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Abstract The debate over unitary/multiple category-learning
utilities is reminiscent of debates about multiple memory sys-
tems and unitary/dual codes in knowledge representation. In
categorization, researchers continue to seek paradigms to dis-
sociate explicit learning processes (yielding verbalizable
rules) from implicit learning processes (yielding stimulus–re-
sponse associations that remain outside awareness). We intro-
duce a new dissociation here. Participants learned matched
category tasks with a multidimensional, information-
integration solution or a one-dimensional, rule-based solution.
They received reinforcement immediately (0-Back
reinforcement) or after one intervening trial (1-Back reinforce-
ment). Lagged reinforcement eliminated implicit,
information-integration category learning but preserved ex-
plicit, rule-based learning. Moreover, information-integration
learners facing lagged reinforcement spontaneously adopted
explicit rule strategies that poorly suited their task. The results
represent a strong process dissociation in categorization,
broadening the range of empirical techniques for testing the
multiple-process theoretical perspective. This and related
methods that disable associative learning—fostering a transi-
tion to explicit-declarative cognition—could have broad util-
ity in comparative, cognitive, and developmental science.
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Categorization is an essential cognitive function with great
evolutionary depth. It increases fitness because categories—
that is, psychological equivalence classes—support adaptive
behavior toward the members of natural kinds (e.g., members
of prey and predator species). Given its importance, categori-
zation is a sharp focus of cognitive research with animals (e.g.,
Cerella, 1979; Herrnstein, Loveland, & Cable, 1976; Medin,
1975; Pearce, 1994; Smith, Redford, & Haas, 2008;
Wasserman, Kiedinger, & Bhatt, 1988) and humans (e.g.,
Ashby & Maddox, 2011; Brooks, 1978; Feldman, 2000;
Knowlton & Squire, 1993; Medin & Schaffer, 1978;
Murphy, 2003; Nosofsky, 1987; Rosch & Mervis, 1975;
Smith & Minda, 1998).

Categorization could be important enough that organisms
bring complementary categorization processes to bear on dif-
ferent situations. Cognitive systems are often diversified, not
parsimoniously unitary, as when animals use circadian or in-
terval timing, dead-reckoning or landmark navigation, and so
forth. There are trade-offs between alternative processes in
human categorization (e.g., Ashby & Maddox, 2011; Blair
& Homa, 2003; Homa, Sterling, & Trepel, 1981; Reed,
1978; Smith, Chapman, & Redford, 2010; Smith, Murray, &
Minda, 1997). There are parallel trade-offs in animal catego-
rization, pointing to evolutionary continuities (e.g., Cook &
Smith, 2006; Smith, Beran, Crossley, Boomer, & Ashby,
2010; Smith et al., 2010; Smith, Coutinho, & Couchman,
2011; Smith, Zakrzewski, Johnson, & Valleau, 2016;
Wasserman et al., 1988).

To organize these results, some take a multiple-process
theoretical perspective toward categorization (e.g., Ashby &
Maddox, 2011; Erickson & Kruschke, 1998; Homa et al.,
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1981; Minda & Smith, 2001; Rosseel, 2002; Smith & Minda,
1998). They suppose that multiple categorization utilities can
be called upon when necessary to learn classifications and
discriminations. Not everyone endorses this perspective,
though. Some favor explaining categorization as a single, uni-
tary process (e.g., Nosofsky & Johansen, 2000; Nosofsky,
Little, Donkin, & Fific, 2011). The present article sheds addi-
tional light on this debate by presenting a new dissociative
paradigm that broadens the empirical support for a multiple-
process theoretical perspective.

