θk and θh to form successive demonstrations from
a single informant. For multiple demonstrations, we need
not (necessarily) link the state of the world; the state of the
world is free to change from demonstration to demonstra-
tion. We can link graphs in both ways simultaneously to
form successive group demonstrations.

Modeling word learning

Epistemic trust studies generally follow a similar setup.
Children are introduced to one or more informants from
whom they receive differing data (experience) in familiar-
ization trials. Children must then choose to accept or reject
information from the informant(s). For example, a child
may be introduced to two informants and then observe that
one informant labels common objects incorrectly while the
other labels them correctly (accuracy trials). The child may
then be presented with a novel object and asked which infor-
mant he or she would like to ask for the object’s label (an
ask trial), or similarly after having observed both informants
label, the child may then be asked to label the object (an
endorse trial). Here we discuss the process by which we
model these studies.

To begin, we must make some assumptions about the
world. We arbitrarily assume that at any given labeling trial
there are four reasonable labels.2 That is, |W | = 4 and hence
there are four possible beliefs, |B| = 4. In word learning,
each action is a label and so the number of actions (labels)
is equivalent to the number of world states and number of
possible beliefs |A| = |W | = |B| = 4. We assume that the
states of the world are distributed with uniform probability.
No word is a priori more likely than any other

P(W) = 1

|W | . (8)

2We have explored the effect of increasing and decreasing the num-
ber words and found quantitative but not qualitative differences in the
model output.

These assumptions result in the following relationship
between the world and informants’ knowledgeability and
beliefs: knowledgeable informants’ beliefs match the true
label, w, while naive informants guess at random, uniformly
from among the possible labels. The probability that an
informant’s belief aligns with the true state of the world is

P(b = w|k) =
{
1, if k = knowledgeable
1/ |W | , otherwise

. (9)

As for which labels informants utter, helpful informants
shall always utter the label they believe to be correct and
unhelpful informants shall always utter a label they believed
not to be correct,

P(a|h, b) =
⎧⎨
⎩
1, if a = b and h = helpful

1
|W |−1 , if a �= b and h = unhelpful
0, otherwise

. (10)

Again, we focus on actions and ignore effects in word
learning demonstrations.

Though there are four attribute combinations based on
helpfulness and knowledgeability, this formalization cap-
tures three distinct types of informant behavior. Knowl-
edgeable and helpful informants always label correctly
because they know the correct label and want the learner
to know. Knowledgeable but unhelpful informants always
label incorrectly because they know the correct label and do
not want the learner to know. Unknowledgeable informants,
regardless of whether they are helpful, may or may not
label correctly because unknowledgeable informants must
guess labels for objects. Unknowledgeable but helpful infor-
mants produce correct labels when they guess the correct
label. Unknowledgeable and unhelpful informants produce
the correct label when they guess the incorrect label and
choose to produce the correct label as a foil. Thus it is diffi-
cult to determine whether an unknowledgeable informant is
helpful.

In familiarization trials, the model must leverage what it
knows about the world to learn about informants. In accu-
racy trials, informants label common objects, thus the true
state of the world is known. The model can then estimate
the probability with which the informant is helpful and
knowledgeable.3 This means learning the joint probability
distribution for θk and θh given a and w, p(θk, θh|a,w).

During test (ask and endorse) trials, the model must use
what it has learned about the informant to learn about the
world. Ask and endorse questions may seem superficially
similar, but they are in fact important differences. Framed in
a probabilistic context, the endorse problem is to determine
the probability of each informants’ label being correct given

3Inference in the model is performed using standard approximation
methods such as rejection sampling and Gibbs sampling. For details
see Appendix A.
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what is known about about informants in general (prior
parameters) and past experience, ξ , with informant, i:

P(endorsei ) ∝
∑
w

P (w = a|a, α, β, ξ) (11)

=
∑
w,h,k

∫∫
θ

P (w = a|a, h, k)P (h, k|θ)P (θ |α, β, ξ)dθ. (12)

Where, for notational simplicity, we collapse similar
variables and parameters such that θ = {θk, θh}, α =
{αk, αh}, and β = {βk, βh}. The probability of endorsing
informant 1 over informant 2 is,

P(endorse1,2) = P(endorse1)

P (endorse1) + P(endorse2)
. (13)

It is less obvious how to formalize the ask question. The
question again is “who would you like to choose for infor-
mation.” Because one may ask an informant for a variety of
reasons—i.e., because they are consistently wrong, because
one wants to assess their knowledge, etc.—formalizing this
question is challenging. Due to its ambiguity, we avoid mod-
eling the ask question where we can and where we cannot
we adopt the simple assumption that children choose to ask
informants who are more likely to label correctly. That is,

P(ask) ∝
∑
w,a

P (w = a|a, α, β, ξ). (14)

Inferring the label of an object given an informant’s utter-
ance is reminiscent of the referential communication and
language pragmatics literature (Grice et al., 1975; Frank and
Goodman, 2012). However, language pragmatics rely on the
assumption that speakers are cooperative; the epistemic trust
model does not require such a constraint to learn.

Previous developmental findings

Previous work employed this model to investigate possi-
ble explanations for developmental changes in epistemic
trust. The full model and a model based on reasoning
about knowledge alone were compared by searching for
the parameters that best fit children’s behavior in three
experiments (Shafto et al., 2011; Eaves & Shafto, 2012).
The results indicated that the knowledge-only model fit
three-year-olds behavior better while the full model bet-
ter fit four-year-olds’. These results are consistent with a
developmental change in children’s ability to reason about
helpfulness.

The import of the previous modeling is limited by the
fact that the model was only applied to three experiments
from the literature. To broaden the scope, it is necessary
to account for a wider set of heterogeneous studies. As a
computational theory, the basic claim of the model is that
it can explain epistemic trust behavior. That is, the model
should be able to parameterize each result (locate the result

in model space). Thus, it is reasonable to expect the model to
predict results across the domain, regardless of the method
by which they were obtained. However, it is unreasonable to
expect that all methodological details are irrelevant to how
the model will fit. Certain tasks may focus more on knowl-
edge while others may focus more on helpfulness. Similarly,
different methods of communicating—speaking, pointing,
and marking—may elicit different degrees of trust based
on past experience. While the model should explain behav-
ior across these variations, how it explains it vis-a-vis the
parameters can be expected to vary to some degree.

Of course, parameterizing the model individually in
terms of each condition may not be ideal. Many free param-
eters raises concerns about reducing generality through
over-fitting. Systematic similarities and differences among
the features of experiments, such as age or communication
mode, may be used as a bottom-up source of constraint
on the variation in parameters. Moreover, the degree of
association between the experimental features and model
parameters may provide a means by which we may quan-
tify differences in methodology or across development.
We present a method for automatically identifying such
similarities and differences in the next section.

Aggregation of parameterized results via
cross-categorization

How might we draw inferences about commonalities
and differences among a collection of parameterized
results? There are a number of possibilities, but one
especially flexible and therefore attractive approach is
cross-categorization. Cross-categorization (CrossCat) is a
Bayesian non-parametric method for estimating the full
joint probability density over tabular data (Mansinghka
et al., Accepted pending revision; Shafto et al., 2014). It
simultaneously estimates dependence among variables and,
among dependent variables, estimates dependence among
rows. For current purposes, cross-categorization represents
a method by which we can determine the probability of
dependencies between the individual model parameters—
such as helpfulness—and features of conditions—such as
age—given a table composed of a parametrization of the
results together with features of the condition. CrossCat is a
more flexible tool than standard statistical approaches, such
as various forms of regression, which force the user to iden-
tify which variables drive changes in others. Our goal is to
learn which variables drive what kind of changes in which
model parameters under what circumstances. CrossCat pro-
vides a platform to do so while seamlessly handling missing
and heterogeneous data.

CrossCat is a generalization of an infinite mixture
model (IMM; see (Teh et al., 2006); (Rasmussen, 2000);
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(MacEachern & Müller, 1998); (Neal, 2000); (Anderson,
1991), for more information on IMMs) in which features’
assignments to views and objects’ assignments to categories
within views are each inferred. Thus, CrossCat behaves as a
hierarchical mixture model, where instead of assuming that
there is only a single explanation for the variability over the
rows, there are potentially many ways of organizing, and
thus explaining the rows.

CrossCat explains a data table in terms of two main struc-
tural components: a partitioning of features (columns) into
views and for each view, a partitioning of objects (rows) into
categories. A view, Z, assigns the F features (columns) to
|V | views. The assignment of categories, V , contains |V |
partitions of the objects (rows), V0, V1, ..., V|V |−1, such that
each view V· assigns the N rows to categories for the collec-
tion of features in that view. Each view models the variation
in the features of that view as a mixture (those looking for
a detailed treatment of cross-categorization are referred to
Mansinghka et al. (Accepted pending revision)).

Each cross-categorization state (or sample) represents
core elements of probability. The partition of features into
views instantiates an inference about whether each possi-
ble pair of variables is dependent or independent. Modeling
views as mixtures allows the model to identify relation-
ships that are much more general than simple linearity. The
model, therefore, allows one to generically ask key ques-
tions of interest without strong assumptions such as linearity
or Gaussianity that can lead to interpretation problems. In
the case of epistemic trust, for example, are age and help-
fulness dependent? What is the form of that dependence?
Which experiments can be explained by a common set of
parameters and which require different parameters?

The data in each feature are modeled by a data-
appropriate statistical model. Conjugate models are typi-
cally chosen for efficiency. For example, continuous data
are modeled using a Normal distribution with a Normal-
Gamma prior (Murphy, 2007; Fink, 1994), while categorical
data are modeled using a Multinomial distribution with a
symmetric Dirichlet prior. Many other data types can be
instantiated in this framework by implementing conjugate,
semi-conjugate, and non-conjugate models, as appropriate.
The hyperparameters for priors are inferred to facilitate effi-
cient inference. This produces an unusually flexible model
suited to a wide variety of different types of data.

