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Abstract In our daily life, we often encounter situations in
which different features of several multidimensional objects
must be perceived simultaneously. There are two types of
environments of this kind: environments with multidimen-
sional objects that have unique feature associations, and envi-
ronments with multidimensional objects that have mixed fea-
ture associations. Recently, we (Goldfarb & Treisman, 2013)
described the association effect, suggesting that the latter type
causes behavioral perception difficulties. In the present study,
we investigated this effect further by examining whether the
effect is determined via a feedforward visual path or via a
high-order task demand component. In order to test this ques-
tion, in Experiment 1 a set of multidimensional objects were
presented while we manipulated the letter case of a target
feature, thus creating a visually different but semantically equiv-
alent object, in terms of its identity. Similarly, in Experiment 2
artificial groups with different physical properties were created
according to the task demands. The results indicated that the
association effect is determined by the task demands, which
create the group of reference. The importance of high-order task
demand components in the association effect is further
discussed, as well as the possible role of the neural synchrony
of object files in explaining this effect.

Keywords Object file theory . Feature binding . Neural
synchrony

In our daily life, we often encounter situations in which dif-
ferent features of several multidimensional items must be per-
ceived simultaneously. When organizing a party, one might
need to perceive whether the number of plates on the table
matches the number of glasses. This type of comparison re-
flects a within-class or within-category comparison (i.e., a
comparison within the Bshape^ feature). Another type of com-
parison may require a between-category comparison. For ex-
ample, when organizing a Christmas party, the decorator can
check whether there are more red items or more ornaments. In
this example, one needs to compare a certain shape feature to a
certain color feature. Although these types of comparisons are
frequently performed in daily life, the roles that govern the
between-category comparisons are not entirely clear.

In Goldfarb and Treisman (2013), we demonstrated an im-
portant role that governs the perception of between-category
features—the role of unique versus mixed target feature asso-
ciations. In that study, participants were asked to compare the
number of BX^s with the number of occurrences of red items
(participants had to decide whether they sawmore red objects,
more BX^s, or the same numbers of Breds^ and BX^s). The
experiments had two important conditions: (a)Unique/consis-
tent feature associations, in which the relevant shape (e.g.,
BX^) and the relevant color (e.g., red) were consistently
paired; this condition was created when all of the red items
were paired with all of the BX^s or when the BX^s were never
red (e.g., in the Christmas party example above, when none of
the ornaments are red; see Fig. 1a and b). (b)Mixed/inconsis-
tent color associations, in which the relevant shape (e.g., BX^)
and the relevant feature (e.g., red) were paired inconsistently;
this condition was created, for example, when some of the
BX^s were red but others were not (in other words, in the
Christmas party example, this condition fits a situation in
which some ornaments are red but others are not; see
Fig. 1c). The study revealed an association effect, and
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accordingly, response times (RTs) were slower in the mixed
color association condition than with the unique color
associations.

In Goldfarb and Treisman (2013), we suggested that one
possible way of explaining this association effect is within the
object file and the synchrony assumptions. The object file
theory is one of the theories that attempts to explain how
multifeature objects are perceived (Kahneman, Treisman, &
Gibbs, 1992). The theory suggests that, because in the early
perception stage the different features of objects are represent-
ed separately in the brain, a rebinding process must occur.
According to the theory, this is an effortful process in which
a temporary object file is created for each relevant feature and
location of a single object. Specifically, the theory suggests
that features activate the long-term stored knowledge of their
categories or types, which are represented as nodes in a rec-
ognition network. After this activation, the relevant informa-
tion is attached to each location in the temporary episodic
representation (object files). Hommel and Colzato (2009) sug-
gested that the reattachment of features to the corresponding
temporary object filemay be accomplished by temporal neural

firing (Engel & Singer, 2001; von der Malsburg, 1999). Ac-
cordingly, features that share the same location have a com-
mon neural synchrony. For example, in order to represent a
red circle among green triangles, the neurons that encode the
color red fire at the same rate as the neurons that encode the
circle shape.