Implicit-procedural and explicit-declarative category
learning

Implicit-procedural learning

Our approach is grounded in a multiple-process perspective
drawn from cognitive neuroscience (e.g., Ashby & Ell, 2001;
Ashby & Valentin, 2005; Maddox & Ashby, 2004). One inte-
grated set of processes—called here implicit-procedural learn-
ing—is linked to the basal ganglia. It is an important
reinforcement-based learning system. It may underlie
humans’ procedural, skill, and habit learning (e.g., Mishkin,
Malamut, & Bachevalier, 1984) and performance in instru-
mental-conditioning, perceptual-categorization, and some
discrimination-learning tasks (Ashby & Ennis, 2006; Barnes,
Kubota, Hu, Jin, & Graybiel, 2005; Divac, Rosvold, &
Szwarcbart, 1967; Filoteo, Maddox, Salmon, & Song, 2005;
Knowlton, Mangels, & Squire, 1996; Konorski, 1967;
McDonald & White, 1993, 1994; Nomura et al., 2007;
O’Doherty et al., 2004; Packard, Hirsh, & White, 1989;
Packard & McGaugh, 1992; Seger & Cincotta, 2005;
Waldschmidt & Ashby, 2011; Yin, Ostlund, Knowlton, &
Balleine, 2005). Categorization and discrimination are old
and crucial adaptations that might have originated in evolu-
tionarily older brain regions such as the basal ganglia. This
implicit system learns associatively through procedural-
learning processes akin to conditioning. It learns slowly, rely-
ing on temporally contiguous reinforcement. Participants gen-
erally cannot describe their implicit categorization strategies.

Explicit-declarative learning

Another integrated set of processes—called here explicit-
declarative category learning—is linked to the prefrontal cor-
tex, the anterior cingulate gyrus, the head of the caudate nu-
cleus, and the hippocampus. It uses executive attention
(Posner & Petersen, 1990) and working memory (Fuster,
1989; Goldman-Rakic, 1987), capacities that would support
hypothesis testing and rule formation (Brown & Marsden,
1988; Cools, van den Bercken, Horstink, van Spaendonck,
& Berger, 1984; Elliott & Dolan, 1998; Kolb & Whishaw,

1990; Rao et al., 1997; Robinson, Heaton, Lehman, &
Stilson, 1980). It learns by testing hypotheses. It learns rules
that participants can describe verbally.

Evidence for implicit and explicit category learning comes
from information-integration (II) and rule-based (RB)
category-learning tasks (see Fig. 1). Exemplars in these tasks
are defined by their values on two perceptual dimensions. For
example, each stimulus might be a box of some size
(Dimension X) and some density of lit pixels (Dimension Y).
In Fig. 1, individual symbols pinpoint the dimensional values
of specific Category A and Category B members (gray and
black symbols, respectively).

Figure 1a shows stimuli for an II task. Both dimensions pres-
ent valid but insufficient category information. To categorize
successfully, the participant must integrate the dimensional in-
formation (thus, an II task). The cognitive system accomplishes
this integration implicitly. Humans cannot explain their solution
of an II task verbally, especially when the stimulus dimensions
are incommensurate. Note that in the II task, one-dimensional
rules are nonoptimal. Avertical or horizontal category boundary
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(a) Information-IntegrationTask

Fig. 1 Information-integration and rule-based category tasks illustrated
within a 101 × 101 stimulus space. The gray and black symbols,
respectively, indicate Category A and Category B stimuli
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(i.e., an X rule or Y rule, respectively) will not separate the two
categories appropriately, producing poor performance.

Figure 1b shows an RB category task. Only Dimension X
presents useful category information. Low and high values on
Dimension X define Category A and Category B members,
respectively. A one-dimensional rule is the optimal solution
(thus, an RB task). These rules are explicit (held in working
memory) and declarative (verbalizable). Note that RB (and II)
participants are never shown the map of the stimulus space as
in Fig. 1. Instead, they must learn to categorize based on the
presentation of single stimuli with attendant feedback.

Figure 1 shows that II and RB tasks are simply rotations of
one another through stimulus space. The tasks are matched for
category size, within-category exemplar similarity, between-
category exemplar dissimilarity, overall category discrimina-
bility (d′), and for the proportion correct that an ideal observer
can optimally achieve. Therefore, there is no objective, a priori
difficulty difference between RB and II tasks. Illustrating this
equivalence, Smith et al. (2011) showed that pigeons
(Columba livia) learned II and RB tasks equally well and
quickly. Probably this result was obtained because pigeons
lack an explicit category-learning system that selectively sup-
ports rule learning. In contrast, humans do learn RB tasks
faster than II tasks because they do deliberately learn explicit
rules. Accordingly, the II and RB tasks are balanced and use-
ful mutual controls. Moreover, an RB learning advantage sug-
gests that a particular rule task is indeed supported by explicit
category-learning processes.