Consider a data table where each row represents a con-
dition of an experiment and each column represents a
feature of interest (experiment features or model param-
eters). The views would represent whether, for example,
age were dependent on the helpfulness parameters by plac-
ing those features in the same view or in different views.
Similarly, given a collection of samples, we could query
conditional distributions to answer questions about the rela-
tionship between features. For example, we could check our

previous results by asking about the relationship between
age and biases toward believing informants are helpful. In
this way, we use Bayesian inference to free the model from
the specifics of individual studies and allow for the for-
mulation of a general model that considers many possible
hypotheses.

Method

The method consists of three steps that link a domain model
(the epistemic trust model) with an analysis model (Cross-
Cat). The domain model is used to approximate the param-
eter distribution for each study, and the analysis model is
used to identify trends in the parameters induced by differ-
ent studies. The general method is as follows: First, select
studies that can be straight-forwardly modeled with the epis-
temic trust model. Second, for each condition of each study,
search for sets of model parameters that cause the epis-
temic trust model to fit the experimental data well. Third,
construct and analyze a CrossCat table in which each row
comprises the model parameters and experimental features
of each modeled condition.

We begin by explaining the process by which studies
were selected and how we determined which studies were
suitable formodeling.We then describe the procedure used to
search for well-fitting parameter sets. Last, we exhaustively
discuss the procedure by which each study was modeled and
how the model accounted for the experimental results.

Study inclusion criteria

We include for analysis studies that the epistemic trust
model can capture with no extension, or simple exten-
sion by way of existing, off-the-shelf models. In previous
research (Shafto et al., 2011), we focused on modeling three
selective trust strategies (relative accuracy (Pasquini et al.,
2007), familiarity (Corriveau and Harris, 2009), and con-
sensus (Corriveau et al., 2009)) each of which employed
the ask-endorse, forced-choice paradigm and in which infor-
mants communicated either by way of verbal testimony
(Pasquini et al., 2007; Corriveau & Harris, 2009) or pointing
(Corriveau et al., 2009). Different communication modes do
not require extensions to the model to capture; it will be
an empirical question as to how they differ in terms of the
model parameters. Different paradigms necessitate minimal
modifications, e.g., we model looking time as proportion-
ate to the inverse of the probability of the event looked at.
Thus, the inclusion criteria mainly focus on the informant-
and information-selection strategies investigated.

There are a variety of strategies that would require
involved modifications to the model and were thus omitted
(see Table 1). For example, consider studies that investigate



284 Psychon Bull Rev (2017) 24:277–306

effects of domain expertise (Koenig & Jaswal, 2011). Cap-
turing these phenomena would be quite natural within our
general framework; however, expertise would require the
model to be extended to capture how children believe
knowledge is distributed among people. This would require
multiple assumptions, and therefore expertise studies are
excluded from analyses. Another group of studies uses ver-
bal testimony by an experimenter or an additional informant
to provide information about the informants. For exam-
ple, some studies employ methods in which experimenters
explicitly tell participants that an informant is “very mean”
(Landrum et al., 2013), “a big liar” (Mascaro & Sperber,
2009), or “a dog expert” (Koenig & Jaswal, 2011). Others
have used verbal testimony about one’s own beliefs, e.g.,
“I don’t know” (Sabbagh et al., 2003; Sobel & Corriveau,
2010; Buchsbaum et al., 2012). Capturing the semantics of
these verbal statements would require additional parameters
and are therefore omitted.

We also exclude studies that investigate informant-
selection strategies driven by informants’ superficial quali-
ties. For example, studies have investigated whether infor-
mants’ attractiveness (Bascandziev & Harris, 2014), gen-
der (Taylor, 2013), or accent (Kinzler et al., 2011) affect

epistemic trust. While it is possible that learners attribute
different knowledgeability or helpfulness to informants with
certain superficial features, these features are not direct
demonstrations of informants’ data generation capabilities.
To model how learners would learn, say, that someone
dressed in a t-shirt is less trustworthy than someone dressed
in a suit (McDonald & Ma, 2015) would require making
assumptions about, and simulating, the types of life expe-
riences that lead learners to acquire such biases; or worse,
would require building the result of the experiment into the
model.

Eight new studies met our inclusion criteria. There were
three additional studies that investigated informant accu-
racy (Koenig & Echols, 2003; Fitneva & Dunfield, 2010;
Koenig & Harris, 2005). These studies differ in the amount
of experience they provide learners—ranging from one
to twelve instances of accuracy or inaccuracy—and the
method employed (looking-time and forced choice).

Two studies interleaved feedback between learner’s
guesses (Couillard & Woodward, 1999; Tummeltshammer
et al., 2014). These included studies where the indi-
vidual was repeatedly, implausibly incorrect (i.e. decep-
tive) (Couillard & Woodward, 1999) and where trust was

Table 1 A list of studies excluded from analyses and the reason for exclusion

Excluded study Reason for exclusion

Sabbagh and Baldwin (2001) Extension: Information from informants regarding their own ignorance

Birch and Bloom (2002) Extension: Familiarity principle with respect to proper name referent

Robinson and Whitcombe (2003) Extension: Deciding what makes an informant better informed and how this affects learning

Sabbagh et al. (2003) Extension: Information from informants regarding their own ignorance and confidence

Freire et al. (2004) Extension: Information from informants regarding their own ignorance and confidence

Boseovski and Lee (2006) Extension: Information from informants about the reliability of other informants

Jaswal et al. (2010) Extension: Epistemic beliefs about adults vs. children

Baum et al. (2008) Extension: Quality of explanation

Corriveau et al. (2009) Extension: Labeling vs. drawing attention

Eskritt et al. (2008) Extension: Relevance and quantity of information

Fusaro and Harris (2008) Extension: Nonverbal information from bystanders regarding others’ testimony

Kushnir et al. (2008) Extension: Information from informants regarding their own ignorance and confidence.
Perceptual access. Assistance from participant.

Mills and Keil (2008) Extension: Impartiality and interpersonal biases

Birch et al. (2010) Extension: Informant confidence

Nurmsoo and Robinson (2009) Extension: Perceptual access

Poulin-Dubois and Chow (2009) Non-epistemic: Informant excitement

Kinzler et al. (2011) Non-epistemic: Speaker accent

Sobel and Corriveau (2010) Extension: Information from informants regarding their own ignorance

Krogh-Jespersen and Echols (2012) Extension: Second–label learning

Mills and Landrum (2012) Extension: Informant perceptual capability and objectivity

Landrum et al. (2013) Extension: Information from experimenters regarding informants’ benevolence

Lane et al. (2013) Extension: Information from experimenters regarding informants’ honesty. Perceptual access.

Kim and Harris (2014) Extension: Supernatural abilities

Boseovski and Thurman (2013) Extension: Learning from informants in potentially dangerous situations
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measured in looking-time (Tummeltshammer et al., 2014),
as opposed to the standard forced-choice, ask-endorse
approach. To model these, we updated the model’s beliefs
about the knowledgeability and helpfulness of the informant
by conditioning on the feedback, w, between each trial.

In addition to the consensus experiment (Corriveau et al.,
2009) modeled in our previous work, we model two addi-
tional studies investigating consensus (Chen et al., 2012;
DiYanni & Kelemen, 2008). These are modeled as in Shafto
et al. (2011), by simply considering the probability of agree-
ment and disagreement among more than one informant.

Finally, we include a study that investigates the effect of
error magnitude on epistemic trust (Einav and Robinson,
2010). This study investigated the degree of the error, and
thus required extending the model with a notion of seman-
tic similarity. We employ an existing psychological model
of semantic relatedness (Griffiths et al., 2007; Collins &
Loftus, 1975). This extension allows the epistemic trust
model to assess both errors and their degree. Concepts that
are closer in a semantic network are more similar and errors
between similar concepts are more reasonable.

These studies are heterogeneous in terms of their fea-
tures: the ages of the children, the communication mode,
and the experimental paradigm. Ages span 8 months to
adult. Communication modes include verbal testimony,
pointing, gaze, and use of markers. Paradigms include
forced-choice (ask and/or endorse), and looking time.
Table 2 lists the set of studies included—a total of 11 studies
comprising 24 conditions.

Data preparation and model fitting

We divided the 11 studies into analysis units, which we refer
to as conditions. For example, an experiment which sepa-
rately reported results for three- and four-year-olds consists
of two conditions. This resulted in 24 total conditions. We fit
the model parameters by searching for the parameters that
best reproduced the data.

Our choice of search method is dictated by the complex-
ity of the inference problem and the heterogeneity of the
studies we model. Often the distribution of an informant’s
helpfulness and knowledgeability cannot be calculated

Table 2 List of study conditions included in analyses divided into conditions

Study strategy Age (y) Comm mode Paradigm

Tummeltshammer et al. (2014) reliable gaze .75 gaze looking-time

Koenig and Echols (2003) accuracy 1.5 verbal looking-time

Pasquini et al. (2007) relative accuracy 3 verbal ask-endorse

Pasquini et al. (2007) 4 verbal

Koenig and Harris (2005) accuracy 3 verbal ask-endorse

Koenig and Harris (2005) 4 verbal

Corriveau et al. (2009) consensus 3 points ask-endorse

Corriveau et al. (2009) 4 points

Couillard and Woodward (1999) points v. markers 3 markers ask-endorse

Couillard and Woodward (1999) 4 markers

Couillard and Woodward (1999) 3 points

Couillard and Woodward (1999) 4 points

Corriveau and Harris (2009) familiarity 3 verbal ask-endorse

Corriveau and Harris (2009) 4 verbal

Corriveau and Harris (2009) 5 verbal

DiYanni and Kelemen (2008) consensus v culture 5 (c) verbal ask-endorse

DiYanni and Kelemen (2008) 5 (a) verbal

Chen et al. (2012) consensus 4 points ask-endorse

Chen et al. (2012) 6 points

Einav and Robinson (2010) error magnitude 4-5 verbal ask-endorse

Einav and Robinson (2010) 6-7 verbal

Fitneva and Dunfield (2010) accuracy 4 verbal ask-endorse

Fitneva and Dunfield (2010) 7 verbal

Fitneva and Dunfield (2010) 19-22 verbal

Columns list the study, the age in years of the participants, the communication mode, and the optimal parameters. (c) represent WEIRD (Henrich
et al., 2010) children and (a) represents Asian children
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analytically and must be approximated. Exact calculation of
probabilities requires enumerating over each unknown vari-
able. In the case of Einav and Robinson (2010), enumerating
over possible beliefs and the binary values of helpfulness
and knowledgeability for four labeling trials leaves more
than 1017 terms to evaluate. We approximate probabilities
using Monte Carlo simulation (see Appendix A). In simpler
situations, one may employ direct fit methods that search
for local error minima by traversing the path of steepest
descent. These methods require calculating the gradient of
the probability space with respect to the parameters. For the
same reason we cannot calculate the probabilities exactly,
we cannot calculate their gradients exactly. Grid search is an
alternative technique in which a finite grid of search points
is placed over the parameter space and the target function
is evaluated at each point. We employ a randomized version
of grid search, random search (Bergstra & Bengio, 2012), in
which random points in the parameter space are evaluated.
In practice, grid search and random search perform similarly
with respect to error, but random search offers additional
flexibility in that it more easily allows us to exploit knowl-
edge of which areas of the parameter space require more
thorough search.

