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Abstract
In her 1926 book Measurement of Intelligence by Drawings, Florence Goodenough pioneered the quantitative analysis of 
children’s human-figure drawings as a tool for evaluating their cognitive development. This influential work launched a broad 
enterprise in cognitive evaluation that continues to the present day, with most clinicians and researchers deploying variants 
of the checklist-based scoring methods that Goodenough invented. Yet recent work leveraging computational innovations 
in cognitive science suggests that human-figure drawings possess much richer structure than checklist-based approaches 
can capture. The current study uses these contemporary tools to characterize structure in the images from Goodenough’s 
original work, then assesses whether this structure carries information about demographic and cognitive characteristics 
of the participants in that early study. The results show that contemporary methods can reliably extract information about 
participant age, gender, and mental faculties from images produced over 100 years ago, with no expert training and with 
minimal human effort. Moreover, the new analyses suggest a different relationship between drawing and mental ability than 
that captured by Goodenough’s highly influential approach, with important implications for the use of drawings in cognitive 
evaluation in the present day.

Keywords  Human figure drawing (HFD) · Convolutional neural networks (CNN) · Children’s drawings · Child 
development · Intelligence

Introduction

The possibility that children’s drawings can serve as a non-
verbal assessment of their mental life has a long and broad 
history including research conducted in a variety of cultures 
(e.g., USA: Brown, 1897; England: Cooke, 1885; Germany: 
Kerschensteiner, 1905; France: Luquet, 1912; Italy: Ricci, 
1887; as cited in Goodenough, 1926). Encapsulating both 
the spirit and the viewpoint of this early work, the German 
researcher Max Verworn (1908) proposed that “the child 
draws what he knows rather than what he sees.” Inspired by 
these authors, but aiming to increase empirical rigor, sub-
sequent researchers adopted a more structured approach to 
the analysis of drawings (Goodenough, 1926; Harris, 1963; 

Kellogg, 1969; Koppitz, 1968; Machover, 1949; Naglieri 
et al., 1991). Perhaps the most influential system was the 
work of Florence Goodenough (1926) presented in her book, 
Measurement of Intelligence by Drawings. Reflecting a con-
temporary interest in measuring mental ability and hewing 
to Verworn’s dictum, Goodenough created the Draw-a-Man 
Test (DAMT), which applied then-recent advances in sta-
tistical analysis to the assessment of structure in children’s 
drawings, and used the results to estimate a child’s intel-
ligence quotient (IQ) – launching a legacy of inquiry and 
reconsideration that continues today.

Goodenough’s key innovation was the creation of a 
checklist-based scoring system for measuring the features 
appearing in a child’s drawing. Any drawing recognizable 
as an attempted human figure could be scored by counting 
up the total number of features identifiable in the drawing. 
Because older children tended to receive higher scores, a 
given child’s score could be used to estimate a “mental age,” 
which, following Binet’s original work, could be compared 
to their chronological age to derive an estimate of IQ. The 
checklist approach has become standard in intervening years, 
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with subsequent innovations mainly involving changes to 
the number or kind of features scored (71 male – 73 female 
features, Goodenough-Harris Drawing Test; Harris, 1963; 
30 developmental – 30 emotional indicator features, Human 
Figure Drawing test; Koppitz, 1968; 10 features, Draw-
a-Child; McCarthy, 1972; 64 features, Draw-a-Person; 
Naglieri, 1988) and the cognitive or psychological traits the 
measure is purported to capture (Burn & Kaufman, 1970; 
Fury et al., 1997; Hammer, 1958; Harrison et al., 2007; 
Machover, 1949; Naglieri, 1988; Naglieri et  al., 1991). 
Human figure drawing and accompanying checklists are now 
a common component in many front-line cognitive assess-
ment batteries (see Rueda et al., 2020, for a review) and also 
a common tool for research in cognitive development (de 
Lemos & Doig, 1999; Denver Developmental Screening Test 
II [DDST- II]; Frankenburg et al., 1992; Karmiloff-Smith, 
1990; Zee et al., 2020) and behavioral genetics (Arden et al., 
2014; Oliver & Plomin, 2007; Rimfeld et al., 2019; Saudino 
et al., 1998).

Yet checklist-based metrics are limited in at least three 
respects. First, the features included rely on the designer’s 
implicit or explicit hypotheses about what matters in the 
drawing a child creates – variation in drawings not antici-
pated by the scoring system cannot be captured. Second, the 
way human figures are depicted can vary cross-culturally, 
over time, or in different demographic groups, creating 
potential for bias in any given system depending on which 
features are/are not included. Third, children’s drawings may 
contain richer latent structure than a single checklist score 
can capture, with important implications for how such draw-
ings may be used in cognitive assessment.

To address these limitations, Jensen et al. (2023) recently 
developed new computational techniques to measure latent 
multivariate structure in 305 drawings collected from chil-
dren aged 3–10 years. These techniques eschewed check-
lists completely, relying instead on methods from machine 
vision as well as non-expert human judgments of percep-
tual similarity and image quality. The resulting metrics 
encoded remarkably reliable information about the child’s 
age, perceived gender, gross and fine motor abilities, and 
performance on several subscales of a standardized behav-
ior screening inventory (the Ages and Stages Questionnaire 
[ASQ]; Squires & Bricker, 2009). Such findings suggest that 
multivariate structure can be discovered in drawings without 
reliance on checklists, and that such structure may contain 
more information about the developing child than previously 
recognized.

The current paper uses the same techniques to re-ana-
lyze the 95 drawings appearing in Goodenough’s pioneer-
ing book, re-evaluating her observations about the relation 
between drawings and age, gender, and IQ. We focused on 
these drawings and characteristics essentially as a conveni-
ence sample: the images and child characteristics were all 

published in the original book. The drawings are not a ran-
dom sample of the thousands Goodenough originally col-
lected and analyzed, but were selected by her as representa-
tive examples and outlying exceptions to aid in training for 
the scoring system. Nevertheless, the analysis serves two 
important purposes. First, it allows us to assess whether the 
new techniques are robust to changes in culture and draw-
ing conventions – we can ask whether these new methods 
encode information about age, gender, and cognitive sta-
tus for drawings collected over 100 years ago, just as they 
do for contemporary drawings. Second, it provides a case 
study of how conclusions drawn from the standard checklist 
approach might change when alternative metrics are used in 
their place.

The rest of this Introduction provides a brief overview of 
Goodenough’s work and the resulting dataset, then describes 
the new measures developed by Jensen et al. (2023). We 
then report the results of our re-analyses, and in the General 
discussion consider the implications of these results for the 
use of drawing in assessment going forward.

Goodenough’s legacy

Goodenough believed that drawings could allow research-
ers to overcome assessment barriers arising from a child’s 
country of origin, culture, language, or verbal ability. As 
with earlier work (as cited in Goodenough, 1926: Kerschen-
steiner, 1905; Lamprecht, 1906; Lobsein, 1905; Rouma, 
1913), she studied a diverse sample of children from dif-
ferent cultures and SES backgrounds, and so sought a sub-
ject for drawing that would be of universal appeal and equal 
familiarity to all children. She noted a tendency amongst 
children to draw people when not provided with specific 
instruction, and observed that the human form can be rec-
ognized and constructed even from simple figural gestures 
(e.g., lines and enclosed shapes). Further, given the same 
task, young children can achieve a recognizable form while 
older children remain challenged in the range of what can 
be included and the detail of their drawings (e.g., mouths, 
lips, eyes, eye lashes, etc.). The task she settled on asked 
children to draw a man – a choice intended to reduce differ-
ences associated with gendered appearance norms such as 
clothing or hair styles.

Beginning in 1920, Goodenough collected drawings and 
demographic data (e.g., age, gender, advancement in school-
ing, heritage, and artistic ability) from almost 4,000 children 
in kindergarten through fourth grade in the USA. Through an 
iterated age-stratified sample-and-survey approach, Good-
enough and colleagues used this dataset to develop and 
refine a checklist that would allow trained raters to identify 
key features appearing in human-figure drawings across dif-
ferent developmental periods. The resulting Draw-a-Man 
test (DAMT) distinguishes drawings that can/cannot be 
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recognized as human figures, then lists 51 features that may 
appear in the recognizable drawings (see Online Supple-
mentary Materials (OSM)). To administer the test, children 
from 4 to 12 years of age are asked to draw a single picture 
of a man as accurately as possible, and raters then indicate 
which of the 51 features they can discern in the resulting 
drawing. Goodenough advocated for this age range given 
her finding that children older than 12 years and adults often 
draw a stereotyped figure that is devoid of many features 
(e.g., a stick figure), resulting in a lower score. After learn-
ing how to administer the DAMT checklist through reference 
to the drawings used in the current research, a trained rater 
can generate a single valued numeric score for any human 
figure drawing.