Empirical goal

There have also been demonstrations that suggest II–RB dis-
sociations in categorization. For example, delaying feedback
temporally following category response impairs II learning
more than it impairs RB learning (Maddox, Ashby, & Bohil,
2003; Maddox & Ing, 2005). Additionally, participants can
self-instruct to learn RB categories under unsupervised condi-
tions when no feedback is available, but they cannot learn II
categories in this way (Ashby, Isen, & Turken, 1999; Ashby,
Queller, & Berretty, 1999). However, these demonstrations
have not been universally persuasive. Cognitive science has
an insistent impulse to pursue parsimonious, unitary explana-
tions of performance. This is why theorists long pursued
unitary-code theory in the imagery literature and long doubted
the idea of multiple, dissociable systems or processes in the
memory literature (e.g., Nairne, 1990; Pylyshyn, 1973). In
categorization, too, this hope for parsimony has run deep, so
that for 20 years the multiple-systems idea has taken hold only
slowly, with difficulty (e.g., Nosofsky&Kruschke, 2002). For
example, the RB–II accuracy difference in performance has
frequently been cast as a difficulty difference confronting a
unitary system, even though the objective difficulty of the

tasks (without assuming selective attention and rule forma-
tion) is equal. Therefore, there is still a need for converging
operations, for new dissociative paradigms that broaden the
empirical support for a multiple-process theoretical perspec-
tive. This is the goal of the present article. In addition, our new
paradigm has a distinctive feature that can grant researchers
access to new lines of investigation.

Empirical approach

Our goal was to provide a new empirical dissociation between
implicit-procedural and explicit-declarative category learning,
strengthening the empirical basis for the multiple-process the-
oretical perspective. We also sought to produce the simplest
dissociation of its kind. We wanted our paradigm to scale to
constructive research with young children, to children with
language delays and learning challenges, and to children with
different places along the autistic spectrum. We wanted our
dissociative method to scale to any species capable of discrim-
ination learning. This potential reach was the distinctive fea-
ture of our paradigm. In contrast, for example, placing a young
child or nonhuman primate into an unsupervised category-
learning experiment of this type is likely to be quite unsuc-
cessful, because it requires a sophisticated instructional prep-
aration and a mature, self-controlled cognitive orientation by
the participant.

To create the simplest and sharpest possible dissociation,
we took on the considerable challenge of disabling the
implicit-procedural learning system. We did this by disrupting
its reinforcement dynamic, disrupting thereby a dominant
reinforcement-learning system in the brain. It is helpful to
describe that reinforcement dynamic here.

The basal ganglia are important for various kinds of
reinforcement-based discrimination learning. In nonhuman
primates, for example, extrastriate visual cortex projects di-
rectly to the tail of the caudate nucleus—with massive con-
vergence of visual cells onto caudate cells that project on to
the premotor cortex (Alexander, DeLong, & Strick, 1986).
The caudate is well placed to associate percepts through to
actions, perhaps its primary role. Multiple lines of research
support that role (Eacott & Gaffan, 1992; Gaffan & Eacott,
1995; Gaffan & Harrison, 1987; McDonald & White, 1993,
1994; Packard et al., 1989; Packard &McGaugh, 1992; Rolls,
1994; Wickens, 1993).