The random search procedure we applied involved gen-
erating a large number of parameter sets, running the model
for each experiment for each parameter set, and calculating
the errors between the model prediction and the empirical
data. We generated 4000 parameter sets from independent
exponential distributions with mean 5. That is, for each
parameter in the parameter set, {αk, βk, αh, βh} was drawn
from Exp( 15 ). We choose this specific parameter-generating
distribution because it applies higher probability to lower-
valued parameters but also represents higher values. Higher
parameters values are more robust; small changes in high-
valued parameters affect the model results less than small
changes in low-valued parameters. Note that we focus only
on the full, four-parameter model because previous research
demonstrates that a knowledge-only model, which does
not account for variable helpfulness, fails to account for
development (Shafto et al., 2011).

We searched for parameters that minimized the summed
relative error of each experiment rather than the parameters
that maximize probability because the studies report differ-
ent measures (e.g. proportions of participants and looking
times). The relative error of two values, a and b �= 0 is
the absolute value of one minus their ratio |1 − a/b|. If
a/b is 1 then a = b.4 We use relative error rather than
squared or absolute error because experiments’ dependent

4We subtract 1 from this quantity because 1 is the point that repre-
sents the zero difference between a and b. We take the absolute value
because we are not concerned with the direction of the error, only its
magnitude. The sum relative error between two n-length vectors of
values a and b is then,

∑n
i=1 |1 − ai/bi |.

measures are not always identically scaled. One experiment
may report the proportion of children who asked a particu-
lar informant for information while another may report the
number of seconds an infant looked at an informant. We use
relative error so that error is calculated similarly regardless
of the result metric employed by the study. We use the sum
of error so that the error of each data point (bar in a bar
chart) carries equal weight. An experiment with more bars
should be weighted higher for error minimization.

To construct the cross-categorization table, we took the
five5 best-fitting parameter sets for each condition and
arranged them in a table. Each row represented a sin-
gle parameter set for a condition and was augmented
with demographic features of the experiment. These fea-
tures included the mean age of participants, communication
mode, culture, and experimental paradigm. Thus, each col-
umn was a parameter or a demographic or experimental
feature of interest (see Table 3).

For ease of interpretation, we converted the model’s α

and β parameters on knowledgeability and helpfulness to
strength and balance (Kemp et al., 2007). The strength (s)
and balance (b) parameterization of the beta distribution is
s = α + β and b = α

α+β
. Balance corresponds exactly

the mean of the beta distribution and takes on values in
the open interval (0, 1). For example, a balance param-
eter on knowledgeability, bk , closer to 1 means that the
learner believes that informants are, in general, knowledge-
able while a bk closer to 0 implies that the learner believes
that informants are, in general, unknowledgeable. Strength
roughly corresponds to the invariance in beliefs and lies
in the interval (0, ∞). For example, a very high value of
sk—the strength parameter on knowledgeability—implies a
very strong belief that all people are the same—either all
knowledgeable or all unknowledgeable as determined by bk .

Modeling individual studies

In this section we explain the procedure by which each study
used for analyses was modeled and how the model cap-
tures each empirical result. This section is intended not only
for those who wish to reproduce our procedure but also for
those who seek an intuitive understanding of how the model
works.

For each study we display results given the best-fitting
parameters, and when possible, we display standard error
bars given those parameters. As we have discussed, the het-
erogeneous nature of the literature forces individual fitting.
The approach we take is distinct from the standard model-
ing approach in which a model’s validity is measured by its
fit, in which the validity of the fit is measure in terms of

5We took the top five parameter sets to capture both the best fitting
parameters and variability in fit across the parameters.
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Table 3 Structure of the prepared table used during cross-categorization

age culture comm. mode paradigm sk bk sh bh

4.98 Asian Verbal Forced-choice 16.26 0.99 8.54 0.27

4.62 Weird Verbal Forced-choice 3.90 0.29 2.05 0.30

3.3 Weird Marker Forced-choice 12.92 0.83 1.41 0.95

4.05 Weird Marker Forced-choice 6.30 0.95 13.90 0.12

3.3 Weird Points Forced-choice 7.55 0.97 8.10 1.00

4.05 Weird Points Forced-choice 7.81 0.95 5.40 0.73

4.92 Weird Verbal Forced-choice 9.11 0.06 9.90 0.00

7.0 Weird Verbal Forced-choice 18.70 0.43 6.35 0.02

3.34 Weird Verbal Forced-choice 4.45 0.24 1.65 0.64

4.42 Weird Verbal Forced-choice 1.90 0.86 0.17 0.43

5.67 Weird Verbal Forced-choice 4.78 0.78 0.24 0.17

3.5 Weird Points Forced-choice 7.81 0.74 1.98 0.32

4.58 Weird Points Forced-choice 8.90 0.85 2.97 0.43

0.67 Weird Gaze Looking-time 15.32 0.90 0.52 0.27

1.5 Weird Verbal Looking-time 22.57 0.66 7.05 0.99

6.04 Weird Points Forced-choice 2.41 0.26 1.90 0.61

4.15 Weird Points Forced-choice 20.46 0.07 7.83 0.69

3.5 Weird Verbal Looking-time 15.66 0.06 25.52 0.24

4.5 Weird Verbal Looking-time 6.80 0.91 6.01 0.20

3.5 Weird Verbal Forced-choice 0.18 0.04 3.17 0.65

4.42 Weird Verbal Forced-choice 3.38 0.96 4.18 0.08

4.44 Weird Verbal Looking-time 9.52 0.77 4.16 0.50

7.29 Weird Verbal Looking-time 36.96 0.96 3.12 0.13

20.0 Weird Verbal Looking-time 1.90 0.86 0.17 0.43

One row of five from each study is represented for demonstrative purposes. Columns correspond to strength and balance parameters for knowl-
edgeability and helpfulness, and experiment-age identifier, age in years, communication mode, and experimental paradigm. TheWEIRD acronym
(Henrich et al., 2010) indicates Western, Educated, Industrial, Rich, and Diplomatic

whether the its parameter values make intuitive sense and
whether it cross-validates. In the approach we take, these
concerns have no influence on the analysis. The model’s
ability to fit the results of individual studies is not our pri-
mary interest, but a necessary precondition for aggregating
results—to include a study in analyses, the model must
be able to account for its results. Our goal is to look at
trends in regions of fit in which the model captures exper-
imental results—regardless of where they are in parameter
space—and to determine if these trends have implications
for development.

Accuracy Koenig and Harris’ (2005) study on children’s
preference to ask for and endorse information from accurate
sources is a seminal work in the trust-in-testimony literature.
For three trials children observed two informants label com-
mon objects, e.g., a ball and a cup. One informant labeled
each object correctly and the other labeled each object incor-
rectly. After these accuracy or familiarization trials, a novel
object was placed before the informants. The child was
either invited to choose the informant whom she would like

to ask for the label (ask trial) or after having observed each
informant provide his own label, the child was invited to
label the object herself (endorse trials).

This study maps easily to inference in the epistemic trust
model. We have only to account for data that does or does
not match the state of the world. Participants observed novel
informants, thus there is no need to account a prior bias that
one informant should be more likely than the other to label
correctly. Additionally, each informants’ incorrect answers
are equally incorrect (labeling a ball as a shoe is just as fool-
ish as labeling a cup as a dog) therefore there is no need
to account for the relative magnitude of errors, which we
account for in a later section. Endorse questions are modeled
as described in the section on modeling word learning.

During accuracy trials, children learn about their infor-
mants. The model is concerned with learning the probability
distribution defining each informants’ tendency toward or
away from helpfulness and knowledgeability given the state
of the world (the object) and the label uttered by the infor-
mant. This means collecting information about k and h

given w and a.
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Fig. 2 Model simulation results for Koenig and Harris (2005). The
y-axis represents the proportion of children who endorsed the answer
given by the accurate informant, or for the model, the probability of
endorsing the accurate informant

We see the model results along side the experimental
results (Koenig & Harris, 2005, Experiment 1) in Fig. 2.
For both age groups, the model prefers to endorse the label
provided by the accurate speaker. The model infers that
an informant who always labels accurately is likely knowl-
edgeable and helpful and that an informant who always
labels inaccurately is not. In fact, an informant who repeat-
edly labels incorrectly is assumed to be knowledgeable
and unhelpful—deceptive. An unknowledgeable and help-
ful informant will produce the correct label by correctly
guessing—an informant chooses a label from a fixed set of
labels of which only one (or a few) is correct.

This preference for more accurate informants has been
documented after even a single encounter (Fitneva &
Dunfield, 2010). In Fitneva and Dunfield (2010) children
were shown an image and told a corresponding story. A
sticky note occluded part of each image. The child asked
two informants (children on a computer screen) what was
under the card. The two informants answered differently.
The sticky note was removed, revealing that one informant
had been correct and the other had been incorrect. The pro-
cedure was then repeated but the child was allowed only to
ask one informant. For this study we modeled ask questions.
The results, averaged over three experiments can be seen in
Fig. 3.6

We see that the model captures people’s preference for
the accurate informant as well as an increasing preference
with age. A theme in the literature is that the speed with
which people update their beliefs about informants given
data increases with age.