This synchrony of object file theory actually predicts the
behavioral association effect. Remember that the task is to
compare the number of BX^s to the number of red objects.
As can be seen in Fig. 1, in the unique color association, the
relevant shape is associated with the relevant color. In such a
condition, the firing rate associated with the task-relevant
shape—BX^—can be synchronized with the relevant locations
(e.g., Locations 1 and 3). In the example shown in Fig. 1a, the
BX^ shape and Locations 1 and 3 share a common synchrony
that we can label SCa (BSynchrony Correlation a^). In addition,
firing associated with the task-relevant color—red—can be
synchronized with other locations (e.g., Locations 2 and 5;
i.e., they share a common synchrony that we can label SCb).
Figure 1b presents another case in which a consistent or
unique association is created. Here, all BX^s (the shape target)

Fig. 1 Examples of the unique association condition and the mixed
association condition. From BCounting Multidimensional Objects:
Implications for the Neural-Synchrony Theory,^ by L. Goldfarb and A.

Treisman, 2013, Psychological Science, 24, pp.266–271. Copyright 2013
by the Association for Psychological Science. Adapted with permission
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are printed in red (the color target). This means that the two
target features always share the same location, allowing both
red objects and BX^s to be synchronized. On the other hand,
the mixed color–shape association in Fig. 1c is theoretically
hypothesized as one that cannot be synchronized at the same
time. In this condition, the features characterizing different
elements occur independently of each other. As can be seen
in Fig. 1c, in the mixed color condition, the firing rate associ-
ated with Locations 3 and 5 can be synchronized with the task-
relevant color red. However a problem arises when the task-
relevant shape BX^ also has to be synchronized, since the BX^
shape is associated with Location 3 (but not with Location 5).
Hence, it would not be possible to simultaneously synchronize
the color red and the shape BX^ via their locations (since some
of the BX^ locations have already been used by the synchrony
value of the color red). In Goldfarb and Treisman (2013), we
suggested that although these kind of strings are impossible to
synchronize simultaneously, they can be synchronized one af-
ter the other (i.e., first the color can be synchronized with its
location, and then in another representation the shape can be
synchronized with its location). In each new synchronization,
new object files must be created, and this might result in the RT
cost that is observed in this condition.

In the present study, we attempted to further investigate the
association effect, by examining whether the effect is
governed by a low-level perceptual aspect of the stimuli or
by a high-order task demand component. This question is
important for understanding how multidimensional objects
are perceived and how between-object comparisons can be
performed. In addition, the different outcomes have different
implications for different feature integration theories, as will
be discussed in the General Discussion section.

Two possibilities are that the association effect reported in
Goldfarb and Treisman (2013) is restricted to a simple, low-
level visual property of the display or is governed mainly by
the feedforward sweep of information processing (Lamme &
Roelfsema, 2000). It has been well documented that in a se-
quential display, binding between the physical features of a
stimulus can occur automatically, and when objects are pre-
sented sequentially, repeated items that share only some of
their physical features are perceived the most slowly (e.g., if
the observer perceives a red BX,^ then in the following trial it
will be hardest to perceive a red BO^ or a green BX^; see, e.g.,
Hommel, 1998, 2004). Part of this effect has been explained
by the fast, feedforward connection in memory (Lamme &
Roelfsema, 2000) between the physical features of an object,
and consequently the difficulty to rebinding partly overlap-
ping features (e.g., Hommel & Colzato, 2009). Hence, if the
current association effect involves serial processing, this could
explain why it would be hard to perceive a mixed association
on the physical level.

Similarly, the association effect could be governed by the
physical aspect of the stimuli, if physically different items

within the feature category cannot share the same synchrony
value. It has been suggested that in the initial processing stage,
each feature is automatically processed in a unique feature
map, and that this is based on the stimuli’s low-level physical
characteristics (e.g., Treisman, 2006; Treisman & Gelade,
1980; Treisman & Schmidt, 1982). For example, the different
shapesmight be stored in the shapemap and different colors in
the color map. In order to physically distinguish different in-
stances within a single map (such as different shapes), the
different instances cannot share the same synchrony value
(i.e., if the physical shapes BX^ and BO^ or BA^ and Ba^ need
to be physically distinguished, they cannot have the same
synchrony value). Hence, it can be assumed that the synchro-
ny betweenmaps is pre-formed, on the basis of the synchrony
values on those early-stage Bphysical^ maps (in which each
item within a map must be physically distinguished). Conse-
quently, in this case, the association effect between the differ-
ent maps (i.e., color and shape) would be governed by the
synchrony value that is given to the physical aspect of the
stimuli within a map (i.e., the physical shapes BX^ and BO^
or BA^ and Ba^ within the shape map).