Rewards cause dopamine release into the tail of the caudate
nucleus (Hollerman& Schultz, 1998; Schultz, 1992;Wickens,
1993). The dopamine signal can strengthen recently active
synapses that were plausibly participatory in reward
(Arbuthnott, Ingham, & Wickens, 2000; Calabresi, Pisani,
Centonze, & Bernardi, 1996). There is a constraint on this
mechanism. If reinforcement lags, and the neural system
returns to baseline, there is no record of the contributing
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synapses and no way to strengthen them. This system cannot
access working memory or declarative consciousness in
assigning neural credit for rewards. In caudate-mediated dis-
crimination learning, the idea of stimulus–response (SR)
bonds is literal, because the caudate links (associates) cortical
stimulus representations (its direct inputs) to adaptive re-
sponses (its indirect outputs). But for this system to operate,
the relevant cortical representation must still be active, and the
reinforcement signal must arrive promptly.

Illustrating this dynamic, Yagishita et al. (2014) used
optogenetic methods to stimulate sensorimotor inputs and do-
paminergic inputs separately, gaining control over their tem-
poral asynchrony. Dopamine failed to promote strengthened
synapses if delayed beyond 2.0 s. Remarkably, these authors
imaged dendritic spine improvement but only saw it given
immediate reinforcement. The delay curve they plotted is like
that plotted when humans learn categories at different rein-
forcement delays (Maddox et al., 2003; Maddox & Ing,
2005). This temporal restriction applies to many associative
and instrumental-conditioning phenomena familiar to com-
parative psychologists (Han et al., 2003; Kryukov, 2012;
Raybuck & Lattal, 2014; Smith & Church, 2017), and it has
been known for a century (Pavlov, 1927; Thorndike, 1911).

The implication of this work is that implicit-procedural
learning could be disabled by eliminating the availability of
relevant cortical representations or by delaying the arrival of
the reinforcement—or both, as in our approach. Implicit-
procedural learning would become impossible, and one could
evaluate participants’ capacity to adopt alternative learning
processes instead.

We instituted a 1-Back reinforcement regimen as a simple
way to arrange this disruption. In this regimen, reinforcement
lagged one trial behind the stimulus–response pairs as they
occurred, so that reinforcement never related to the present
stimulus or response. Participants received feedback for Trial
1 after completing Trial 2, for Trial 2 after completing Trial 3,
and so forth. They were instructed on the nature of the feed-
back they would receive. At feedback, the reinforcement-
relevant stimulus was gone and masked by the present stimu-
lus. The reinforcement was delayed outside the tolerance of
striatal learning. Our hypothesis was that 1-Back reinforce-
ment would disrupt the associative reinforcement-learning
system thoroughly (doubly) by blocking it representationally
and temporally, even though participants had full knowledge
of the reinforcement regimen.

Predictions

First, 1-Back reinforcement (compared to 0-Back rein-
forcement) should defeat the reinforcement-based pro-
cesses underlying II learning. We predicted this learning
process would collapse.

Second, 1-Back reinforcement should affect RB learning
minimally. RB learners could hold their rule in working mem-
ory and evaluate its aptness equally well facing lagged or
immediate reinforcement. So RB learning should still succeed
under lagged reinforcement.

Third, if 1-Back reinforcement disables II but not RB cat-
egory learning, II participants facing 1-Back reinforcement
might turn—by information-processing necessity—to rules
instead. Thus, we predicted that II 1-Back participants would
supply their own rule construal of the II task because that was
what they still could do—even though such a rule was not
much good in the II task.

If confirmed, these predictions would provide an elemental
dissociation between RB and II learning and strongly demon-
strate that lagged reinforcement disables associative,
reinforcement-based learning.

Method

Participants

One hundred and seventy-three Georgia State undergraduates
with normal or corrected-to-normal vision participated for
course credit. Participants’ data were excluded with cause if
they completed fewer than 480 trials (one participant each
excluded from the RB 0-Back, II 1-Back, and II 0-Back con-
ditions) or if they showed no learning. No learning was de-
fined as not scoring significantly above chance performance
(56.7% correct) in the last half of the trials (15, 16, 13, and six
participants were excluded for this reason from the RB 1-
Back, RB 0-Back, II 1-Back, and II 0-Back conditions, re-
spectively). Because we are interested in the strategies of cat-
egory learning used in the last 100 trials, it was important to
only include participants who were still actively engaging the
task and trying to correctly categorize even at the end. This
learning criterion allowed us to exclude participants who ei-
ther because of a lack of motivation, boredom/fatigue, or dif-
ficulty understanding the instructions were no longer trying to
make accurate decisions toward the end. Based on previous
findings, we used a stopping rule of 30 includable participants
per condition. The final sample included 120 participants—30
in each of the four conditions.