6The procedure was identical for each experiment in Fitneva and
Dunfield (2010), only the wording changed.

Fig. 3 Model simulation results for Fitneva and Dunfield (2010). The
y-axis represents the proportion of children who asked the previously
accurate informant, or for the model, the probability of asking the
accurate informant

Relative accuracy Informants are not deterministic. They
are not always correct or always incorrect; they provide
information with some amount of noise. Pasquini et al.
(2007) extended the paradigm of Koenig and Harris (2005)
to account for variable levels of relative accuracy between
informants. Children were introduced to two informants
who labeled four common objects with variable accuracy.
Informants labeled either 100 %, 75 %, 25 %, and 0 % accu-
rately, corresponding to four, three, one, and zero of four
objects correctly labeled, respectively. There were four con-
ditions 100 % vs 0 % accurate, 100 % vs 25 % accurate,
75 % vs 0 % accurate, and 75 % vs 25 % accurate. For
example in the 100 % vs 25 % accurate condition, the child
observed one informant label each object correctly and the
other label only one of the four objects correctly. After accu-
racy trials, a novel object was placed before the child who
then participated in ask and endorse trials.

The model shows a preference for the more accurate
informant (Fig. 4). We see a tiered effect in both three-year-
olds’ behavior and model prediction. In previous research,
we found that 3-year-olds’ behavior is best represented by a
model with a strong bias toward believing all informants are
helpful (Shafto et al., 2011). This means that the model pre-
dicts three-year-olds’ inferences about informants primarily
based on knowledgeably. Informants are either knowledge-
able or not. An informant who always labels correctly is
knowledgeable, all other informants are not. This causes dif-
ficulty in creating a grading between the different accuracy
levels.

The model predictions show a rather different trend for
four-year-olds. The results closely follow the data, plateau-
ing where there is a 75 % difference in relative accuracy
between informants.
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Fig. 4 Model simulation results for Pasquini et al. (2007). a Three-
year-olds. b Four-year-olds. The y-axis represents the proportion of
children who endorsed the answer given by the accurate informant,

or for the model, the probability of endorsing the accurate informant.
Error bars represent standard error

Familiarity Corriveau and Harris (2009) investigated the
interaction between familiarity and accuracy. For their
study, Corriveau and Harris (2009) chose children’s
preschool teachers to play the role of familiar infor-
mants. Familiarity is formalized as prior experience. In
this case specifically, because the familiar informants were
teachers—not tricky uncles—we modeled familiarity as
experience demonstrating helpfulness and knowledgeabil-
ity. This manifests mathematically as an altered prior. This
manipulation is straight forward to implement as a beta dis-
tribution posterior update. As a demonstration, assume that
we have witnessed an informant be helpful twenty times
and unhelpful once. Given a base prior of beta(αh, βh) the
posterior distribution is simply beta(αh + 20, βh + 1). We
used this procedure for both knowledgeability and helpful-
ness. The result is a strong bias and requires more data to

override than the presumably weaker bias for an unfamiliar
informant.

Before any familiarization or accuracy trials, children
were given ask and endorse questions to gage their nat-
ural preference for the familiar informant (pretest). Chil-
dren were then given four familiar object labeling tri-
als in which the familiar informant labeled each object
accurately and the novel informant labeled each object
inaccurately (familiar 100 %) or in which the converse
occurred (novel 100 %). If children hold a more biased
belief that their teacher is helpful and knowledgeable,
they should prefer to ask and endorse their teacher at
pretest. Observing the teacher label common objects cor-
rectly should reinforce this bias and observing her label-
ing them incorrectly should work to relax or reverse the
bias.

Fig. 5 Model simulation results for Corriveau and Harris (2009). a
Three-year-olds. b Four-year-olds. c Five-year-olds. The y-axis repre-
sents the proportion of children who endorsed the answer given by the

familiar informant, or for the model, the probability of endorsing the
familiar informant. Error bars represent standard error
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We see in Fig. 5 the model captures trends across several
ages but fails to capture the sharp reversal made by five-
year-olds when the familiar informant labels inaccurately in
the novel 100 % condition. A possible reason for this is that
to minimize complexity we have applied the same famil-
iar prior for each age group. It is reasonable to assume that
children of different ages have different experiences with
their teachers or handle familiarity in a more flexible way.
Whether this holds true is an question for future research.

Consensus Corriveau et al. (2009) looked at children’s
preferences for members of a group over rogue dissenters.
For four trials, three novel objects were laid out before a
group of four informants. On each trial an experimenter
asked “Which is the [novel object label]”, after which, each
informant pointed simultaneously to an object. Three infor-
mants pointed to the same object and the other pointed to
a different object. On each trial the same informants agreed
and the same informant dissented. It is important to empha-
size that informants testified through pointing rather than
vocalization. We did not model points differently than ver-
bal communication. After these group (pretest) trials chil-
dren observed as two of the informants, one of whom had
belonged to the agreeing group and the dissenter, labeled
additional novel objects (test trials). Children again chose
the object that they believed corresponded to the label.

We see the model results in Fig. 6a, b. Because the
objects were novel, children could not leverage their knowl-
edge of the world to learn about informants. However, the
fact that children learned from a group of informants label-
ing the same objects provides extra power not only for

learning about novel objects but learning about informants
as well. In the case of a group consensus we can exploit
informant dynamics. In general, it is unlikely for multiple
independent informants to repeatedly converge on the same
object unless they are both helpful and knowledgeable. This
leads logically to the conclusion that our dissenter is either
unknowledgeable, unhelpful, or both; and that the agreeing
informants are pointing at the correct object.

As a simple illustration of why this is so, let us categorize
informants into two groups: reliable and unreliable. Further
assume that reliable informants always point to the correct
object and that unreliable informants point uniformly at ran-
dom. We assume that informants are reliable and unreliable
with equal probability. Given three objects to choose from,
the probability that three reliable informants converge on the
same object is 1, the probability that three unreliable infor-

mants converge on the same object is

(
3
1

)(
1
3

)3 = 1
9 . The

probability that unreliable informants converge on the same

answer for four trials is then
(
1
9

)4 = 1
6561 .

Things are not so black and white in the model so this
effect is softened. In the model, informants are not so neatly
categorized as reliable and unreliable. There are different
degrees and sources of unreliability that bring about dif-
ferent types of unreliability, e.g. the difference in behavior
between unknowledgeable and unhelpful informants. This
additional uncertainty is reflected in the results by a less
distinct preference to choose with the group at pretest and
the informant from the group at test. Additionally, the cer-
tainty of these inferences is dependent to an extent on
prior beliefs about informants. The higher the prior toward

Fig. 6 Model simulation results for Corriveau et al. (2009) and Chen et al. (2012). a (Corriveau et al., 2009), three-year-olds. b (Corriveau et al.,
2009), four-year-olds. c (Chen et al., 2012) Younger and older groups
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knowledgeability and helpfulness, the higher the probabil-
ity that agreeing informants are knowledgeable, helpful, and
correct. This of course assumes uniform probability over
labels. It is possible that there may be some wrong belief
with a high prior probability that unknowledgeable infor-
mants could converge on (for example, that in the time of
Christopher Columbus it was common knowledge that the
Earth was flat).

We also modeled the results of Chen et al. (2012) which
reproduced the pretest (group) trials of Corriveau et al.
(2009) with different age groups. The model procedure
was identical. The results can be seen in Fig. 6c. Again,
the model captures a bias toward choosing with the group,
which appears to increase with age.

Culture It is not enough to demonstrate that a model fits
data; the model should fail to capture results outside of its
scope. Here we demonstrate how our epistemic trust model
fails to account for non-epistemic, cultural behavior.

DiYanni and Kelemen (2008) looked at culture effects in
children’s deferring to consensus. Children observed three
informants choose a tool to crush a cookie. The tool was
either functionally affordant (hard plastic) or non-affordant
(a mass of plush, fuzzy balls). Each of the three informants
had a cookie in front of them. The first informant selected
the affordant tool and tapped the cookie twice with it then
repeated the procedure with the non-affordant tool. The
cookie remained intact. The informant then held the non-
affordant tool and said “This is the one I would need”. This
process was repeated with the other two informants. Chil-
dren were then asked which tool would be best for crushing
the cookie. A similar condition was conducted but with a
single informant. The hypothesis was that children in both
culture groups would similarly reject the advice of a single
informant claiming that the non-affordant tool was best, but
that for cultural—not epistemic—reasons Asian-American

children would be less likely to dissent from the group.
For modeling purposes we treat this task as equivalent to
labeling. The effect is the same in each case, the cookie
remains intact, and can be ignored. Informants explicitly
label the non-affordant tool as “the one I would need”,
which we interpret as a novel object labeling task in which
one of the objects is “the best for crushing cookies”. Chil-
dren’s bias for the affordant tool plays a major role and so
we modeled the bias based on previous research using the
same tools in which “[. . . ]89 % of 3-4-year-olds choose to
use the Functionally-Affordant tool over the Non-Affordant
tool to crush a cookie when both tools are modeled with
equal intention” (DiYanni & Kelemen, 2008; DiYanni et al.,
2015). The prior probability on w was left uniform because
both tools are equally novel, but P(b|¬k, w) was altered
such that an unknowledgeable informant should guess the
affordant tool was best 89 % of the time.

Both groups of children were equally likely to dismiss the
advice of a single informant, but Caucasian-American chil-
dren more often rejected the advice of the consensus than
did the Asian-American children. DiYanni and Kelemen
(2008) suggest that this result stems from a cultural stigma
with respect to deviancy in the Asian community. The model
can only venture to capture these results as modified prior
beliefs (see Fig. 7).