By examining score distributions at each age level across 
the full sample, Goodenough proposed a normative trans-
form that would yield a given child’s “mental age” from 
their drawing, via the checklist score. The mental age was 
then divided by chronological age and multiplied by 100 to 
yield an estimate of IQ. DAMT mental age estimates from 
drawing showed strong correlations with both academic 
performance and mental age estimates yielded by the gold-
standard IQ test of the time, the 1916 version of the Stan-
ford-Binet test, at each studied age level (see Table 1). The 
observation was remarkable not least because the measure 
was derived, not from a complicated battery of tasks devel-
oped in the lab and unfamiliar to the child, but from a univer-
sally practiced activity that children often undertake for fun.

Today variants of the approach Goodenough pioneered 
remain in widespread use in clinical, educational, and 
research settings (e.g., Bruininks-Oseretsky Test of Motor 
Performance II, [BOT-II]; Bruininks & Bruininks, 2005; de 
Lemos & Doig, 1999; Denver Developmental Screening Test 
II [DDST- II]; Frankenburg et al., 1992; Fury et al., 1997; 
Harrison et al., 2007; McCarthy Scales of Children’s Abili-
ties [MSCA]; McCarthy, 1972). One contemporary example, 

using a more distilled checklist based on the MSCA, is the 
Twins’ Early Development Study (TEDS) – a large-scale 
longitudinal study of twins born in the United Kingdom 
between 1994 and 1996 and assessed at 2, 3, 4, 7, 9, 10, 
12, 14, 16, 18, and 21 years of age (Oliver & Plomin, 2007; 
Rimfeld et al., 2019; Saudino et al., 1998). Researchers 
working with data from this sample found that checklist-
derived scores of human figure drawings taken at age 4 years 
correlated not only with their measured intelligence at 4 
years old, but also predicted variation in standard general 
IQ (g) measured in the same participants a decade later at 
age 14 years (r = .20; Arden et al., 2014).

Limitations with the standard checklist approach

Despite the ubiquity of checklist-based assessments, there 
are reasons to believe that such metrics provide an impov-
erished and somewhat arbitrary indication of structure in 
children’s drawings. For example, though the DAMT clearly 
captures some information about overall drawing quality 
and level of detail (Fig. 1A), it also glosses over potentially 
important similarities and differences amongst images. 
Figure 1B shows examples of images that receive the same 
DAMT score but otherwise incorporate quite different parts 
and configurations, while Fig. 1C shows examples of images 
that receive different DAMT scores yet express similar fea-
tures and configurations. Together these observations sug-
gest that children’s drawings may possess a latent structure 
beyond what can be captured by checklists, which in turn 
may reflect aspects of a child’s cognitive, behavioral, and 
motor abilities.

Contemporary approaches

To test the possibility that checklists may fail to capture 
important aspects of the latent structure in children’s draw-
ings, we recently developed three novel approaches for char-
acterizing latent structure in children’s drawings that provide 
alternatives to checklist-based metrics (Jensen et al., 2023). 
The approaches leverage innovations in machine vision and 
techniques for exploiting human perceptual similarity judg-
ments. When applied to human figure drawings collected 
in a contemporary sample of children, the metrics together 
captured aspects of cognitive, motor, and behavioral func-
tioning far beyond that expressed by a contemporary stand-
ardized checklist. Given these recent findings and the histori-
cal legacy concerning how children’s drawings may serve 
as an indicator of intelligence, the current paper assesses 
whether the new metrics, when applied to Goodenough’s 
(1926) classic dataset, likewise capture important informa-
tion about participant demographics and IQ, despite the cen-
tury separating the collection of these drawings and the new 
approaches we describe.

Table 1   Correlation between “mental age” estimates from the 1916 
Stanford-Binet test and the Draw-a-Man test (DAMT) at different 
ages. Reproduced from Table  9 (Goodenough, 1926, p. 50). Com-
puted for 334 participants

r represents the Pearson product-moment correlation

Mental age standard deviation

Age n Stanford-Binet DAMT r SE

4 25 10.3 mo. 11.5 mo. .863 .034
5 94 11.0 mo. 12.3 mo. .699 .035
6 65 17.3 mo. 18.5 mo. .832 .025
7 63 16.4 mo. 19.2 mo. .716 .042
8 27 14.6 mo. 18.3 mo. .557 .092
9 37 20.4 mo. 24.6 mo. .728 .053
10 23 22.9 mo. 24.8 mo. .849 .041
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Such an exercise is illuminating for several reasons. First, 
Goodenough’s scale was derived from extensive, careful 
research, yielding a detailed scoring system based on her 
observations from thousands of drawings. The resulting 
DAMT requires expert training and nontrivial human labor 
to score the drawings. More current checklist-based drawing 
assessments have greatly reduced the richness of Goode-
nough’s original approach for pragmatic reasons by focusing 
on the presence of a more limited set of features in drawings. 
In contrast, the metrics we have developed require no expert 
training and minimal human effort. If they capture as much 
or more information about the developing child, they open 
the possibility for highly efficient and richer evaluation of 
cognitive change over childhood via drawing.

Second, drawing conventions change with culture and 
over time, in ways that may affect checklist scores (Cox, 
1998; Cox et al., 2001; De La Serna et al., 1979; La Voy 
et al., 2001). Our prior work analyzed drawings produced 
recently by children aged 3–10 years, finding that latent 

structure could predict socio-demographic characteristics 
of the artist including age and gender as well as scores on 
standardized measures like sub-components of the Ages-
and-Stages Questionnaire (Jensen et al., 2023). If the same 
metrics likewise predict participant characteristics in a sam-
ple of drawings collected over 100 years ago, this would 
suggest that (a) they are robust to changes in culture and 
drawing convention, and (b) assessment of drawings need 
not rely on the particular features encompassed in Good-
enough’s (or any other) checklist. Conversely, if the DAMT 
better predicts socio-demographic or other characteristics of 
the children from the original study, this would suggest that 
the checklist captures important structure not expressed in 
the newer measures.

Third, Goodenough’s work was impactful because it 
offered a simple and familiar non-verbal means of estimating 
a child’s IQ, laying the foundation for the use of drawings in 
cognitive assessments more broadly. Many cognitive evalu-
ation tools rely on tasks that are unfamiliar, not particularly 

Fig. 1   Example drawings with different Draw-a-Man Test (DAMT) 
scores. Reproduced from Goodenough (1926). (A) These images 
show representative examples of drawings spanning the range of 
DAMT scores in the original dataset. The score for each drawing is 
indicated above it. (B) These images highlight variation among draw-
ings receiving the same DAMT score, indicated at the left of each 
row (7, 9, and 11). Though items in the same row all received the 
same score, they contain quite different parts and configurations. (C) 

These images illustrate visually apparent similarities across sets of 
drawings that received different DAMT scores. For instance, images 
in the first row (DAMT score = 4) are represented by circular shapes 
that suggest either the face alone or form that encompasses both the 
face and body/trunk, with appendages extending from that central 
form. A similar pattern can be seen across images that receive higher 
scores in second, third, and fourth rows (DAMT scores = 6, 8, and 
10, respectively)
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motivating, and/or reliant on language, making it difficult to 
disentangle factors underlying individual variability within 
and across ages. By contrast, drawing is an activity that most 
children enthusiastically engage in outside of the lab that, 
like language production, requires coordination/integration 
of perception, attention, semantic knowledge, executive 
function, and motor control. New metrics that encompass 
or expand on the structure captured by the DAMT may alter 
our understanding of the relationship between verbal and 
nonverbal aspects of cognition.

Overview of contemporary tools

Approach 1: Machine‑derived latent feature vectors

The first approach characterizes the structure of drawings 
using features acquired by deep neural network image clas-
sifiers. When trained on color photographs of objects, such 
models demonstrate both human-level categorization per-
formance (Krizhevsky et al., 2012; Yu et al., 2022) and a 
degree of generalizability to visual media outside their train-
ing sets, including drawings (Fan et al., 2018). The current 
study used VGG-19, a deep convolutional image classifier 
neural-network pretrained to assign each of ~14M ImageNet 
photographs to one of 1,000 possible mutually exclusive cat-
egories, based on its utility within both visual cognition and 
neuroscience (Fan et al., 2018; Jensen et al., 2023; Jha et al., 
2023; Long et al., 2021; Simonyan & Zisserman, 2014); 
however, the principles of our approach could be extended 
to other model varieties.