Stimuli

The stimuli were unframed rectangles containing green lit
pixels, presented on a black background at the right of a 17-
in. computer monitor. They were viewed from a distance of
about 24 in. The stimulus rectangles varied in size and pixel
density. Both dimensions had 101 levels (Levels 0–100).
Rectangle width and height (in screen pixels) were calculated
as 100 + level and 50 + level/2, respectively. Thus, rectangle
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size ranged from 100 × 50 (Level 0) to 200 × 100 (Level 100).
Pixel density—that is, the proportion of pixel positions within
the rectangle that were illuminated—was calculated as 0.05 ×
1.018level. Thus, density varied from .05 (Level 0) to .30
(Level 100). Figure 2 shows the stimuli in the four corners
of the stimulus space.

Category structures The category structures used were a
major-diagonal II structure with size and density relevant
and a vertical RB structure with size relevant. The categories
were defined by bivariate normal distributions along the stim-
ulus dimensions. Each exemplar was selected as a coordinate
pair in the 101 × 101 space, and these abstract levels were
transformed into concrete size and density values (see Stimuli,
above). Each participant received his or her own sample of
randomly selected category exemplars appropriate to the
assigned task. To control for statistical outliers, we did not
present exemplars whose Mahalanobis distance (e.g.,
Fukunaga, 1972) from the category mean exceeded 3.0. This
ensured well-behaved elliptical stimulus distributions for the
categories.

Design and procedure

The experiment included four between-participant conditions
created by crossing two category structures (RB, II) with two
reinforcement conditions (0-Back, 1-Back). Participants were
assigned randomly to a task and reinforcement condition
using their participant number in the experiment.

Our crucial manipulation was to disrupt the normal cycle of
immediate reinforcement following the response to a stimulus.
In our 0-Back reinforcement condition, this cycle was
sustained. Participants saw a stimulus, categorized it by mak-
ing a Category A or Category B response, and then received
immediate feedback. In our 1-Back reinforcement condition,
this cycle was disrupted. Participants saw a stimulus, catego-
rized it by making a Category A or Category B response, but
then received feedback pertaining to the previous trial they
had completed (after Trial 2, feedback for Trial 1 was deliv-
ered; after Trial 3, feedback for Trial 2 was delivered, etc.).

The feedback was positioned spatially to make clear to
which trial the feedback pertained—this was the purpose of
alternating Top and Bottom trials. Notice that the 1-Back re-
inforcement did not concern a presently available stimulus, or
the most recently available stimulus/cortical representation, or
the most recently completed behavioral response. It concerned
a previous stimulus, cortical representation, and response.
Associative learning was disrupted representationally. It was
also disrupted temporally because the reinforcement given
was delayed several seconds beyond the stimulus–response
pair to which it belonged.

On each trial, the to-be-categorized rectangle appeared at
the computer screen’s far right. Toward the left of the screen
were the large-font letters “A” (on the left) and “B” (on the
right), along with a participant-controlled cursor midway be-
tween them. Participants pressed the “S” or “L” key on the
computer keyboard to choose the response “A” or “B,” indi-
cating to which category they thought the stimulus belonged.

Fig. 2 Illustration of concrete stimuli within the 101 × 101 stimulus space, showing the maximum variation of rectangle size (left to right) and pixel
density (bottom to top)

Mem Cogn (2018) 46:261–273 265



The response keys corresponded spatially to the “A” and “B”
response icons on the screen and they had tape labeling the
appropriate keys “A” and “B.” Top and Bottom trials were
arrayed across the top and bottom halves of the screen, respec-
tively, for reasons already explained.