The model captured American-Caucasian children’s dis-
agreement with both the single informant and the group
but fails to capture Asian-American children’s agreement
with the group. The model fundamentally fails to capture
Asian-American children’s behavior. The study noted that
Asian-American children’s conformity is likely a symptom
of their avoiding appearing deviant (DiYanni & Kelemen,
2008)—not an epistemic goal.

It is important that the model fails to capture this result
because the result is non-epistemic. This result illustrates
that the model has limitations; it cannot explain all pat-
terns of results. It is likely that group membership studies

Fig. 7 Model simulation results for DiYanni and Kelemen (2008). a Caucasian children. b Asian Children. Error bars represent standard error
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do not capture differential learning but simply the effect
of social norms. Other research would suggest that chil-
dren have no difficulty in appeasing a group of seemingly
unreliable informants, but do not allow it affect their learn-
ing. Corriveau and Harris (2010) demonstrated that though
children may appear to defer to a group whose consen-
sus violates their own perceptions (in the study, the group
agreed a shorter line was longer than a longer line), chil-
dren rely on their own perceptions when solving a pragmatic
task. Though children agreed with the group that a shorter
line was the longest, children then used the longest line to
construct an adequate bridge to help a bunny cross a gap.

Deceptive pointing and marking In Couillard and
Woodward (1999)’s study on children’s interpretation of
deceptive points, a child plays a game of Two Cup Monte
with an informant. Behind a screen, the informant hides a
sticker under one of two cups. The screen is taken away
and the informant points to one of the cups. Children’s
job is to choose the cup under which the sticker is hid-
den. For each time children choose correctly they get to
keep the sticker. This procedure repeats for ten trials. On
each trial the experimenter indicates the empty cup. We
assume that a point acts as a label and we assume that
the informant is knowledgeable because children observe
the informant place the sticker (though they do not observe
under which cup). The knowledgeability bias is applied to
the prior. Children receive feedback after each trial. The
experiment is iterative. Each trial consists of an endorse
question (choose to endorse or reject the informant’s tes-
timony) and a subsequent familiarization demonstration in

which the child is given information regarding the verac-
ity of the informant’s testimony. Because the bias toward
knowledgeability has been strongly influenced by the infor-
mant’s hiding the sticker, children must make inferences
primarily through inferences with respect to helpfulness.
The informant knows the location of the sticker but does not
want learners to know. Children at three-years-and-three-
months of age were more often fooled by the informant than
children closer to four-years of age.

The experiment was repeated with a markers condition in
which the informant placed a marker to indicate a cup rather
than pointing to it. Younger children were far more likely to
choose the correct cup in the markers condition. We make no
fundamentally differentmodeling assumptions to capture this
result, but allow it to manifest as an alternate parameter set.

Figure 8 shows the proportion of children who chose the
correct cup (the cup not indicated by the informant) aver-
aged across the first four and last four trials. We see that the
model captures the rate of learning. At each trial the learner
is given extra information about the informant which it uses
to learn about the world. The informant is reliably inac-
curate. An informant who repeatedly labels incorrectly is
likely deceptive. Because a deceptive informant never labels
correctly, the model infers that the opposite cup is more
likely. Younger children have a stronger belief that infor-
mants are helpful. A stronger belief requires more data to
overcome, thus we see that younger children more often
choose with the informant, though they choose with the
informant less as trials progress.

Error magnitude Einav and Robinson (2010) looked at
the effect of error magnitude on children’s informant pref-
erences. For example, labeling a lion as a tiger is a smaller

Fig. 8 Model simulation results for Couillard and Woodward (1999).
a Points. b Markers. The x-axis shows the trial number collapsed into
blocks. The y-axis displays the proportion of children who choose the

cup opposite the cup indicated by the informant, or for the model, the
probability that the marker is in the cup opposite the cup indicated by
the informant
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Fig. 9 Model simulation results for Einav and Robinson (2010).
a Four- and five-year-olds. b Six- and Seven-year-olds. The x-axis
displays the accuracy condition. The y-axis shows the proportion of

children who endorsed the answer given by the lower-magnitude-
error informant, or for the model, the probability of endorsing the
lower-magnitude-error informant

magnitude error than labeling a lion as a mouse or a clock.
The structure of the study was nearly identical to that of
Pasquini et al. (2007). Children observed two informants
label common animals for four trials. On each trial after
the first, both informants labeled incorrectly but one infor-
mant produced higher magnitude errors. For example, given
the labels “dog”, “tiger”, “horse”, and “butterfly”, the more
accurate informant provided the labels “dog”, “lion”, “cow”,
and “bee”, while the less accurate informant either provided
the labels “dog”, “mouse”, “fish”, and “cat” (animal-animal
condition) or “dog”, “clock”, “fork”, and “car” (animal-
object condition).

Some words are more prevalent than others. If one was
asked to provide a word starting with the letter ‘A’ one may
be more likely to respond ‘Apple’ than ‘Appendectomy’. To
capture that some labels are more inappropriate in response
to certain cues, we must formalize a meaningful relation-
ship between words. Griffiths et al. (2007) had success using
semantic networks and pagerank (Page et al., 1999; Sloman
et al., 1998).

The lexicon can be organized into a network where
associated words share links. We can represent a network
containing nwords as a n×nmatrixLwhereLij is 1 if there
is a link from word j to word i and 0 otherwise. Pagerank
captures that important words have more incoming links
and that importance travels along these links. Pagerank is
thus recursively defined: important nodes have more links
incoming from important nodes. IfM is a matrix whereMij

is the total proportion of importance that travels throughLij ,
then

Mij = Lij

/
n∑

k=1

Lkj , (15)

and Pagerank is the solution for r in the recursive equation,

r = Mr. (16)

Now that we have defined a prior probability distribu-
tion on cues, p(cue), we must define a sampling distribution
(likelihood) for labels given cues, p(label|cue) which is
exactly P(b|¬k, w):7 the probability of an unknowledge-
able informant believing a particular label given the cue, w.
For this we apply the idea of spreading-activation (Collins
and Loftus, 1975) in which activation—which is directly
analogous to importance—flows from node to node in the
network. We can construct an activation-based sampling
distribution by assuming that the probability of a label given
a cue is determined by the minimal path length from the cue
to the label in the network. That is, the closer the label is
to a cue in a network, the higher its probability. More for-
mally, if we assume that activation decays at the same rate
across every edge, then for the set of edges, D, that defines
the minimal path from cue to label, the probability of label
given cue is,

P(label|cue) ∝ γ |D|, (17)

where |D| is the number of links in the path (|D| = 0
if label = cue) and γ ∈ [0, 1] is a decay constant cap-
turing that activation decreases as a function of distance.
We arbitrarily chose γ = .5, which corresponds to los-
ing half of the signal at each jump. This formalization of
the belief probabilities implies that low-magnitude errors
are most indicative of a helpful, unknowledgeable infor-
mant while high-magnitude errors are most indicative of
unhelpful informants. A knowledgeable informant knows
the correct label, an unknowledgeable informant is likely to
guess a close label; in both cases, unhelpful informants will
choose a label to lead learners away from their own beliefs:
a label distant from the true label or distant from a close
label.

7¬k is the negation of k or not knowledgeable.
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The network used here was constructed from the Uni-
versity of South Florida free association norms database
(Nelson et al., 2004), which comprises free associations for
5019 cue words. We only included words that were both
cues and responses, leaving 4870 words. Links were cre-
ated from targets to responses. We used the python package
NetworkX (Hagberg et al., 2008) to construct the network,
find minimal paths, and calculate pagerank. This allowed us
to model the study using the exact words used in the study
rather than word analogs as we did in the previous studies.
For example, given this model we can ask for the probability
that an informant is knowledgeable and helpful given that
she labeled a lion as a tiger, P(k, h|a = tiger, w = lion),
instead of asking about a label indicies, P(k, h|a = 0, w =
1), or simply whether a label does not match the true state of
the world, P(k, h|a �= w). It should be noted that the free-
association database records responses given to text cues
and not visual cues, which were used case in the study.

The experimental results (see Fig. 9) indicate that four-
and five-year-olds do not exhibit a preference for either
informant, but six- and seven-year-olds prefer informants
who produce lower-magnitude errors. Higher magnitude
errors are a better indication of naivety or unhelpfulness
than lower magnitude errors. Unknowledgeable, helpful
informants should guess a label close to the target and then
produce a label that is close to the guessed label.

Looking time The epistemic trust model is easily adapted
to account for looking time paradigms. The primary hur-
dle is the mapping from probability to looking time. We
assume that the time spent looking at an event is inversely
proportional to the probability of that event. We are aware
of recent work that suggest looking time follows a U-shaped
function whereby infants look longer at moderately improb-
able events and less at extremely probable or improbable
events (Kidd et al., 2012). Recent work has successfully
modeled this phenomenon (Piantadosi et al., 2014), but
adopting this model requires more than doubling the num-
ber of free parameters in our model, which we believe adds
unjustifiable complexity.

We model Koenig and Echols (2003, Study 1) in which
18-month-olds observe novel informants label common
objects, displayed on a screen, either correctly (true labels
condition) or incorrectly (false labels condition) for twelve
trials. At each trial the number of seconds infants looked
at the informant, the object, and their parents (on whose
lap they sat) was recorded. We model only the time spent
looking at the informant because the model most fluidly
produces the probability of an informant producing a spe-
cific label given a specific target. Koenig and Echols (2003)
report the mean looking time over trials. We report the mean
inverse probability scaled arbitrarily. It is important to note
that the parameter fit for this particular experiment was

achieved by minimizing the error of the proportion differ-
ence between the time spent looking at each informant in
both the accurate and inaccurate conditions. For example, if
infants in the true labels condition looked at the informant
for an average of 4 seconds and infants in the false labels
condition looked at the informant for an average of 7.5 sec-
onds, the proportion difference is 7.5/4 = 1.875. If the
mean inverse probabilities for the true and false labels con-
ditions are 1.2 and 3.8, respectively, then the relative error is
|1−(3.8/1.2)/(7.5/4)| = 0.69. We use this method because
we are interested only in the trend from one condition to
the other; we make no attempt to find the scaling constant
that maps inverse probability to seconds. In this way, we can
capture the trend without adding complexity.