An alternative possibility is that the association effect is
governed by high-order task demand components. It has been
well documented that top-down control and the specific task
demands can alter and organize our perception (Corbetta,
Miezin, Dobmeyer, Shulman, & Petersen, 1991; Treisman,
1969; Wolfe, 1994). In addition, according to the object file
theory, a single physical feature can activate many kinds of
knowledge in long-term memory, and an object file is created
by information fed by long-term stored knowledge of the rel-
evant categories. Hence, if the association effect is governed
by high-order task demand components, then targets that are
determined by the task in hand as belonging to the same group
(regardless of their visual physical identity) act as a single
group, and consequently can share the same color. For exam-
ple, if we think of the association effect in terms of the syn-
chrony of object files, then physically different items can share
the same value if they are tagged as members of the same
group, and consequently all thosemembers can share the same
synchrony value. Note that according to this possibility, the
synchrony is performed on the identity tag that is determined
by the task demand. In the present study, we aimed to inves-
tigate those options.

Experiment 1

In this experiment, participants were required to compare the
number of BA/a^s (regardless of case) to the number of red
objects. Two critical conditions were created: one with mixed
physical associations but unique task demand associations,
and one with the reverse associations (see Fig. 2). This setting
allowed us to examine whether the association effect is
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Fig. 2 Examples of the different stimuli in Exp.1 and possible
synchronization solutions for those stimuli. (2a)A stimulus whose
associations are unique at the task demand level (all target letters are red).
However, at the physical level the associations are mixed (the red item group
contains two physically different letters). (2b)A stimulus whose associations
are mixed at the task demand level (not all target letters are red). However, at

the physical level the associations are unique (each physically different letter
has a unique color). (2c & 2d)The regular conditions. In the stimulus in
panel 2c, the associations are unique at both the physical and task demand
levels (each physically different letter has a unique color, and the reds are
never the target letters). In the stimulus in panel 2d, the associations aremixed
at both the physical and task demand levels (one A is red and one A is green)
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governed by a high-order task demand component or whether
it is restricted to low-level physical attributes of the stimuli. If
the first possibility is correct, then it would be easier to repre-
sent the Btask demand unique/physical mixed^ condition
(Fig. 2a) than the Btask demand mixed/physical unique^ con-
dition (Fig. 2b). On the other hand, if the second possibility is
correct, then an opposite pattern would emerge.

Method

ParticipantsA group of 12 undergraduate students from Hai-
fa University, with normal or corrected-to-normal vision, par-
ticipated in the experiment in partial fulfillment of course
requirements.

Stimuli The strings presented consisted of the target letters
BA^ (uppercase), Ba^ (lowercase), and one or two of the
distractors letters: BX^ and BT.^ Each letter was colored either
in the color target red or in one or two of the distractor
colors: green and blue. The stimulus displayed consisted
of five-letter strings. In each string, the target features
(BA/a^ and red) appeared two or three times, and one of
the letter targets was Ba^ (lowercase). The size of each
letter was approximately 1.2°, and the string appeared in
the center of a white screen.

Similar to the method of Experiment 1 in Goldfarb and
Treisman (2013), in the regular unique/constant color–shape
association condition, the BA/a^s and the red objects never
shared a common location (i.e., the BA/a^s were never printed
in red). In the regular mixed color–shape association condi-
tion, when Bmore A/a^ was the required response, one of the
two BA^s was printed in red and the other was not. When
Bmore red^ or Bsame^ was the required response, both target
letters (BA/a^) and nontarget letters were printed in red. To
create the physical mixed/semantically unique condition, both
BA^ and Ba^ were colored red (i.e., the red item group
contained two physically different letters). To create the phys-
ical unique/semantically mixed condition, the letter Ba^ was
colored in a Bunique^ color (not sharing visual features with
the other letter shapes), and the capital A was colored in a
different Bunique^ color. Within these constraints, the order
of the letters and their color was randomized within each
string in each display.

Procedure The experiment was programmed in E-Prime 2.0.
A Compaq computer with an Intel core i7-2600 central pro-
cessor was used to present the stimuli and collect the data.
Stimuli were presented on a Samsung 22-in. monitor while
participants sat about 60 cm from the screen. A keyboard on
which the participants pressed their answers was placed on a
table next to the screen. Each participant was tested individu-
ally. Stickers with the labels Bsame,^ Bmore A\a,^ and Bmore
red^ were pasted on the keyboard keys Bg,^ Bh,^ and Bj,^

respectively. Participants were instructed to compare the num-
ber of BA/a^s to the number of red objects and told that the
possible responses were Bmore red,^ Bmore A\a,^ or Bsame.^
The participants were asked to respond as quickly as possible
but to avoid mistakes. Each trial started with a white display
appearing for 1,000ms, followed by the letter string. The letter
strings were chosen randomly for each participant. The items
disappeared when the participants responded, and then the
next trial began. In the case of an inaccurate response, the
word Bincorrect^ appeared on the screen for 1,000 ms. The
computer registered the participant’s responses as well as the
RT, in milliseconds, from the string onset to the participant’s
response. Before the beginning of the experimental block,
participants were given 12 trials of practice, regardless of
how many errors they made, and then they performed a block
of 80 experimental trials.