In the 0-Back condition, participants received immediate
feedback after each trial. After correct responses, they saw,
This Top (Bottom) trial was correct +1 Points Total Points
N+1. After incorrect responses, they saw, This Top (Bottom)
trial was incorrect −1 Points Total Points N-1. In the latter
case, they received a brief penalty time-out of 2 s.

In the 1-Back condition, the feedback was displaced spa-
tially and temporally. That is, following a Bottom trial, partic-
ipants received lagged feedback regarding the previous Top
trial. For example, they might see, given a correct response,
and presented at the top of the screen in the position for Top
trial feedback, This Top trial was correct +1 Points Total
Points N+1. Following a Top trial, participants received
lagged feedback regarding the previous Bottom trial. For ex-
ample, they might see, given an incorrect response, and pre-
sented at the bottom of the screen in the position for Bottom
trial feedback, This Bottom trial was incorrect−1 Points Total
Points N-1. Trials continued until the 52-min session ended or
the participant completed 480 trials.

Instructions: 1-Back condition Participants were told that
theywouldcategorizepixel boxesvarying in sizeanddotdensity
asCategoryAorCategoryB.Theywere told thatA andBboxes
would occur equally often, and that they would have to guess at
first, but later would learn to respond correctly. They knew that
they would gain or lose 1 point for correct and incorrect re-
sponses, respectively, and that they would receive a time-out
for incorrect responses. They were told that errors would cost
them points, and time to earn points, and that it couldmake their
session longer. Theywere told that on Trial 2 theywould receive
feedback from their response on Trial 1, and on Trial 3 receive
feedback from their response onTrial 2. Theywere told that their
feedbackwould always lag one trial behind throughout the task.
They were told that even though the boxes alternated top and
bottom on the screen, this had nothing to do with their Category
AorCategoryB status. Thiswas done to help themkeep track of
whether the feedback applied to a top or bottom trial.

Instructions: 0-Back condition The instructions were similar
in many respects for the 0-Back participants, except that they
were simply told that they would receive feedback on their
responses after each trial.

Formal modeling

Following Maddox and Ashby (1993), we fit rule-learning
and procedural-learning formal models to each participant’s
last 100 categorization responses. The rule-learning model

assumes that participants set a criterion on one stimulus di-
mension. This unidimensional criterion can be visualized as a
vertical or horizontal line through the stimulus space of Fig. 1.
The modeling specifies the horizontal or vertical line that
would best partition the participant’s Category A and
Category B responses. The rule-learning model has two free
parameters: a perceptual noise variance and a criterion value
on the relevant dimension. The procedural-learning model
assumes that participants partition the stimulus space conso-
nant with a diagonal decision boundary of some slope and
intercept. The modeling lets us specify the line of any slope
and intercept that best partitions the participant’s Category A
and Category B responses. The procedural-learning model has
three free parameters: a perceptual noise variance and the
slope and intercept of the decision boundary.

The modeling yields the best fitting decision boundary that
summarizes the partition between the categories the partici-
pant achieved. This boundary summarizes category perfor-
mance. However, participants may not learn this boundary,
or use this boundary, or have this boundary as any aspect of
their category knowledge. In particular, in the case of II learn-
ing, participants learn in essence SR associations, the correct
response mapping to many category instances. This will pro-
duce a category partition that the model captures as a bound-
ary and that we draw in the figures below, but this boundary
almost certainly has no role in the person’s II categorization
performance, and no place in their II category knowledge.

We estimated the best fitting values for the free parameters
in the models using the method of maximum likelihood. The
process of model fitting asked which model would have cre-
ated—with maximum likelihood—the distribution of
Category A–B responses the participant produced. The best
fitting model was chosen as the one with the smallest
Bayesian information criterion (BIC Schwarz, 1978), which
is defined as: BIC = r lnN – 2lnL, where r is the number of free
parameters, N is the sample size, and L is the likelihood of the
model given the data.