In our procedure, each drawing in a dataset is converted 
to a bitmap that provides the input to the pretrained net-
work. The resulting activation patterns across the 4,096-unit 
penultimate model layer (i.e., the last layer before classifica-
tion) are extracted and serve as vector-based representations 
of each drawing. We then compute the cosine similarity of 
each vector pair and from the resulting matrix apply classical 
multidimensional scaling to extract d of latent coordinates 
for each image so that distances within the d-dimensional 
space approximate those within the high-dimension model 
representation space. In this way, each image is re-repre-
sented as a machine-derived latent feature vector of dimen-
sion d. The full workflow is shown in Fig. 2A.

Approach 2: Using crowd‑sourced human perceptual 
judgments to identify structure

The second approach exploits human perception to find 
latent structure in drawings through use of crowd-sourced 
triadic comparisons. In each trial of this task, participants 
view a sample image above two options images (Fig. 2B) 
and are instructed to “Choose the image below that is most 
similar to the image above.” The criterion for “most similar” 

is left unspecified so that participants are free to use what-
ever basis of similarity they wish. From many such judg-
ments a matrix can be constructed indicating how often each 
pair of images was selected as “most similar” across all tri-
plets in which they appeared. An ordinal embedding algo-
rithm can then be applied to situate each image within a low-
dimensional space such that Euclidean distances between 
two items express the likelihood that they are selected as 
“more similar” relative to some third item (Jamieson et al., 
2015). Following this approach, the embeddings constitute 
a low-dimensional representation that approximates the 
continuous perceptual similarity relationships identified by 
the human participant raters. The result is a human-derived 
latent feature vector for each image, with the vector space 
capturing perceptual similarities amongst drawings. Jensen 
et al. (2023) found that human- and machine-derived vec-
tor spaces may express quite different information about 
the same set of drawings. Machine-based representations 
make use of complex visual features learned from classify-
ing millions of photographs, which can express high-order 
visual structure that can be difficult for naïve human judges 
to discern or explicitly rate. Conversely, human perception 
is enriched by additional semantic knowledge about depicted 
items: human raters can not only classify images as depict-
ing people, but understand the parts that comprise images 
as well as their respective names and functions (e.g., that a 
series of lines represent a human head that is wearing a hat, 
and that two different figures each share this feature). Thus, 
human- and machine-derived vector spaces may capture 
distinct information about the similarity relations amongst 
drawings, which in turn may be differentially useful for dif-
ferent assessment tasks.

Approach 3: Crowd‑sourced judgments of drawing quality

The final approach again makes use of crowd-sourced 
human judgments, but rather than estimating a perceptual 
similarity space, we instead use comparative evaluations to 
rank images by their perceived overall quality. On each task 
trial participants view a randomly sampled pair of images 
and must indicate “Which is the better drawing of a person” 
(Fig. 2C). From many such judgments we compute, for each 
image, the proportion of times it was selected as a better 
drawing amongst all the trials in which it appeared. This 
metric situates each drawing along a continuum from the 
worst to the best depictions based on their perceived quality, 
a value we refer to as a drawing’s Quality-rank (QR) score. 
Like checklist-based approaches, QR produces a single score 
for each image, but it does not require expert training, does 
not rely on specific hypotheses about which features of a 
drawing matter when characterizing a child’s cognitive sta-
tus, and does not require an effortful and time-consuming 
evaluation process. An interesting empirical question, then, 
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is whether QR, independent of or together with other met-
rics, can provide as accurate an estimate of a child’s demo-
graphic and cognitive status as does Goodenough’s original 
checklist or its more contemporary variant.

Together the application of these methods to a set of 
drawings yields, for each image, (a) a machine-derived latent 
feature vector, (b) a human-derived latent feature vector, and 
(c) a human-derived estimate of perceived drawing quality. 
These numeric descriptions of the images do not correspond 
to explicit, identifiable features of the kind appearing in 
checklists, but may nevertheless capture underlying structure 

that reflects characteristics of Goodenough’s participants. 
The next section empirically tests this possibility.

Method

Development of the Draw‑a‑Man‑Test (DAMT) 
in Goodenough’s original work

Though the original published work includes only the 95 
drawings used in the present study, the DAMT scale was 

Fig. 2   Three methods for capturing structure in drawings. (A) The 
VGG-19 workflow uses each image as input for the neural network, 
extracting high-dimensional vectors from the penultimate layer, com-
puting pairwise cosine similarities for all sketches, and reducing the 
resulting output to a set of coordinates for each image using machine-
derived vector space (MDS). (B) The human workflow for triadic 
judgments collects participant decisions concerning how similar the 
images are to one another for a large set of triplets, with the prompt, 
“Choose the image below that is most similar to the image above.” 
Subsequently, the pairwise probability that two images are chosen 

as most similar is computed, and again MDS is used to reduce the 
similarity matrix to a small number of coordinates for each drawing. 
(C) The human workflow for Quality-ranking judgments presents ran-
dom pairings of images and has participants decide which of the two 
drawings is the “better drawing of a person” yielding a matrix where 
each row indicates which of the sketches was deemed to be a higher 
quality drawing. A proportion of times the individual images were 
selected as “better” is then computed, resulting in a one-dimensional 
ranking embedding
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developed and standardized through consideration of draw-
ings from 3,593 children (4–10 years old) primarily living in 
New Jersey, USA. That large collection of children’s draw-
ings were used to develop and standardize the final version 
of the DAMT scale. The schools where the task was admin-
istered were selected to reflect a diverse sample of children 
who varied in age, educational achievement, race, ethnicity, 
and familial social status. An additional 2,034 children’s 
drawings were used to validate the scale (652 – Rutherford, 
New Jersey; 479 – Fresno, California; and a combined set 
of 540 from exclusively white children in Mt. Pleasant, Ten-
nessee; Chattanooga, Tennessee; Natchitoches, Louisiana; 
and 363 – Santa Clara, California). No differences based on 
locality were qualitatively observed, though the number of 
students who were considered advanced or behind their cor-
responding age to grade level did differ by sample.

The resulting DAMT consisted of a scale of two classes: 
Class A – the preliminary stage of drawings that cannot be 
identified as a human figure (e.g., scribbles, and lines that 
approach shapes), and Class B – for drawings that can be 
recognized as human figures. Class B comprises 51 features, 
five being reserved for figures in profile, and was designed 
to capture variance outside of tests of verbal ability, shape 
matching etc. Administration of the DAMT was straightfor-
ward: children between 4 and 12 years of age were asked (in 
a group setting) to draw a single picture of a man based on 
the following instructions:

On these papers I want you to make a picture of a man. 
Make the very best picture that you can. Take your 
time and work very carefully. I want to see whether 
the boys and girls in _______ school can do as well 
as those in other schools. Try very hard and see what 
good pictures you can make.

After explaining the task, the examiner was urged to walk 
around the room, and to encourage the children as a group, 
being careful not to praise any specific child’s drawing, to 
identify any omissions or offer any suggestions about what 
content should be included.

Stimuli from Goodenough (1926) used in the current 
experiment

From her full collection, Goodenough included one drawing 
from 95 children for publication within the Series 1 and 2 
training/test exercises in her (1926) book Measurement of 
Intelligence by Drawings. The drawings were selected to 
reflect characteristic elements of children’s output as well as 
several figures identified as “bizarre” (p. 89). Each drawing 
included a figure note identifying a by-item account of the 
individual checklist credits Goodenough assigned based on 
the features deemed present within the DAMT scale. The 
DAMT Score, which constitutes a summed count of those 

credits, was also included for all 95 drawings. The major-
ity of drawings also included demographic information 
(e.g., gender, age, grade level), a DAMT-based estimate of 
the child’s Mental Age, corresponding IQ score, and notes 
related to the individual child or drawing.

For the present study, original drawings from the Goode-
nough (1926) text were photographed using a digital camera. 
All images were cropped to remove notes or other markings 
not part of the drawing (e.g., the word “stomach” written 
within in the figure, figure borders, etc.) while maintain-
ing the aspect ratio. The images were then contrast-normal-
ized so that all pixels were either black or white to ensure 
minimal low-level visual differences between the captured 
images. All drawings were also centered and padded with 
white pixels to a uniform height of 450 pixels and width of 
450 pixels.

Three of the 95 drawings depict two or more human fig-
ures side-by-side. To avoid human rater similarity judgments 
based on the number of figures within a drawing rather than 
the manner in which they were drawn, these images were 
edited so that each human figure was presented as a separate 
drawing while maintaining their scale and position on the 
page.

One drawing within the published collection includes a 
smaller impoverished and inverted figure beside a completed 
human figure. Goodenough made note that this specific addi-
tional figure was not scored in her original study and so that 
inverted figure was edited out of the image used within our 
study. This resulted in a total of 98 images from 95 children, 
ages (stated in year;month) ranging from 4;0 – 14;7 (M = 8, 
SD = 2;9, 47% female, 53% male).