Results and discussion

For the correct trials, the mean RT was calculated for each
participant in each condition. A two-way analysis of variance
was applied to these data with two within-participants factors:
(a)Matching between the physical and task demand levels—
matched (the regular condition) and not matched (the condi-
tion of interest); and (b)Association Type—unique and mixed
associations. A significant main effect was found for associa-
tion type, F(1, 11)= 20.85, MSE= 83,652, p< .05. Further
analysis revealed a significant association effect (unique vs.
mixed associations) in the regular condition (in which the
physical and task demand levels were matched), t(11)= 2.17,
p< .05. This replicated the previous findings of Goldfarb and
Treisman (2013). In addition, in the condition of interest (in
which the physical and task demand levels were mismatched),
another significant association effect was found, t(11)= 2.86,
p< .01. Most importantly, this effect suggested a significantly
slower RT in the task demand mixed (but physically unique)
association than in the task demand unique (but physically
mixed) association condition. See Table 1 for the mean RTs
in the different conditions. These results suggest that the

Table 1 Mean RTs and SEs (in parentheses) for the conditions in
Experiments 1 and 2

Regular Conditions Task
Demand
Level:
Unique
Associations

Task
Demand
Level:
Mixed
Associations

Task Demand &
Physical Levels:
Unique
Associations

Task Demand &
Physical Levels:
Mixed
Associations

Physical
Level:
Mixed
Associations

Physical
Level:
Unique
Associations

Exp.1 3,375 (214) 3,760 (238) 3,200 (229) 3,578 (257)

Exp.2 3,403 (368) 4,022 (483) 3,098 (244) 3,537 (435)
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association effect of multidimensional objects is not deter-
mined simply by the physical characteristics of the stimuli.
Rather, the task demand determines what a group is, and only
in that classification does the association effect take place.

Experiment 2

Experiment 1 revealed that the association effect for
multidimensional objects is determined by higher char-
acteristics of the stimuli that determine the group of
reference. In Experiment 1, semantic identity determined
the group of reference. Hence, Experiment 2 was de-
signed to demonstrate that this effect is not restricted
to a semantic association, but can be governed by any
character that determines a group of reference. There-
fore, in the second experiment we verified that the same
effect reported in Experiment 1 remained even when the
group of reference was an artificial one (i.e., the letters
BA^ and BB^ were considered the target group). Hence,
in the present experiment participants were asked to
compare the number of A/Bs to the number of red
items.

Method

Themethod of Experiment 2was similar to that of Experiment 1
with the following changes. The letter BB^ replaced the letter
Ba^ in all of the stimuli described in Experiment 1, so that
participants were instructed to compare the number of BA/B^s
to the number of red objects. Stickers with the labels Bsame,^
Bmore A\B,^ and Bmore red^were pasted on the keys Bg,^ Bh,^
and Bj,^ respectively. Overall, ten participants took part in this
experiment.

Results and discussion

For the correct trials, the mean RT was calculated for each
participant in each condition. As in Experiment 1, an analysis
of variance was applied to these data with two within-
participants factors: (a)Matching between the physical and
task demand levels—matched (the regular condition) and
not matched (the condition of interest); and (b)Association
Type—unique associations and mixed associations. This anal-
ysis revealed a significant main effect for matching between
the physical and task demand levels, F(1, 9)= 8.82, MSE=
176,594, p< .05. In addition, a significant main effect was
found for association type (unique vs. mixed associations),
F(1, 9)= 8.83, MSE= 317,032, p< .05. As in Experiment 1,
a further analysis revealed a significant association effect
(unique vs. mixed associations) in the regular condition,
t(9)= 4.64, p< .01, and in the condition of interest, in which
RTs in the semantically mixed (but physically unique)

association was slower than in the semantically unique (but
physically mixed) association condition, t(9)= 1.83, p< .05.
(See Table 1 for the mean RTs in the different conditions.) The
present results indicate once again that the association effect is
governed by higher-task-demand routes.