Results

Accuracy-based analyses

The proportion of correct responses was examined across
twenty-four 20-trial blocks in a general linear model (GLM),
with task (RB, II) and reinforcement condition (0-Back, 1-
Back) as between-participant factors and trial block as a
within-participant factor. The significant task main effect,
F(1, 116) = 65.423, p < .001, ηp

2 = .979, confirmed that RB
learning was generally stronger than II learning. This is a
ubiquitous finding in this cognitive-neuroscience research ar-
ea because humans’ rule-based processes for category learn-
ing are insistent within their cognitive system and privileged
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in category learning. The significant reinforcement main ef-
fect, F(1, 116) = 10.522, p = .002, ηp

2 = .881, confirmed the
intuitive result that 0-Back reinforcement generally produced
stronger category learning. The significant trial block main
effect, F(23, 2668) = 30.535, p < .001, ηp

2 = .208, confirmed
that learning occurred.

The crucial result was the three-way interaction among
task, reinforcement, and trial block, F(23, 2668) = 3.163, p
< .001, ηp

2 = .027. The sense of this result is that 1-Back
reinforcement affected learning across trial blocks differently
in the RB and II tasks. This difference can be seen in the
learning curves represented in Fig. 3.

A careful examination of the learning curves shows very fast
learning in theRB taskwith 0-Back feedback. ByBlock 4, group
performance is at a high level of accuracy, suggesting that most
participants have discovered the dimension of importance and
found a good decision boundary.With 1-Back feedback, RB task
participants are slower to come to this discovery, but byBlock 10
they are also at a highly accurate performance level. The slower
discovery of the dimension of interest is not surprising. Greater
working memory demands are required in the 1-Back condition,
and the nature of the feedback can be initially confusing.
Examination of the II task condition with 0-Back feedback sug-
gests a much more gradual learning curve that continues to im-
prove slowly through the blocks, though by the end has not
reached theveryhighaccuracyseen inbothRBtasks.Ontheother
hand, in the II conditionwith1-Back feedback,what little learning
takes place seems to happen within the first few blocks, and then
performance remains largely constant until the end of the blocks.

We further summarized this result in two ways: first by fo-
cusing on participants’ performance during their last trial block
and second by examining the change in performance between
the first block and the last block. In the last block, participants
averaged .920, 95%CI [.970, .870]; .900, 95%CI [.965, .835];
.733, 95%CI [.780, .687]; and .653, 95%CI [.699, .608] correct
in theRB-0,RB-1, II-0, and II-1conditions, respectively.When
we examined change in accuracy across the experiment (first
block subtracted from last block), we saw a similar pattern.
Participants’ average change was .300, 95% CI [.368, .232];
.328, 95% CI [.407, .250]; .207, 95% CI [.275, .138]; and
.130, 95% CI [.205, .055] in the RB-0, RB-1, II-0, and II-1
conditions, respectively. Taken together, these patterns suggest
that 1-Back reinforcement had essentially no cost to final RB
learningbut a substantial cost to II learning.Themodelinganal-
yses reveal the true extent of this cost.

Model-based analyses

We modeled participants’ last 100 trials to determine whether
they adopted appropriate decision strategies and whether dif-
ferent reinforcement regimens changed their decision strate-
gies in a theoretically meaningful way.

Figure 4a shows modeling results for the RB 0-Back par-
ticipants. Twenty-three of the 30 decision boundaries were
arranged vertically along the midline of the stimulus space’s
X dimension. Many participants found the RB task’s adaptive
solution—a one-dimensional size rule. Two participants
misconstrued the task and performed according to a Y-dimen-
sion rule, producing horizontal decision boundaries. Four par-
ticipants were best fit by a procedural-learning model that
produced diagonal decisional boundaries. One participant
was modeled as having a random-guessing strategy; for this
participant, no definite decision boundary could be drawn.

Figure 4b shows modeling results for the RB 1-Back par-
ticipants. This panel looks like that in Fig. 4a. Twenty-five of
the 30 decision boundaries were vertical, indicating the par-
ticipant’s appreciation of the task’s appropriate X-dimension
rule. Three participants misconstrued the task and performed
according to a Y-dimension rule (horizontal decision bound-
aries). One participant was best fit by a procedural-learning
model and showed a diagonal decision boundary. There was
one random-guessing participant again (no decision
boundary).