Apart from the looking-time modifications, the rest of the
workings are identical to those we used to model (Pasquini
et al., 2007). The results can be seen in Fig. 10. We plot sec-
onds beside inverse probability arbitrarily scaled. The model
captures that an informant labeling common objects cor-
rectly is less surprising than an informant labeling common
objects incorrectly.

Gaze following Tummeltshammer et al. (2014, Experiment
1) investigated 8-month-olds’ learning from informants
using a gaze-following paradigm. The researchers employed
eye-tracking technology to record infants’ eye movements
in response to gazes made by reliable and unreliable faces.
For each face type, infants participated in four blocks of four
familiarization trials. In each trial, a woman’s head appeared
in the center of a black screen. In each of the four corners of
the screen were empty boxes (squares). At the beginning of
each trial the head looked at the infant, said “Wow, look!”,
and turned to look at one of the four corners, at which time

Fig. 10 Model simulation results for Koenig and Echols (2003). On
the Y axis is the mean time in seconds infants spent looking at the
informant across trials and for the model, the mean inverse probability
of the informants actions across trials
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Fig. 11 Model simulation results for Tummeltshammer et al. (2014). Error bars represent standard error

an animal noise sounded and its respective animal appeared
in one of the boxes. Reliable faces always preemptively
looked at the box in which the animal appeared and unre-
liable faces preemptively looked at the box in which the
animal appeared only 25 % of the time. Each square had a
distinct animal and the heads only ever looked at two of the
four boxes, that is, there were two boxes in which an animal
never appear and which were never looked at. After famil-
iarization trials, infants participated in two different kinds of
target trials: test and generalization. On test trials, the head
looked at a box it had previously look at. After a short delay
an animal sound played but no animal appeared, instead the
corner boxes flashed. The same procedure repeated for gen-
eralization trails but the head looked at one of the boxes it
had never looked at before—the hypothesis, in both cases,
being that if such young infants are sensitive to informant
reliability, infants who observed the reliable head should
be more likely to follow its gaze. In both target trial types,
infants looked at the box indicated by the reliable informant
far more than the others boxes. Infants looked at the box
indicated by the unreliable informant at chance.

From a modeling standpoint this study was difficult to
capture, not because there is something about it that is
inherently difficult to capture, but because the information
supplied in the publication does not provide sufficient infor-
mation to account for all the relevant details.8 Before the
experiment began, infants participated in a number of cali-
bration trials during which objects appear in the corners and
center of the screen. It is possible that these trials affected
infants’ beliefs about where objects should appear on the
screen and hence their learning during familiarization. As an
illustration: assume that during calibration infants cumula-
tively observe ten objects appear in each of the four corners.

8We requested, but were not able to obtain data from the authors.

We capture the likelihood of an object appearing in a given
corner with multinomial distribution with Jeffery’s prior,

P(corner) ∼ Dirichlet

(
1

2
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1

2
,
1

2
,
1

2

)
, (18)

which is the probabilistic way of establishing a loose, uni-
form belief that objects are equally likely to appear in any of
the four squares. After calibration and posterior probability
updates we have

P(corner)∼Dirichlet

(
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+10,

1

2
+10,

1

2
+10,

1

2
+10

)
, (19)

which amounts to a very rigid uniform belief and which
slows future updating—that is to say that each subsequent
observation less affects the predictive probability of a spe-
cific event. Assuming that infants update their beliefs about
objects and corners on each trial, an infant who receives
the above calibration trials will attribute a predictive prob-
ability of 0.362 to an object appearing in one of the two
never-before-indicated boxes on generalization trials where
an infant with no calibration trials would attribute a proba-
bility of only 0.056 to the same event. We ignored this sort
of posterior updating because the study provides insuffi-
cient data and, as we have demonstrated, subtle differences
in calibration assumptions can lead to dramatically different
results. We assume that infants held a uniform probability
over objects to corners for the duration of the experiment.
It should be noted that there was a qualitative difference
in infants’ behavior in the two target trials that could be
explained by updating beliefs about objects and corners. It
appears that infants followed the reliable head’s gaze to the
cued box more in generalization trials than they did in test
trials and followed the unreliable head’s gaze less in gen-
eralization trials than they did in test trials (see Fig. 11). If
infants are looking for the box with the animal and an unre-
liable informant looks toward a box in which an animal has
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never appeared, children should look less because at base-
line it is unlikely for an animal to appear there. A reliable
head’s gaze, to an extent, overrides the low prior probability
of an animal appearing in that corner.

Another issue is trial ordering. Just as beliefs about
corners and objects propagate across trials, so too do
beliefs about informants. The study was conducted using a
between-subjects design. The order of the boxes in which
the animals appears and—we assume—the order of the tri-
als during which the unreliable informant looked at the
correct object were counterbalanced. It is computationally
intractable to average over many orderings for an experi-
ment of so many trials, and because we do not have the
exact trial orders of each participant, we cannot use approxi-
mation methods to capture individuals’ behaviors (e.g. win-
stay, lose-shift (Bonawitz et al., 2011)). We modeled each
condition—reliable and unreliable—separately and chose a
single order for the unreliable condition (that the face looked
at the correct box on the second trial of each block).

Infants’ likelihood of looking at the box indicated by the
face was modeled using the same process as modeling an
endorse trial. The infant should expect an animal to appear
in the box indicated by the face if the face is likely to cor-
rectly label (via its gaze) that box as “the box that is going
to have the animal in it”. In Fig. 11 we report the model
results.9

We see that the model captures infants’ preference to fol-
low the reliable face’s gaze and to look other than where the
unreliable face gazes. Again, there is a qualitative (though
not statistically significant) difference in the results for the
test and generalization trials for unreliable faces. Infants
seems to look uniformly in the test trials (Fig. 11a) and seem
to look other than where the unreliable face looks in general-
ization trials (Fig. 11b). Because we have ignored posterior
updating with respect to object locations, these two target
trials are indistinguishable to the model.

Results

An especially novel aspect of this work is in integrating
results across experiments. We proceed by conducting an
analysis using CrossCat. Once CrossCat has inferred a joint
probability distribution over the data table, the bulk of the
work is done; we need only ask CrossCat what it has learned.
We refer readers who are more familiar with significance tes-
ting and who may wonder why we chose not to use
analogous significance test to Appendix C for a concrete
example.

The first question relates to dependence among the vari-
ables. Previous research has debated what explains changes

9Tummeltshammer et al. (2014) did not report their means and did not
provide them on request so we used the ruler-to-bar-chart method to
approximately measure them.

in children’s behavior with age: changes in reasoning about
knowledgeability, or changes in reasoning about helpful-
ness? Figure 12 (left) presents a dependence probability
matrix where each row and column entry, (i, j), represents
the probability that variables i and j share a dependence
(for details on calculating dependence probability and con-
ditional distributions under CrossCat, see Appendix B or
Mansinghka et al. (Accepted pending revision)). Pairs of
variables for which changes in one tend to be associated
with changes in the other are said to be dependent. As a ref-
erence point, the expected dependence probability (before
effects of the data), derived from the CRP with parameter α

where α ∼ Exp(1) is roughly 0.596 (for the full derivation
of this quantity see Appendix B). The dependence proba-
bility matrix is used as a way to explore which variables
have interesting relationships. The higher the dependence
probability between two variables, the more likely it is
that the variables are mutually predictive. Because Cross-
Cat learns a joint distribution over the entire dataset, we can
try to predict any variable using any other variable but if
the dependence probability between those variables is low,
the two variables may not hold much information about
each other; and if the dependence probability between two
variables is zero, they have zero mutual information. The
dependence probability matrix gives us a way to quickly
determine which variables are likely to have interesting
relationships that warrant more in-depth exploration.

In our model, the dependence probability between col-
umns is generally high. The lower right-hand area of the ma-
trix shows that the strength parameter for helpfulness and
age are highly dependent and that both helpfulness param-
eters are highly dependent with communication mode. In
contrast, both knowledgeability parameters show minimal
evidence for dependence with age. Thus, the model indi-
cates that age-related changes in behavior on epistemic trust
tasks are related to changes in children’s reasoning about
helpfulness.

Because the dependence probability matrix suggests a
dependency exists between the helpfulness variables and
age, we may investigate the form of these dependencies.
How does children’s reasoning about helpfulness change
with age? We can form predictions about one variable based
on different values of a second variable. To investigate the
relationship between age and helpfulness we compute the
distributions for the strength and balance parameters on
helpfulness given a set of age groups, i.e. P(sh|age =
{1.5, 3.5, 4.5, 5.5}) and P(bh|age = {1.5, 3.5, 4.5, 5.5}).
The resulting distributions are multimodal, so we display the
full distributions rather than report standard summary statis-
tics, which are largely useless in this case. For example, the
mean and variance of the data are sufficient to summarize
normally-distributed data because a single normal distribu-
tion is parametrized in terms of a mean and a variance, but
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Fig. 12 The dependence probability matrix resulting from cross-
categorization. Each cell, [i, j ] of the table represents the probability
of dependence between columns i and j . Probability is represented

by shade. The lighter the shade, the lower the probability of depen-
dence. Numerical dependence probabilities values are displayed in
their respective cells

they are not sufficient to describe data from a mixture of
many normal distributions.

Figure 13a, b shows the results for balance and strength,
respectively. The mass of balance for helpfulness (see
Fig. 13a) for 18-month-olds rests heavily to toward 1 indi-
cating that the model explains their behavior via an assump-
tion that people are in general helpful. From 18 months
through 5.5 years there is a shift through a more uniform
(flat) distribution to a peak at a more neutral position. This
suggests that the data are explained by an increasing belief
that not everyone is helpful.

We see a similar trend in the strength of helpfulness.
Younger ages have higher mean strengths, which, together
with the balance parameter result, indicates more rigid
beliefs that everyone is helpful. With age, the strength
relaxes to a lower value. Lower strength indicates greater
flexibility, indicating a non-rigid belief that people are either
helpful or not. Thus, the model captures younger chil-
dren’s behavior by attributing higher, more rigid prior biases
toward helpfulness.