General discussion

The results of the experiments replicated the previous associ-
ation effect reported by Goldfarb and Treisman (2013). Most
importantly, the results also indicate a significantly slower RT
for the physically unique/task-relevant mixed association con-
dition than for the task-relevant unique/physically mixed as-
sociation condition.

As we noted in the introduction, the association effect
could theoretically be determined by the physical characteris-
tics of the stimuli (see, e.g., Fig. 2b) or via the feedforward
sweep of information processing (as in the sequential case;
e.g., Colzato, Raffone, &Hommel, 2006; Hommel&Colzato,
2009). If the association effect were indeed governed by the
lower-level physical aspects of the stimuli, then objects with
different visual shapes that shared the same color would create
the mixed association condition, regardless of the task de-
mands. However, the present results support the notion that
the association effect is governed by a high-order task demand
component. Accordingly, top-down control—and, specifical-
ly, the task demand—alters the organization of the group of
reference. In other words, the targets determined by the task in
hand as belonging to the same group (regardless of their visual
identity) acted as a single group, and consequently could share
the same color.

How can this behavioral finding be incorporated within the
existing perceptual theories? In Goldfarb and Treisman
(2013), we suggested that the synchrony of object files can
explain the association effect. We noted the assumptions of
synchrony theory, postulating that the same spatial location
cannot serve mixed targets. For example, in the Bregular^
mixed color–shape association, it is not possible to simulta-
neously synchronize two features (e.g., the color and the
shape) via their locations, since some of the relevant locations
of certain features (e.g., color) are already being used by the
synchrony value of the other relevant feature (e.g., shape). The
present results add to the previously discussed framework and
suggest that if the synchrony is indeed responsible for the
regular association effect, then the synchrony itself is not per-
formed on the Bbasic^ information provided by initial maps.
In other words, the synchrony is conducted at a late perceptual
stage in which the object file tags are already initiated (i.e.,
after the attention system has tagged each element as a target
group, according to the task demands). Although object tags
are clearly fed to some degree by the lower visual maps, top-
down feeding based on the task must also have an important
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role, since a single physical shape can have many tags (e.g.,
the shape of a rose can be tagged as a Brose,^ but also as a
Bflower^). Hence, the perceiver’s goal (to find roses or to find
any kind of flower) must influence this tagging procedure.

It is important to note that the synchrony of object files is
not the only possible explanation of how features integrate
with one another. For example, it has been suggested that
integrated objects could be represented in a topographical sa-
liency map (e.g., Koch & Ullman, 1985). In these maps, the
fewer features an object shares with other locations, the more
salient the location of the object. However, on the basis of
those assumptions, it is not clear why in the association effect
only partial feature sharing would damage perception, where-
as constant sharing or constant separation does not. In addi-
tion, it is not clear how the task demand affects this saliency
and alters the saliency of physically unique associations so
that they become harder to perceive (as in the present exper-
iment). Another important feature perception theory is the
Boolean map theory (e.g., Huang, Treisman, & Pashler,
2007). According to this theory, at an early perception stage,
each instance of a feature is represented in a separate map, and
these maps cannot be accessed simultaneously. According to
this theory, multiple locations of identical features (i.e., many
reds) are represented in a single feature map (i.e., the Bred^
map). These multiple identical features can be accessed simul-
taneously via each map. One possible theoretical option that
can arise from this kind of representation is that when the
number of a certain instance needs to be compared to the
number of another, counting can be conducted in each map
separately. This can be done independently of the existence of
other locations filled with other features in the separate feature
maps. Hence, it is not clear why a location that is shared by
two targets represented in different maps would cause the
observed effect and why the effect is not observed at the phys-
ical level (as is shown in the present study). However, al-
though the effects described in this study are not directly pre-
dicted by these alternative models, it is possible that in the
future, with additional assumptions, these models might be
able to accommodate the present behavioral effects.

Finally, we would note that the present study describes be-
havioral effects in the context of the perception of complex
multidimensional objects. Although the processes involved in
feature integration have been massively studied over the past
years, only a few studies have directly addressed the unique
perceptual problems involved in such complex perception.
The lack of sufficient research in this field is in contrast to the
complex natural scenes in our daily life. Specifically, natural
scenes often contain repetitions of several dimensions or mixed
associations, and comparisons between features are often need-
ed. Hence, an important step in developing natural perceptual
models will be to behaviorally identify the difficulties that these
situations create. The present study is one step in this direction,

and the more studies that are conducted in this field, the better
we will be able to understand the human perceptual system.
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