Measures from Goodenough (1926) used 
in the current study

DAMT score

The DAMT scores were transcribed from the figure notes 
that accompany all drawings within the published Series 1 
and 2 training/test exercises.

Demographic characteristics

We also recorded chronological age and reported gender 
of the child who produced each drawing. The number of 
children reported at each age level was roughly uniformly 
distributed.

Intelligence quotient (IQ) estimate

IQ score estimates included in the published notes were 
derived from the DAMT by first estimating a child’s “mental 
age” based on normative scores; for instance, the mean score 
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for 8-year-olds was 22, so a drawing receiving a score of 22 
suggested an approximate “mental age” of 8. To derive an 
age-standardized IQ, the “mental age” estimate was divided 
by the child’s chronological age and the result multiplied by 
100. Thus, a child of 7 years scoring 22 on the DAMT had an 
estimated “mental age” of 8 (since 8-year-olds scored 22 on 
average), yielding an IQ of 100 * 8/7 or 114. This approach to 
developmental IQ – computing norms for different age ranges, 
using these norms to estimate mental age from the child’s test 
score, then taking the ratio of mental age to chronological age 
– paralleled the approach originally developed by Binet, which 
was used in the contemporaneous Stanford-Binet test (Table 1).

Procedures for additional metrics collected 
in the current study

Draw‑a‑Child 12‑item score

Each image in the dataset was scored using the contempo-
rary Draw-a-Child checklist employed by the TEDS longi-
tudinal study (Arden et al., 2014; Oliver & Plomin, 2007; 
Saudino et al., 1998), a tool that is conceptually similar to 
the DAMT but includes many fewer items (12 rather than 
51). All drawings were scored by a trained rater indicating 
which of the 12 features were present in the drawings, result-
ing in a total summed score from 0–12 for each image.

Machine‑derived latent feature vectors

We used a standard implementation of the VGG-19 architec-
ture pre-trained to classify photographs of real objects in the 
ImageNet database (Deng et al., 2009; Simonyan & Zisser-
man, 2014). We chose VGG-19 as the image encoder as this 
was the model used in prior work (Jensen et al., 2023). The 
model was coded in Python 3.6 using TensorFlow (1.13.1) 
libraries. The input for the model consisted of the pre-pro-
cessed drawings, which were rescaled to the dimensions of 
the model input layer (3 × 224 × 224). Activation patterns 
for each layer of the model were computed in a feed-forward 
pass, and the resulting vector output from the model’s penul-
timate layer were extracted for each drawing. Cosine simi-
larities were computed for all vector pairs, and the resulting 
matrix was decomposed using classical multidimensional 
scaling to yield embeddings in two dimensions, so that each 
image was represented as two coordinates. All code for rep-
licating our analyses is available at https://​github.​com/​Clint​
Jensen/​Drawi​ngsPr​oject.

Human‑derived metrics

Data collection from human participants was approved by 
the Institutional Review Board for Education and Social/
Behavioral Science at the University of Wisconsin-Madison 

(Protocol no. 2013–09999, “Learning meanings of words 
and objects”). Sixty-seven undergraduate participants were 
recruited for the triadic comparison task and 73 for the 
QR task, both via the SONA system. They took part in the 
study using a computer in their own space, via the “Salmon” 
online interactive cloud-based platform that facilitates col-
lection of comparative similarity judgments for visual and 
verbal stimuli (Sievert, 2019). Prior to the study, participants 
provided informed consent and completed a reCAPTCHA 
verification. Participation was compensated via course 
credit. For both tasks participants were asked to judge 200 
stimuli but were permitted to stop at any point.

Triadic comparison task

On each trial participants pressed a left or right arrow key 
to indicate which of two drawings at the bottom of their 
screen was most similar to a target image at the top. Partici-
pants who had a mean response time of 1 s or less, or who 
chose the same response key significantly more frequently 
than expected given the random positioning of items on the 
screen, were omitted from the analysis. Human-derived 
latent features were then computed from the remaining 
sample of 46 participants who together contributed 9,037 
judgments.

From these data, a random 10% of trials were selected 
as hold-outs to evaluate the embeddings. Embeddings were 
then estimated in 1–5 dimensions from the remaining data 
using Crowd Kernel, an algorithm that produces learned 
non-metric embeddings from discrete group-level compara-
tive decisions (Tamuz et al., 2011). Each embedding was 
evaluated against the held-out triplets by considering, for 
each test trial, which of the two options was closest to the 
target in the embedding space, and comparing this modeled 
choice to the human decision on the same item. We then 
compared mean prediction accuracy across the embeddings. 
A two-dimensional space showed the best performance and 
was used in both the visualizations and the regression analy-
ses that follow. Data were collected between the 6th of May, 
2022 and the 5th of December, 2022.

Quality‑rank score

On each trial participants viewed two drawings and judged 
via the left or right arrow key which was the better drawing 
of a person. We again removed participants with very rapid 
mean response times (under 1 s) or who chose the same 
response key reliably more often than expected given the 
randomization of images on the screen. QR scores were then 
computed from the remaining 51 participants, who together 
produced a total of 10,075 judgments. The QR score for 
each image was calculated as the number of times a drawing 
was selected as the better depiction of a person divided by 

https://github.com/ClintJensen/DrawingsProject
https://github.com/ClintJensen/DrawingsProject
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the total number of times it appeared, producing a propor-
tion in the range 0–1. Data were collected between the 1st 
of December, 2022 and the 3rd of December, 2022.

Results

Comparing human‑ and machine‑derived feature 
spaces

Figure 3 shows the two-dimensional (2D) machine- and 
human-derived latent feature vectors for all drawings, with 
color indicating participant age. By inspection both spaces 
capture age information, but also express somewhat different 
similarities amongst the images, as observed previously for 
contemporary drawings (Jensen et al., 2023). For instance, 
the machine space situates drawings with open round shapes 
toward the extreme left and tall thin drawings toward the 
right, whereas the human space organizes drawings partly 
based on their semantic content, with unrecognizable and 
simple images in the top left, more complex figures drawn 
in profile in the bottom right, and those shown face-on in 
the top right.

To quantify whether the human- and machine-derived 
embeddings capture different similarity relationships among 
the drawings, we used regression to predict coordinates in 
one embedding space from those in the other. Separately for 
each dimension in the target space, we fit a linear model to 
predict an image’s location from its two coordinates in the 
original space and their interaction. We then used the two 
fitted models to predict both coordinates for all images in 
the target space and evaluated the accuracy of the predic-
tions using the square of the Procrustes correlation between 

predicted and true coordinates. This metric indicates how 
much variation of distances in the target space is explained 
by regression from coordinates in the origin space, anal-
ogous to r2. Predicting human coordinates from machine 
embeddings accounted for 38% of the total variation dis-
tance, reliably better than chance (p < 0.001) but with over 
60% of the variance unexplained. Predicting machine coor-
dinates from human embeddings accounted for 31% of the 
variance, also reliably better than chance (p < 0.001) but 
with over 65% of the variation distance unexplained. Thus, 
while the two embedding spaces are not completely unre-
lated, each express substantially different similarity relations 
amongst the drawings.

Comparing measures of drawing quality

We next considered relations amongst different measures 
of drawing quality. Figure 4 plots the relationship between 
drawing scores from the original 51-item DAMT and two 
contemporary measures of drawing quality: the total score 
from the 12-item Draw-a-Child checklist, and the QR score 
derived from non-expert crowd-sourced human judgments. 
Both cases showed a clear nonlinear relationship with the 
original measure. The red curves in the figure show the best-
fitting exponential curve predicting original scores from 
each new metric. Predictions from the 12-item checklist 
accounted for 72% of the variance in the original DAMT 
scores, but with prediction error clearly increasing for draw-
ings with higher scores – the variance around the regression 
line is much wider toward the right end of the range. In 
contrast, the QR score, despite arising from non-expert judg-
ments without any special attention to which features do/do 
not appear in the drawing, accounted for a remarkable 83% 

Fig. 3   Two-dimensional embeddings derived from VGG-19 (left) or from human triplet judgments (right). Each sketch from Goodenough 
(1926) is placed according to its coordinates in the corresponding two-dimensional space. Colors show the age of the participant
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of the variation in the original DAMT scores, with roughly 
equal scatter around the regression line across the full range. 
This result suggests that QR scores better capture informa-
tion from Goodenough’s original more detailed DAMT 
checklist, despite reflecting nothing more than crowd-
sourced, subjective judgments of drawing quality.