We calculated similar distributions for knowledgeability
parameters but saw no marked age differences (see Fig. 13c
and d). The shapes of the distributions for each age group
are essentially the same, suggesting no evidence for devel-
opmental changes in reasoning about knowledgeability.

The dependence probability matrix (Fig. 12) showed that
communication mode was dependent with the helpfulness

parameters. Previous empirical research has observed dif-
ferences in behavior based on different communication
modes. For example, Couillard and Woodward (1999)
found that children who received communication in the
form of marker placement were less susceptible to infor-
mants’ misinformation that those who were communi-
cated to through finger points (Jaswal and Neely (2006)
found similar results exploring different communication
modes). Querying the helpfulness parameter distributions
given different communicative modes allows investigation
of how the model captures differences across communica-
tion modes. Figure 14 shows the conditional distribution
of helpfulness parameters based on each communication
mode. The results show that the model explains behav-
ior resulting from communication using markers differently
than the others communication modes. Marker placement
(in green) is captured with a bimodal distribution and fur-
ther investigation reveals that the each mode corresponds
to an age group (see Fig. 14c). The high-balance mode
corresponds to three-year-olds and the low-balance mode
corresponds with four-year-olds. The other communications
modes induce more unimodal distributions. This is broadly
consistent with the idea that labeling, pointing, and gaze are
ostensive cues that may be strongly associated with helpful
communication (Gergely et al., 2007; Topal et al., 2008).
However, given that this result is based on a single study
(Couillard & Woodward, 1999), some caution is warranted



298 Psychon Bull Rev (2017) 24:277–306

in this interpretation of the differences in epistemic trust
using ostensive and non-ostensive cues.

Discussion

The model predicts that development is driven by changes in
children’s understanding of helpfulness in part because we
have modeled studies that explicitly demonstrate the devel-
opment of the understanding of helpfulness (e.g. (Couillard
&Woodward, 1999)). Couillard and Woodward (1999) pro-
vided children with demonstrations of an informant behav-
ing inconsistently with her knowledge, which is only po-
ssible in the epistemic trust model if helpfulness is represen-
ted. An informant who knows that the sticker is under cup A,
but indicates cupB must not be helpful in conveying
her knowledge. The more flexibly children represent

helpfulness, the quicker they can learn to choose the oppo-
site cup.

Younger children’s slower updating in response to inac-
curate labels may also be attributed to a lack of under-
standing of variable helpfulness. Older children update their
trust more quickly than younger children. A four-year-old
who observes an accurate label from informant A but an
inaccurate label from informant B, is more likely to prefer
informant A than a a three-year-old (cf. (Koenig & Harris,
2005); (Pasquini et al., 2007); (Fitneva & Dunfield, 2010)).
In the epistemic trust model, helpfulness is a more predictive
informant attribute than knowledgeability. This means that
knowing only about informants’ helpfulness provides more
information about the veracity of their testimony than know-
ing only about their knowledgeability. Given two informants
with unknown knowledgeability, an known unhelpful infor-
mant will produce correct labels less often than a known

Fig. 13 The conditional probability distributions of helpfulness and
knowledgeability parameters given age. The distributions for ages
1.5 (blue), 3.5 (green), 4.5 (red), and 5.5 (teal). a Averaged condi-
tional probability distribution of helpfulness’s balance parameter. b

Averaged conditional probability distribution of helpfulness’s strength
parameter. c Averaged conditional probability distribution of knowl-
edgeability’s balance parameter. d Averaged conditional probability
distribution of knowledgeability’s strength parameter
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Fig. 14 The marginal conditional distribution of helpfulness’s balance
distribution (a) and strength distribution (b) given each communication
mode. In blue: verbal, in green: marker placement, in red: pointing; in

teal: gaze. c The distributions of helpfulness’s balance parameter given
that the informant communicated via marking and the informant for
3.3-year-olds (solid line) and 4.3 year-olds (dashed line)

helpful informant. Assuming that there are n possible labels
for an object and that the probability of guessing the correct
label is 1/n, the helpful informant will produce the correct
label n + 1 times more often than the unhelpful informant.
Under the same assumptions, but not knowing the infor-
mants’ helpfulness, the known knowledgeable informant
will produce the correct label only n/2 times more often
than the known unknowledgeable informant. Thus know-
ing an informant’s helpfulness reduces one’s surprise at the
outcome of a label more so than knowing an informant
knowledgeability.10

Any predictions made by the model will reflect these
properties. The model indicates that younger children rep-
resent helpfulness, but are highly biased to believe that
all informants are helpful. This implies that children can
learn that informants can act in ways inconsistent with their
model (relax their biases); thus the more a child observes
informants acting unhelpfully, the better that child should
perform on helpfulness-oriented tasks. This leads to the pre-
diction that a child with more experience with unhelpful
informants should perform better on epistemic trust tasks.
For example, younger children who attend preschool or day-
care, or have older siblings should perform similarly to
older children who spend more of their time around only
their caregivers. This suggests that researchers should col-
lect more demographic information and conduct analyses
grouped by experiential variables rather than age.

General Discussion

Research in cognitive development routinely emphasizes
the importance of other people in learning about the world.

10As defined in terms of conditional entropy. The conditional entropy
between two random variables X and Y , H(X | Y ) is the amount
of information needed to describe X if Y is known, H(X | Y ) =∑

i,j p(xi | yi)p(yi) log p(xi | yi). H(X | Y1) < H(X | Y2) implies
that knowing Y1 tells us more about X than does knowing Y2.

While a considerable amount of research has investigated
the bases on which children decide epistemic trust, pre-
cise theories of the basic phenomenon and how it develops
have been limited. Researchers have interpreted their results
in terms of updating beliefs about informants’ knowledge
(Pasquini et al., 2007; Corriveau et al., 2009; Corriveau &
Harris, 2009), theorists have discussed whether epistemic
trust is rational (Sobel & Kushnir, 2013), and philosophers
have formalized accounts based on reasoning about infor-
mants’ knowledgeability only (Bovens & Hartmann, 2004).

More recently, computational (Shafto & Goodman, 2008;
Butterfield et al., 2008), theoretical (Sperber et al., 2010),
and empirical accounts (Mascaro & Sperber, 2009; Heyman
& Legare, 2013; Koenig & Stephens, 2014) have proposed
that a complete theory of epistemic trust requires reasoning
about both informants’ knowledgeability and intent. Shafto
et al. (2011) proposed a computational model and applied it
to three studies from the literature, finding that an account
based on knowledge and intent best explained four-year-
olds’ behavior. They also found that there were developmen-
tal changes in reasoning, and that these changes were in rea-
soning about intent rather than knowledgeability. However,
the import of this evidence is limited by the need to limit con-
sideration to only three studies, which ensured uniformity
in methods, ages, etc. necessary for the model fitting.

We have proposed a computational framework for inte-
grating results from heterogeneous studies and used it to
model the development of epistemic trust. The framework is
based on parameterizing results in model space and analyz-
ing the parametrized results alongside demographic features
of the studies, allowing heterogeneous studies to be included
and the heterogeneity to be analyzed without requiring arbi-
trary assumptions from the analyst as to how to partition
the data. Our results confirm and quantify previous argu-
ments claiming that reasoning about both knowledgeability
and intent play a role in epistemic trust and develop-
mental differences are attributable to changes in reason-
ing about informants’ intent. Reasoning about informant’s
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knowledgeability is found to be relatively constant. Our
results extend previous findings, but in a much broader
age range—18 months to 5.5 years—and quantify grad-
ual change in reasoning about informants’ intent across
that time period. Our results also extend previous find-
ings by explaining why different modes of communicating
used in experiments lead to different results. Consistent
with previous theoretical accounts (Csibra and Gergely,
2009) and empirical observations (Couillard & Woodward,
1999), different modes of communication induce different
expectations about how the data are selected.

Our approach represents a proposed solution to a vex-
ing problem in cognitive development: developing coherent
theoretical accounts that explain changes in behavior over
time despite the confounded relationship between age and
methodology. Standard practice in cognitive development
circumvents this problem by focusing on identifying the
youngest age at which children can succeed on a conceptual
problem. This avoids the problem of covariance between
age and task by prioritizing methods that apply at the
youngest ages. However, this approach limits the relevance
of resulting theory by prioritizing questions of competence
over questions of performance.

Instead of focusing only on tasks that demonstrate com-
petence at the youngest ages, we used the computational
theory to parametrize the complete set of results that are
explainable with that theory. We then used computational
tools to make explicit the relationship between the model’s
parametrization and the demographics of the experiment.
This approach formalizes developmental theorizing in a way
that supports inferences about the youngest ages that chil-
dren may succeed on a task, as well as relationships across
behavior on different tasks, at different ages.

While this approach provides a more comprehensive,
computationally precise account of the development of epis-
temic trust, there are limitations. Most notably, we have
considered 11 studies from the literature. Although the epis-
temic trust literature is in principle, much larger, including
more studies would have required additional assumptions
and/or free parameters. The evidence is too sparse to con-
strain these choices. Currently, much of the focus of epis-
temic trust research is on documenting new paradigms that
cause children to allocate trust differently. The method we
have outlined will be most informative given more system-
atic analyses of phenomenon, in which studies are more
mutually informative, e.g. paradigms that are slight adjust-
ments of other paradigms or that investigate interactions
between paradigms. Furthermore, empirical research focus-
ing on quantitative, as well as qualitative, results would
provide richer data for testing computational theories of
epistemic trust on cognitive development.