Gender differences

Prior to Goodenough, large-scale studies of children’s draw-
ings had generally reported better performance for boys than 
girls (Kerschensteiner, 1905; Lamprecht, 1906; Lobsein, 
1905; Rouma, 1913; cf. Goodenough, 1926). Her results 
contradicted this pattern, showing a marked advantage 
among participants identified as female – a pattern that has 
since been replicated in several checklist-based studies of 
human figure drawing (Cox, 1993; Cox et al., 2001; Good-
enough & Harris, 1950; Harris, 1963; Lange‐Küttner, 2011; 
Lange‐Küttner et al., 2002; Naglieri, 1988; Picard, 2015). 
The causes of this effect are unclear, but many checklists 
include items that are culturally gendered, and the resulting 
scores may in turn be influenced by drawing conventions 
that reflect such socially derived influences. For instance, 
the DAMT includes points for depicting hair and clothing, 
items that persist in the 12-item Draw-a-Child test. Com-
mon drawing conventions often signal gender differences 
via presence/absence of hair or through selection of trian-
gular versus straight bodies that suggest presence/absence 
of skirts or dresses. Goodenough asked children to draw 
a man specifically to avoid such confounds, but it remains 

unclear to what extent checklists deployed in her work and 
subsequent studies include items where children identifying/
presenting as male or female may have differing degrees of 
knowledge or familiarity with the cultural conventions that 
underpin the unique selection of features represented across 
checklist-based assessments.

One possible hypothesis is that previously documented 
gender differences in drawing scores mainly arise as an 
artifact of the particular features the assessment instrument 
designer has included in the checklist – features that are 
culturally or socially gendered may be differentially likely to 
be included in drawings produced by children who identify 
as boys versus girls. Alternatively, it may be that such dif-
ferences arise, not as an artifact of the features included in a 
given checklist, but because children with differing gender 
identities tend to depict the adult male figure in systemati-
cally different ways. To adjudicate between these positions, 
we assessed whether contemporary metrics computed on 
the 98 drawings in the dataset carry latent information about 
participant gender, beyond any information encoded by the 
total DAMT score. If gender differences arise solely as an 
artifact of the features included in the checklist, it should 
not be possible to decode participant gender from the new 
metrics.

With this idea in mind, we fit and evaluated a series of 
logistic regression models predicting perceived participant 
gender from metrics derived from the drawings and includ-
ing age as a covariate. A model fit using age alone did not 
predict gender reliably better than chance, nor did models fit 
using age and either of the three drawing-quality measures 

Fig. 4   Regressions predicting Draw-a-Man-Test (DAMT) score from 
two alternative measures of drawing quality. The 12-item score, a 
short human figure drawing checklist metric in current widespread 
use, shows a reliably exponential relationship with the original 
DAMT score, but with increasing dispersion around the regression 

line for images with higher scores. The novel Quality-rank score also 
shows an exponential relationship with DAMT scores, but has higher 
predictive accuracy than the 12-item checklist and even dispersion of 
residuals across the full range of images
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(DAMT, 12-item score, QR score), as simple effects or with 
an interaction. Thus, there was no suggestion of a confound 
between age and gender, nor of overall better drawing qual-
ity for either reported gender within this sample of drawings. 
We then applied stepwise binomial regression to evaluate 
whether human- or machine-derived latent feature vectors 
capture information about participant gender, alone or in 
combination with age and QR score.

For human-derived vectors, the stepwise procedure 
retained participant age and both image coordinates, as well 
as some second-order interactions, but discarded QR score. 
The fit of this model was significantly better than a model 
fit using only age (p < 0.04 by Chi-square). We evaluated 
the model accuracy by computing confidence limits on the 
area under the receiver-operator curve (area-under-curve 
or AUC), a threshold-independent metric of binary classi-
fier accuracy that adopts a value of 0.5 for null models and 
1.0 for perfect discrimination. The binomial classifier fit to 
human-derived embeddings had a mean AUC of 0.66 with 
95% confidence interval (CI) of 0.57–0.78, suggesting some-
what better than chance classification.

For machine-derived vectors, the selected model retained 
both coordinates and the QR score as well as some second-
order interactions, but did not retain age. It fit reliably better 

than a model fit only with QR score (p < 0.0001 by Chi-
square), and also showed higher accuracy than the model fit 
with human-derived embeddings (mean AUC = 0.73, 95% 
CI: 0.63–0.83). Thus, the machine-derived embeddings, 
together with the QR score, reliably capture information 
about participant gender.

To visualize this information, we used the best-perform-
ing regression model (fit using QR score and machine-
derived latent features) to estimate the probability that each 
drawing was produced by a girl, then plotted these prob-
abilities against participant age. The result is shown in 
Fig. 5, which also highlights eight drawings Goodenough 
chose as representative of gender differences she noticed in 
her study. The regression correctly classified all but one of 
Goodenough’s examples. It is clear that the machine vec-
tors exploit structure that is difficult for the human eye to 
discern, and thus difficult to capture explicitly in a checklist. 
Since neither the machine-derived embeddings nor the QR 
score contain any information about the features appearing 
in the checklist metrics, this finding suggests that partici-
pants reported as male versus female in this sample differ 
systematically in how they depict the adult male form, in 
ways that go beyond the particular features included in a 
given checklist.

Fig. 5   Predicted probability that a participant is female based on 
drawing characteristics, plotted against age. Probabilities on the 
y-axis were generated by applying the best-fitting logistic regression 
model, which used Quality-rank score and machine-derived latent 

features as predictors, to image data. The colored circles indicate 
images Goodenough highlighted to exemplify her ideas about gender 
differences in human figure drawings (red for female, gray for male)
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Age differences

While it is no surprise that older children generally produce 
drawings that receive higher DAMT scores, this predictive 
relationship between DAMT score and age played a critical 
role in Goodenough’s effort to create a proxy for IQ suited 
to children at different ages. Her DAMT IQ score is simply 
the ratio of a child’s “mental” to chronological age, with the 
mental age estimate derived from DAMT scores normed for 
each age group. This conception of IQ clearly depends upon 
the aggregate accuracy of the model that predicts a child’s 
age from information in her drawings – if the relationship 
between drawing metric and chronological age changes, so 
too will the estimate of IQ derived from the drawing (e.g., 
the Flynn effect, but see Lynn, 2013, for reconsideration of 
the effect’s attribution). We therefore compared how well 
age can be predicted from classic and novel drawing metrics.

We began with the three measures of overall drawing 
quality: the DAMT score, the 12-item checklist score, and 
the QR score, with results shown in Fig. 6. All three meas-
ures showed an exponential relationship with participant 
age, with the best-fit curve accounting for 60% of the vari-
ance for DAMT, 45% for the 12-item checklist, and 58% for 
the QR score (p < 0.001 for contrast to null hypothesis in all 
contrasts). Thus the 12-item checklist score shows a looser 
relationship to participant age than either alternative method, 
which show a similar relationship to participant age.

Do DAMT and QR scores capture the same predictive 
relationship? To answer this we assessed whether the fit of 
each model was reliably improved by adding the other metric 
and its interaction to the regression. Adding QR score to 
the DAMT model reliably improved model fit (r2 = 0.63 vs. 
0.60, F(94) = 3.7, p < 0.03), as did adding DAMT to the QR 
model (r2 = 0.63 vs. 0.58, F(94) = 6.0, p < 0.004). Thus, 
each metric captures unique variance in age.

Next, we assessed whether human- and machine-derived 
latent feature vectors carry additional information about 
participant age, beyond DAMT and/or QR scores. For each 

latent feature type, we computed a stepwise regression pre-
dicting participant age from four independent variables 
and all possible interactions: participant reported gender, 
QR score, and coordinates on each dimension of the latent 
space (either human- or machine-derived). We included 
reported gender to capture the possibility that the relation-
ship between drawing metrics and age may differ between 
participants identified as boys versus girls in the sample. As 
before, the stepwise procedure evaluated fits of increasingly 
complex models and selected a final model based on the 
lowest Akaike information criterion (AIC).

For both human- and machine-derived spaces, the 
stepwise procedure retained all four predictors and some 
second- and third-order interactions. The model fit using 
machine-derived latent features, however, did not explain 
more variance in age than that fit only to age, gender, and 
QR score (65%, F(85) = 1.5, p = n.s.), while adding DAMT 
to the regression reliably improved model fit (to 68%, F(84) 
= 8.1, p < 0.01). Thus machine-based vectors do not cap-
ture age information beyond that expressed by QR score, 
nor do they capture the relationship to age expressed by 
DAMT score. In contrast, models fit using human-derived 
latent features accounted for 76% of the variance in par-
ticipant age, reliably more than the model fit without these 
predictors (F(85) = 5.8, p < 0.0001). Adding DAMT score 
to the regression as a simple effect did not reliably improve 
model fit – thus QR and human-derived features together 
fully express the relationship between DAMT score and age 
while also capturing additional variance. In other words, 
novel metrics based on naïve human judgments can more 
accurately predict participant age than does the DAMT score 
without missing any information, potentially suggesting a 
different approach to IQ estimation as explored below.

Predicting the original IQ estimate

We next assessed how well the original IQ score can be esti-
mated via linear regression using the covariates of age and 

Fig. 6   Regressions predicting participant age from different measures of drawing quality. All three show an exponential relationship, but the 
original Draw-a-Man-Test (DAMT) score and the Quality-rank (QR) score account for more variation than does the 12-item checklist
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gender together with both classical and contemporary draw-
ings metrics. Table 2 provides an overview of the results.

Participant age alone accounted for 7% of the variance 
in IQ, reliably better than a null model (p < 0.01), and the 
inclusion of an interaction with gender did not account for 
significant additional variance. A stepwise regression fit to 
age, gender, and DAMT score retained all three terms and 
their interactions in the selected model, accounting for 89% 
of the variance in IQ. This result is not surprising given 
that the IQ metric was derived directly from DAMT score, 
but it suggests that, whatever the age-normalizing transform 
Goodenough applied to derive this estimate, linear models 
can reconstruct the estimate with quite good but not perfect 
accuracy.

We then considered whether contemporary measures 
of drawing quality could predict the original IQ estimate 
with comparable accuracy. A stepwise regression using 
the 12-point checklist retained this predictor, age, and their 
interaction, discarding sex. The resulting model explained 
only 52% of the variance in IQ. Models fit with QR score 
fared somewhat better: the stepwise procedure retained just 
the simple effects of age and QR, which accounted for 70% 
of variance in IQ.

Next, we assessed whether the human- or machine-
derived feature spaces capture further information about the 
original IQ estimate. When included with age and gender, 
the stepwise procedure selected all predictors and multiple 
high-order interactions for both spaces, but in neither case 
did model fits exceed the fit of a model based solely on age 
and QR score (see Table 2). When DAMT scores were added 
to the stepwise procedure, however, fit improved dramati-
cally. For both human and machine spaces, the procedure 

returned a model with several high-order interactions that 
explained 96–97% of the variance in IQ – reliably more 
than the model based on age, gender, and DAMT scores 
alone (F(66) = 8, p < 0.0001), despite the greater number of 
estimated model parameters. This result suggests that both 
human- and machine-derived spaces capture information 
relevant to relating raw DAMT score to Goodenough’s IQ 
estimate, beyond that already expressed by the DAMT score, 
age, and gender.

Finally, we evaluated how well the original IQ estimate 
could be reconstructed using only the novel metrics. We fit 
stepwise regressions predicting IQ from age, gender, QR 
score, and either the human- or machine-derived latent fea-
tures. Models fit with human-derived features explained 81% 
of variance in IQ, reliably more than age, sex, and QR alone 
(F(73) = 2.1, p < 0.02). Models fit with machine-derived 
features explained 80% of variance, with the stepwise pro-
cedure selecting more predictors overall, so that the result-
ing model did not explain reliably more variance (given the 
number of parameters) than a model based only on age, gen-
der, and QR score.

An alternative measure of IQ

In this final analysis, we consider whether estimates of IQ 
in this sample systematically change if we follow Good-
enough’s general approach – taking the ratio of estimated 
age from the drawing score to chronological age – but using 
latent structure and regression to predict the participant’s age 
from their drawing in place of Goodenough’s DAMT score 
and age-assigned bins. If this adjusted estimate leads to a 
qualitatively similar distribution of scores, highly correlated 

Table 2   Results of stepwise regression predicting original IQ meas-
ure from various drawing metrics. "Full model" shows all predictors 
considered with asterisks indicating interactions. "Retained" shows 
which predictors were kept following stepwise selection. Asterisks 
indicate models where all simple effects and some interactions were 
included, with the number showing the highest-order interaction term 
in the selected model. "Contrast" shows the simpler model against 

which each more complex model was evaluated to assess whether 
additional factors reliably improved fit. The remaining columns 
show the F and p values for the corresponding contrast. h1/h2 = the 
two human-derived coordinate vectors; m1/m2 = the two machine-
derived coordinate vectors; damt = Draw-a-Man Test; qrs = Quality-
rank score

full model retained r2 contrast F (df) p<

covariates age NA 0.07 null 7 (96) 0.01
age* sex NA 0.07 age 0.2 (94) 0.8

drawing quality age * sex * damt age * sex * damt 0.89 age* sex 162 (90) 0.0001
age * sex * 12pt age* 12pt 0.52 age 43 (94) 0.0001
age * sex * qrs age+ qrs 0.7 age 202 (96) 0.0001

feature vectors age * sex * hl * h2 *** 0.64 age* sex 13 (84) 0.0001
age * sex * ml * m2 **** 0.36 age* sex 3 (82) 0.001

vectors and damt age * sex * damt * hl * h2 ***** 0.97 age * sex * damt 8 (66) 0.0001
age* sex* damt * ml * m2 ***** 0.96 age * sex * damt 8 (66) 0.0001

vectors and qrs age * sex * qrs * hl * h2 **** 0.81 age * sex * qrs 2.1 (73) 0.02
age * sex * qrs * ml * m2 **** 0.8 age * sex * qrs 1.5 (70) 0.11



	 Memory & Cognition

with the original, that would suggest that IQ estimated from 
drawings is robust to the precise technique for connecting 
drawing properties to age norms. If the adjusted estimate dif-
fers systematically and qualitatively from the original, that 
would instead suggest that improved methods for connecting 
drawing features to participant age can significantly impact 
the estimate of participant IQ, with implications that extend 
beyond this analysis of historical data.

The adjusted score relies on the same strategy of measuring 
IQ as the ratio between “mental age” estimated from a drawing 
and chronological age. Goodenough’s method involved com-
puting means and variances of DAMT scores for participants 
binned by their chronological age in years, then assigning a 
“mental age” to children by placing them in the most likely bin 
based on their individual DAMT score. The preceding analyses 
showed that QR score and human-derived features together 
predict participant age significantly more accurately than does 
the DAMT score itself. Thus, to derive a contemporary esti-
mate of IQ for Goodenough’s participants, we generated new 
“mental age” scores for each participant by applying the best 
age-predicting regression model to corresponding drawing 
metrics, dividing this predicted age by true chronological age, 
and multiplying by 100. We then compared the resulting scores 
and distributions to the original IQ estimate.

The left panel of Fig. 7 shows the relationship between 
the two measures for all drawings. Most lie above the iden-
tity line (diagonal), indicating a higher adjusted estimate 

relative to the original. The mean estimated IQ from the 
adjusted method is significantly higher than the original 
estimate (p < 0.001 by paired t-test). Thus, Goodenough’s 
original metric may have significantly under-estimated IQ 
in this sample, a conclusion consistent with a comparison of 
the two score distributions (right panel). For Goodenough’s 
estimate, the 95% CI for the mean spans 89–96, reliably 
below the expected value of 100 (t(97) = -3.8, p < 0.001). 
By contrast the 95% CI of the mean for the adjusted estimate 
span 98–105, encompassing the expected value of 100. The 
adjusted measure suggests an IQ 9 points higher on average 
than the original measure.

The scatterplot also suggests a potential gender differ-
ence amongst participants with particularly high scores on 
the original measure. To test this, we fit regression models 
predicting contemporary IQ from original IQ alone, or with 
gender and its interaction included. Original IQ explained 
39% of the variance in adjusted IQ (p < 0.0001 vs. null 
model), but this increased to 47% when gender was included, 
a reliable improvement (F(94) = 6.2, p < 0.003). The gen-
der effect was attributable to participants with scores larger 
than 120 on the original metric: the same analysis performed 
only on participants with scores of 120 or lower showed no 
reliable difference between models fit with/without gender 
as a predictor. The result suggests that idiosyncrasies of the 
DAMT, while under-estimating IQ generally, may have over-
estimated IQ for high-performing girls in this sample.