Theoretical and empirical accounts of cognitive devel-
opment emphasize the important role of other people in
children’s learning about the world. We have proposed a
computational theory and an approach for integrating results
across heterogeneous methods and ages. The results indi-
cate developmental changes in reasoning about informant’s
intent and differences across tasks. Although we believe
our approach to be the most precise and comprehensive
account of the development of epistemic trust, there are
many ways in which it is likely too simple to explain the
richness of development. Continued empirical research is
necessary toward the goal of developing a complete com-
putational theory of the development of epistemic trust.
Developmentalists are vital to this effort and can contribute
in two ways. First, by filling gaps in the literature by repro-
ducing existing results in different age and culture groups,
and by extending existing paradigms to account for more
nuanced phenomenon (much in the same way (Pasquini
et al., 2007) did for (Koenig & Harris, 2005)). And second,
by experimentally evaluating the model assumptions.
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Appendix A: Monte Carlo estimation
in the epistemic trust model

Gibbs sampling

To estmiate distributions in the model, we employ Gibbs
sampling (see Geman &Geman, 1984; Gelman et al., 2013),
a Marko chain Monte Carlo (MCMC) method well-suited
to use in Bayesian networks. It works by re-sampling each
node conditioned on the values of every other node in the
network. However, it is most often the case that a node is
not dependent on every other node, but only a few, thus
the terms in which the target node does not appear cancel
out. Furthermore, we can exploit conditional dependence to
simplify further. A node is conditionally independent of all
other nodes in a network given itsMarkov blanket: the nodes
comprising its parents, children, and children’s parents. The
Markov blanket of the knowledgeability node can be seen
shaded in gray in Fig. 15. The conditional probabilities and
distributions on each variable are thus:

θk ∼ beta(αk + nk, βk + n¬k), (20)

θh ∼ beta(αh + nh, βh + n¬h), (21)

w ∼ p(w)p(b|k, w)p(e|a,w), (22)
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Fig. 15 Example Markov blanket for epistemic trust model and Gibbs sampling conditional probabilities. aMarkov blanket (shaded in gray) for
knowledgeability, k. b Gibbs sampling conditional probabilities and distribution superimposed on their respective variables

k ∼ p(k|θk)p(b|k, w), (23)

h ∼ p(h|θh)p(a|h, b), (24)

b ∼ p(b|k, w)p(a|h, b), (25)

a ∼ p(a|h, b)p(e|a,w), (26)

e ∼ p(e|a,w), (27)

where nh and n¬h are the number of trials in which the
informant has be helpful and unhelpful, and where nk and
n¬k are the number of trials in which the informant has be
knowledgeable and unknowledgeable.

The sampler state is set to some random value, fixing
observed nodes to their observed values. Then, for a prede-
termined number of iterations, the Gibbs sampler updates
each unobserved node in random order. For example, if we
observe an action and an effect, we set the a and e nodes and
update all other nodes while keeping a and e static. We then
collect or count as we did with rejection sampling subject to
some caveats.

Samples generated by a Gibbs sampling algorithm are
not independent. They depend on the previous state. To
mitigate effects of sample interdependence we ignore a
certain number of samples between each collection. This
process is known as lag or thinning. For the same reason,
we must throw out a large number of samples before col-
lecting the first. The sampler state may have been initialized
to a value that is not representative of the target distribu-
tion and it make take the sampler some time to walk its
way to the target region. Another concern is Gibb sam-
plers’ propensity to get stuck in local maxima. Imagine
a bimodal probability distribution with two distant peaks.
In order for the sampler to cross the gap from peak to
peak, it must cross a large space of low probability. It is

common practice to average samples over multiple indepen-
dent instances (chains) of Gibbs sampler runs to smooth the
between–chain variability due to local maxima.

Appendix B: Cross-categorization details

A cross-categorization state consists of the following parts:

1. αs : the CRP concentration parameter for the assignment
of columns to views.

2. αv = {α0
v, α

1
v, . . . , α

|V |
v }: the CRP concentration

parameter for each of the |V | views’ assignments of
rows to categories.

3. Z = {z0, z1, . . . , zF−1} where z ∈ {0, 1, . . . , |V |}:
the assignment of the F features (columns) to the |V |
views.

4. V = {V0, V1, . . . ,V|V |−1}whereVi = {v0i , v1i , . . . , vN−1
i }

and where vi ∈ {0, 1, . . . , |Ki | − 1}: the assignment of
the the N rows in view i to the |Ki | categories in view i.

5. � = {θ0, θi, . . . , θF−1} where θk
f is the data model

for feature category (components) k of feature f : the
data models for each feature. For example if feature
f is modeled with a Normal distribution then θk

f =
{μk, ρk}, the mean and precision of the category k.

6. 	 = {φ0, φ1, . . . , φC−1}: the prior distributions for
each colum. For example if column c is modeled via
a normal distribution, φc may represent a Normal-
Gamma prior, φc = {m, r, s, ν}.

7. G0 = {G0
0, G

1
0, . . . , G

F−1
0 }: the hyper prior distribu-

tions on each φ ∈ 	.
8. HS : the prior distribution on the CRP concentration

parameter for the assignment of features to views.
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9. HV : the prior distribution on the CRP concentration
parameter for the assignment of rows to components.

The score (un-normalized probability) of a cross-
categorization state, S, is,

score(S) = P(αS |Z, HS)

|V |−1∏
i=0

⎛
⎝P(Vi |αi

v)P (αi
v|HV )

|Ki |−1∏
k=0

∏
f :Vf =v

∫
θk

P (Xk
f |θ)P (θk

f |φf )dθf

⎞
⎠ ∏

f ∈F

P (φ|Gf

0 ), (28)

where Xk
f is the data in feature f assigned to component k. In a single cross-categorization sample, the conditional

probability of a value, x, in column i given a value, y, in
column j is

P(x|y) =
{ ∑

c∈Cv

nc

n+1+αv
P (x|Xc)P (y|Yc) + αv

n+1+αv
P (x)P (y) if zi = zj∑

c∈Cv

nc

n+1+αv
P (x|Xc) + αv

n+1+αv
P (x) if zi �= zj ,

(29)

where n is the number of objects in the table, Cv is the set of
categories belonging to view v, αv is the CRP concentration
parameter for veiew v, nc is the number of objects assigned
to category c, and Xc and Yc are the data in X and Y

assigned to category c. Note that if zi �= zj—columns i and
j are not in the same view—then P(x|y) = P(x) because
columns i and j are independent. For conditional distribu-
tions over multiple models, we employ model-averaging.
Conditional distributions are averaged over samples:

P(x|y) = 1

|S|
∑
s∈S

Ps(x|y), (30)

where S is the set of samples, s is an individual sample, and
Ps(x|y) is the conditional probability of x given y under
sample s.

Crosscat offers a measure or the dependence between
pairs of columns by way of dependence probability. Given
S samples, the dependence probability between i and j is
defined as being proportional the the number of samples
in which columns i and j belong to the same view and in
which the view to which i and j belong has more than one
cluster. Formally:

P(dep) ≡ |{s ∈ S; zs
i = zs

j , Ks
zi

> 1}|
|S| . (31)

For cross-categorization, each feature must be assigned
an appropriate probability distribution. All zero-bounded
continuous features (sk , sh, and age), were assigned
Lognormal likelihood functions with the standard con-
jugate Normal-Gamma prior; balance parameters were
assigned Normal likelihood functions with Normal-Gamma
prior; and the categorical variables (communication mode,
paradigm, and culture) were assigned Multinomial like-
lihood functions with the conjugate symmetric Dirichlet

prior. We used a custom python implementation of cross-
categorization.11 We collected 64 samples after 500 itera-
tions of inference. That is, we initialized 64 independent
Markov chains of the sampler, ran the sampler for 500 iter-
ations, and conducted analyses using the 64 independent
states.

Expected dependence probability between
cross-categorization columns

First, we derive the probability, under the Chinese Restau-
rant Process (CRP), that two items will be assigned to the
same component. Because the CRP is an exchangeable pro-
cess, in the limit it may be described as i.i.d. This means
that we need only be concerned with the probability that the
first two items are assigned to the same component. The first
item is always assigned to its own component, the second
item is assigned the the same component with probability
1

1+α
, where α is the CRP concentration parameter. Thus the

probability that any two columns, i and j , belong to the
same components is,

P(zi = zj |α) = 1

1 + α
. (32)

In our implementation of cross-categorization, α is given
an exponential prior with mean 1. That is,

α ∼ Exp(1). (33)

We must calculate the expected expected dependence
probability across the prior. That is,

E[Y ] = E

[
1

1 + α

]
. (34)

11Our implementation, BaxCat, can be found at https://github.com/
BaxterEaves/BaxCat.

https://github.com/BaxterEaves/BaxCat.
https://github.com/BaxterEaves/BaxCat.
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Fig. 16 Pairwise plots of age and model parameters for the full dataset. Regression lines are shown with their 95 % confidence intervals in gray

We derive the cdf of this distribution:

FY (y) = P(Y ≤ y) (35)

= P

(
1

y
− 1 ≤ α

)
(36)

= 1 − FX

(
1

y
− 1

)
. (37)

Differentiating leaves us with the pdf:

fY (y) = 1

y2
exp

(
1 − 1

y

)
. (38)

The expected dependence probability between two columns
is

P(zi = zj ) = E [Y ] =
∫ 1

0
yfY (y)dy

=
∫ 1

0

1

y
exp

(
1 − 1

y

)
dy ≈ 0.596. (39)

Appendix C: Why regression fails

Disregarding CrossCat’s ability to infer the existence of
dependencies between variables, one might wonder why
use CrossCat, rather than linear regression, to determine
the nature of the dependencies. The majority of epistemic
trust research evaluates young children. Of the studies we
included in our analyses, only one was done with adults.
This study creates, what one using tradition meta-analysis
methods might consider, outliers in the age-versus-model-
variables scatter plots (see Fig. 16). Regression is sensitive
to outliers, but if we want to create a continuous account of
development, we must include these results.

Assuming that we ignore a valuable part of our data and
remove the outliers (see Fig. 17), we see that remaining
data violate most of the assumptions made by standard lin-
ear regression. The data are nonlinear and heteroscedastic.
One could first look at the pair plots and choose a more
appropriate regression method for each pair, but each of
these decisions introduces arbitrariness to the model and

Fig. 17 Pairwise plots of age and model parameters for data in which the age is less than 15. Regression lines are shown with their 95 %
confidence intervals in gray
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reduces its generality. CrossCat neither assumes linearity
nor homoscedasticity and has no problem dealing with
outliers.
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