Fig. 7   Relationship between original and contemporary estimates of 
IQ from drawing. The left panel shows all drawings as a scatterplot 
colored by participant gender. Most drawings lie above the diagonal 
identity line, suggesting that Goodenough’s measure systematically 
under-estimated IQ. The plot also suggests a strong gender differ-
ence amongst participants with a high estimate on the original meas-

ure. Right panels show the distribution of scores in this sample with 
the best-fitting normal curve superimposed. The red line shows the 
expected mean value of 100. Goodenough’s metric shows a lower 
median and mean as well as a higher variance than the contemporary 
score
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Perhaps more importantly, the analysis also shows that 
no more than about 45% of the variance in adjusted IQ is 
explained by the original metric. The new metrics suggest 
that latent structure in drawings changes more systematically 
over development than the DAMT can reveal (as evidenced 
by better prediction of participant age); exploiting this bet-
ter predictive accuracy then yields a substantially changed 
picture of participant IQ in this classic dataset.

General discussion

In the preface to Measurement of Intelligence by Drawings, 
Florence Goodenough described her work as an experiment 
with a specific objective: to better characterize how chil-
dren’s intellectual development may be assessed by their 
drawings. At the time of her writing, children’s drawings had 
already been the subject of several “big data” studies: Ker-
schensteiner (1905), for instance, collected almost 100,000 
drawings under standardized conditions! In a thorough 
review of prior work, Goodenough noted how earlier efforts 
would have benefited from a more objective and structured 
approach that incorporated modern statistical techniques. 
The current project was undertaken in this spirit, aiming to 
incorporate contemporary insights from computational cog-
nitive science to characterize structure in children’s human-
figure drawings, and applying the approach to Goodenough’s 
original data.

Consistent with a prior study of contemporary draw-
ings (Jensen et al., 2023), we found that three novel met-
rics – human- and machine-derived latent feature spaces, 
and crowd-sourced rankings of drawing quality – together 
encode information about participant age, gender, and IQ. 
In all cases the new metrics captured substantially more 
information than did a 12-item checklist measure widely 
used in contemporary cognitive evaluation (Arden et al., 
2014; Oliver & Plomin, 2007; Rimfeld et al., 2019; Saudino 
et al., 1998). In predicting age and gender, these new com-
putational techniques fully captured information encoded 
in the DAMT score and explained additional variance as 
well. Though the new metrics alone could not fully recover 
Goodenough’s original IQ estimates without inclusion of the 
DAMT score, an alternative analysis leveraging the higher 
accuracy of regression models to predict participant age 
suggested that the original estimates may have significantly 
mischaracterized IQ in this sample (understood as the ratio 
of estimated “mental age” to chronological age).

Also consistent with the prior study, we found that 
human- and machine-derived latent feature vectors encoded 
complementary information about participant characteris-
tics: machine-derived features fared better at predicting 
participant gender, while human-derived features better 
captured age information. This difference reflects the initial 

motivation for considering the two approaches. Deep neural 
networks learn complex features via training on millions of 
photographs. The resulting image representations express 
rich and highly abstract structure, as evidenced by the suc-
cess such models show in generalizing to new images (Kriz-
hevsky et al., 2012; Yu et al., 2022) and capturing similarity 
relations between photographs and drawings of the same 
item (Fan et al., 2018). Yet the features they exploit and the 
resulting similarity structures they encode can be difficult 
for human beings to explicitly discern – thus deep networks 
provide one avenue for deriving structured representational 
spaces different from those derived from human judgments. 
In contrast, human-derived spaces can express the overall 
Gestalt similarities that people “see” in drawings, potentially 
encompassing many factors beyond what neural networks 
currently capture: knowledge about parts, categories, func-
tions, orientations, and so on, that can all jointly contribute 
to perceived similarity. The current results suggest that both 
kinds of spaces can carry distinct, complementary informa-
tion about participant characteristics, and so can contribute 
to the use of drawing in cognitive assessment.

The concordance of current results (using a curated his-
torical sample of human figure drawings) with the prior 
study (using recent children’s drawings collected across 
differing media types; Jensen et al., 2023) suggests that the 
utility of these metrics is not restricted to drawings collected 
in a particular time and place. In addition to being distant 
in time, Goodenough’s data were collected across a range 
of cultural, linguistic, racial, and socioeconomic communi-
ties. While many of the drawings are clearly identifiable as 
belonging to a particular era – note all the hats, guns, and 
tobacco! – nevertheless, the same contemporary techniques 
can capture demographic and cognitive information in draw-
ings regardless of the era in which they were collected.

We note that the new metrics were computed without 
any expert knowledge and with comparatively little human 
labor. Machine-derived embeddings can be computed auto-
matically from any image, raising the possibility of gener-
ating such spaces even for very large image datasets. The 
human-derived metrics were generated from crowd-sourced 
comparative judgments, using about 10,000 trials for both 
QR score and latent feature vectors. A human worker can 
complete 200 trials in about 10 min – thus the total human 
time invested for each metric was about 8 h and 20 min for 
98 images. A trained rater takes about 15 min to score a 
drawing using the 51-item DAMT, or a total of 24 h and 30 
min for 98 drawings. Given the tight relationship between 
QR and DAMT scores, this means that essentially the same 
information can be recovered with one-third the human 
effort, and without special knowledge or training. Moreo-
ver, because the forced-choice decisions can be collected 
in parallel, the required data collection can be completed in 
just an hour or two.
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Implications for contemporary use of drawings 
in cognitive assessment

Some aspects of Goodenough’s work can seem archaic by 
contemporary standards, and it is worth considering what 
implications, if any, the current analysis has for the use of 
children’s drawing in cognitive assessment. For instance, 
Goodenough presumably hewed to the contemporaneous 
understanding of gender as a binary natural kind, intimately 
connected to biology. Her observation of higher DAMT 
scores amongst girls versus boys of a given age spurred a 
broad tradition of research seeking to understand the causes 
and implications of these differences (Cox, 1993; Cox et al., 
2001; Goodenough & Harris, 1950; Harris, 1963; Lange‐
Küttner, 2011; Lange‐Küttner et al., 2002; Naglieri, 1988; 
Picard, 2015), which in turn is part of a legacy of develop-
mental research rife with claims and counter-claims about 
innate gender differences, or the absence thereof, in vari-
ous different aspects of cognition (e.g., Hyde, 2016; Hyde 
& McKinley, 1997). Today gender identity is viewed as a 
non-binary and potentially multi-factorial construct, shaped 
by psychology and culture, and independent of, but with a 
complex relationship to, biology (Hyde et al., 2019; Thorne 
et al., 2019). Given this more nuanced view, what is the point 
of asking whether children identified by their parents as male 
or female in 1926 differ in the way they produce drawings?

One reason is that, despite extensive prior work focusing 
on gender differences in human figure drawing, it has not 
been clear to what extent such differences hinge on the par-
ticular features raters are explicitly asked to score in check-
lists, or on the cultural norms of a given time and place. Prior 
work showed that both machine- and human-derived embed-
dings of contemporary human-figure drawings carried reli-
able information about participants’ identified gender (Jensen 
et al., 2023); however, in that dataset, (a) participants were 
at liberty to draw whatever gender they liked regardless of 
their own relative masculinity and/or femininity, and were 
likewise able to include or omit any gender-aligned distinc-
tions in their drawings, and (b) the human-derived embed-
dings were collected from participants belonging to the same 
time and culture as the children who produced the drawings, 
and so might be particularly sensitive to such signifying. The 
current results show that drawings collected in a culturally 
and temporally distal population, from children instructed 
specifically to depict an adult male, nevertheless possess 
latent structure reliably different in children identified as 
male versus female. The features encoding this structure were 
extracted from a machine vision model trained to classify 
modern photographs and applied in the current study to draw-
ings collected over a 100 years ago from children selected 
specifically to capture then-present cultural differences. 
Human raters judging image quality and similarity were at 
a long temporal and cultural remove from the children who 

produced the drawings; nevertheless these judgments carried 
information about participant gender. The result suggests that 
children of differing gender identities depict the human form 
in systematically different ways that do not depend on the 
particular choices of a checklist designer or close knowledge 
of the child’s cultural/temporal norms.

The current analyses have little to say about the causes 
of the observed differences. It is possible that they arise in 
part or in whole from acquired gender norms that shape how 
children choose to depict human figures. Goodenough sug-
gested, for instance, that boys may depict a figure engaged 
in activities that were culturally gendered in 1926, such as 
smoking a pipe or fighting a battle. Such activities are dif-
ficult to depict in a face-on figure, potentially leading boys 
to choose profile-based orientations more often than girls. In 
our study of more recently collected drawings, depictions in 
profile were exceedingly rare, as was the inclusion of acces-
sories such as ties, pipes, hats and guns (Jensen et al., 2023).

It is also the case that drawing, like language, requires 
the integrated coordination of several cognitive faculties, 
including perception, conceptual knowledge, spatial abili-
ties, memory, planning/executive function, and motor con-
trol. These abilities develop along diverse trajectories that 
reflect the interplay of experience and biology, leading to 
potentially highly complex profiles of change over time 
(Case & Okamoto, 1996; Elman, 1996; Goswami & Bryant, 
2012; Karmiloff-Smith, 2009). The early emergence of such 
differences in children’s drawings may provide an avenue for 
adjudicating or better understanding some of these patterns, 
especially if it is possible to bring methods like those we 
have described to bear on datasets collected across many dif-
ferent eras and cultures. If such differences solely reflect the 
socio-cultural milieu, together with learned attitudes about 
gender expression, the properties of drawings that “work” 
to differentiate drawings produced by male, female, or non-
binary-identifying children should not generalize well across 
cultural/temporal cohorts.

In a similar vein, although Goodenough endeavored to 
establish an instrument that could reflect cognitive abilities 
in a largely nonlinguistic and culturally unbound manner 
by collecting drawings from a sample of children that were 
both more closely connected to their ancestral heritage and 
spanned social and economic strata, it is reasonable to ques-
tion the broad generalizability of the DAMT and subsequent 
checklist-based approaches to the assessment of human fig-
ure drawings. Given that drawing conventions and practices 
vary across cultural and temporal contexts (Cox, 1993, 
1998; Cox et al., 2001; Kellogg, 1969), it is hard to con-
ceive of a feature-based checklist that would both include 
enough informative detail and successfully exclude poten-
tially biased additions, allowing for a single valued score 
that could accurately be assigned to drawings produced by 
the full diaspora of children living in the USA in the 1920s, 
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let alone all the world’s children living in different points 
in history. Those limitations have inspired both a legacy 
of updates to the checklist approach that Goodenough pio-
neered (e.g., Harris, 1963; Kellogg, 1969; Koppitz, 1968; 
Machover, 1949; Naglieri et al., 1991), and encouraged 
our own reconsideration of both the DAMT, the focus of 
this paper, and human figure drawing assessment processes 
based on checklists more generally (Jensen et al., 2023). 
Indeed, although the present study demonstrates that our 
contemporary approaches – human- and machine- derived 
embeddings temporally uncoupled from the period in which 
the drawing was created – can uncover latent structure within 
a relatively small historical dataset children’s drawings, it 
remains to be explored whether the novel approaches and 
findings described would generalize to non-Western and/or 
larger historical samples that more fully reflect the diversity 
of ways that children represent the human figure through the 
act of drawing.

Finally, it is worth noting that the images in this dataset 
are not a random sample of those collected but were cho-
sen to exemplify particular observations that Goodenough 
thought useful for training raters. Since Goodenough was 
interested in the possibility of gender differences, it is pos-
sible that she selected images exemplifying distinctions that 
she believed to be present in the sample, and that the cur-
rent methods succeed only due to that sampling confound. 
To us this seems unlikely, given that the male and female 
participants in this sample did not differ reliably on Good-
enough’s own metric (the DAMT) – the gender differences 
Goodenough reported were observed instead in the fuller 
and more representative sample, suggesting that the images 
included in the book may have downplayed such differences, 
if anything. Nevertheless, future work should look to more 
representative datasets to adjudicate this question.

Implications for using drawings to understand 
patterns of cognitive change in development

Goodenough emphasized drawing as a means of estimating 
mental function because it is near-universally practiced by 
children regardless of their language, culture, gender, race, 
education, socio-economic status, or geographic situation. 
Thus, she viewed the activity as providing a more level play-
ing field for assessment than other metrics that might depend 
to a greater degree upon the idiosyncrasies of one’s circum-
stances, language, or cultural milieu. Of course, children differ 
widely in the opportunities they have to engage in drawing 
activities, the materials to hand, extent of parental support and 
demonstration, and explicit instruction – the playing field for 
drawing is hardly level in that sense. However, the same can 
be said for measures based on linguistic competence, reason-
ing, mathematics, and essentially all other cognitive/behav-
ioral tasks commonly used in assessment.

We believe drawing to be particularly useful in the con-
text of understanding diversity in the development of chil-
dren’s cognition. Consider that the verbal components of 
contemporary measures (such as the Weschler Intelligence 
Scale for Children [WISC]; Wechsler, 1939; Weiss et al., 
2019) rely on tasks like explaining a word’s meaning and 
comprehending spoken or written text – activities that chil-
dren are likely to engage in as part of everyday life and 
schooling. In contrast, common non-verbal IQ measures 
include tasks such as pictorial analogy, image pattern com-
pletion, block-copying, timed replication of block arrange-
ments or geometric designs, working memory span, etc. 
– tasks intended to tap certain cognitive abilities but which 
the child is unlikely to have encountered, let alone practiced 
extensively or used in daily life (see, e.g., the review of non-
verbal IQ measures by DeThorne & Schaefer, 2004). In this 
sense, common IQ measures may disadvantage less-verbal 
children: only the verbal subscales incorporate tasks familiar 
and well-practiced to the child. Drawing, in contrast, is a 
non-verbal task that shares many properties with language: 
it draws upon perception, memory, knowledge, planning, 
sequential coordination, goal-monitoring, cognitive control, 
and motor function, is used to communicate meaning, and 
is an activity familiar to most children that they are likely to 
pursue in their own daily life. Thus, drawing incorporates 
many cognitive and functional aspects of language without 
the language, potentially providing a more useful and eco-
logically valid measure of nonverbal cognition.

The central problem for realizing this possibility has been 
how best to measure the rich structure appearing in the draw-
ings that children produce. The checklist approach Good-
enough pioneered (and its modern variants) boils this down 
to a single number – essentially a one-dimensional measure 
of the drawing’s quality. Our results show that multivariate 
structure uncovered by human and machine vision relates to 
characteristics of the child in ways not expressed by a single 
quality-based metric.

This observation has critical implications for the use of 
drawings in studies designed to understand patterns of change, 
independence, mutual influence, and genetic effects in cogni-
tive faculties over the course of development. Such studies 
typically rely on understanding patterns of covariation and 
independence over time via, for instance, structural equation 
modeling, across tasks thought to tap different core cognitive 
abilities. A key goal is to estimate whether a given predictor 
explains significant variance in an outcome when the effects of 
other possible causes have been partialled out. We know from 
studies like TEDS (Arden et al., 2014) that a drawing check-
list score obtained early in life predicts significant variance 
in IQ later in life, over and above other factors. If, however, 
richer drawing metrics explain greater variation in outcomes 
(including IQ but also other important indicators of cognitive 
functioning), this means there is less residual variance, and 
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different patterns of residual variation, remaining for other 
candidate causal factors to explain. In other words, replac-
ing a one-dimension drawing score with the richer metrics 
we have described can potentially alter, not just the putative 
relationship between drawing and other abilities, but the full 
pattern of predictive relationships observed across a suite of 
different assessments. Testing this possibility will, of course, 
require introduction of the new measures into much richer 
datasets, but the current study shows that, because drawings 
leave a trace of the child’s state that persists through time, 
such introduction can be done post hoc on any dataset that 
includes copies of the original drawings. In the present study, 
we followed upon prior work using a well-studied (Fan et al., 
2018; Jensen et al., 2023; Jha et al., 2023; Long et al., 2021) 
convolutional neural network, VGG-19 (Simonyan & Zisser-
man, 2014). Future work could consider whether alternative 
machine vision models capture similar or somewhat different 
varieties of structure.

Finally, following Goodenough, we have focused on 
whether/how information contained in children’s drawings 
might be used in cognitive assessment – but we do not mean 
to suggest that drawings alone are sufficient to this task or 
that other metrics are inherently flawed. Instead we believe 
that structure in drawings can provide a complementary 
source of information to other common metrics that may 
better capture how patterns of developmental change across 
verbal and nonverbal aspects of cognition. It remains an 
empirical question whether richer characterization of struc-
ture in children’s drawings capture patterns of variation that 
elude other measures; answering this question will require 
application of methods like those we have developed to 
much larger longitudinal datasets.

Conclusion

Human figure drawings have long been used as a simple, 
fun, and ecologically valid tool for estimating the develop-
ment of cognition over childhood. Variants of the check-
list method pioneered by Florence Goodenough remain in 
widespread use today in the assessment of drawings, and are 
able to capture important information about a child’s mental 
abilities in a manner that taxes many cognitive faculties but 
does not rely on language. The current work shows, how-
ever, that drawings encode rich, multi-dimensional structure 
beyond what checklists can capture, and that such structure 
relates more systematically to a child’s demographic and 
mental characteristics than checklists have suggested. These 
patterns extend across time and culture, can be efficiently 
measured with contemporary computational/behavioral 
methods, and offer a new window into patterns of cognitive 
change over time in the developing child.
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