Overall, the modeling results of the RB tasks confirmed the
performance results. That is, participants were easily and
equally able to learn the RB task’s size-rule solution under
conditions of 0-Back and 1-Back reinforcement. The lagged
reinforcement did not alter the character of their final learning.
We confirmed this result statistically by computing chi-square.
We used the number of participants whowere best fit by the X-
dimension rule, the Y-dimension rule, and the procedural-
learning model in the RB 0-Back condition as the expected
category observations, and the number in each category in the
RB 1-Back condition as the observed values. These numbers
were not significantly different between the conditions: χ2(2,
N = 29) = 2.924, p = .404; w = .318.1

Figure 4c shows modeling results for the II 0-Back partici-
pants. Eighteen of the participants were best fit by a procedural-
learning model that indicated a diagonal decision boundary
through the stimulus space. Most of these decision boundaries
wereorganizedalong the stimulus space’smajordiagonal.These
participants found a way to integrate the informational signals
provided by the two stimulus dimensions towardmaking appro-
priate category decisions. However, as is always true in experi-
ments of this kind, some humans insisted on imposing adventi-
tious unidimensional rulesonto the II structure. In this case, 12of
the participants were best fit by a rule model that indicated for
themeitherahorizontaloraverticaldecisionboundary.Humans’
rule-seeking category-learning system is insistent and can be
dominant even when the result is suboptimal performance. This
“misbehavior” by humans in the II task is another indication of

1 Individuals who best fit the guessing model were not included in the chi-
square analyses. This made the analyses more conservative in relation to our
hypotheses.
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the dissociative aspect of humans’ category learning that is the
focus of this research.

Figure 4d shows modeling results for the II 1-Back partic-
ipants. This panel does not look like that in Fig. 4c. Now, only
10 of the participants were best fit by a procedural-learning
model of any slope. From the II 0-Back to the II 1-Back
condition, the number of sloped decision boundaries was es-
sentially halved. Now, 19 of the participants were best fit by a
rule model, showing an adventitious, inappropriate vertical or
horizontal decision boundary. From the II 0-Back to the II 1-
Back condition, this inappropriate use of a rule framework
essentially doubled. This condition also contained one
random-guessing participant (no decision boundary drawn).

In reality, the II-1-Back learning success was far worse
than stated. Only two participants, compared to 15 partic-
ipants in the II 0-Back condition, showed the positively
sloped diagonal boundary that would suggest any appreci-
ation of the II task’s true underlying category structure.
One may almost say that 1-Back reinforcement switched
off true II category learning completely and qualitatively.
Instead, participants defaulted to a rule strategy with deci-
sion boundaries dividing Dimension X or Dimension Y.
The participants may have defaulted to the only categori-
zation strategy that was available to them under 1-Back
reinforcement. They had to hold in working memory a
description of what they had done on that past trial so that
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the lagged reinforcement—when it finally came—could
still support continuing category learning. As suggested
by multiple-process theory, this description apparently
had the form of a one-dimensional rule—it certainly did
not have the form of an appropriate integrative principle
across the dimensions.

Overall, modeling results of the II tasks confirmed the
performance results. That is, participants were not easily
able or equally able to learn the II task’s appropriate diag-
onal partition under conditions of 0-Back and 1-Back re-
inforcement. The lagged reinforcement did alter their pat-
tern of learning. We confirmed this result statistically using
a similar analysis to that used for RB participants, χ2(2, N
= 29) = 8.306, p = .016; w = .535.

To further quantify this seemingdifference in strategyuse,
weconsideredtheperformanceaccuracyonthemodeledtrials
(the last 100) of only the participants whowere best fit by the
“correct” strategymodel for their condition (RB participants
best fit by an X-dimension rule, II participants best fit by a
procedural-learningmodel).Weconducted aGLMusingcat-
egorization task (RB, II) and reinforcement (0-Back,1-Back)
as the independent variables. The significant main effect of
task,F (1, 72) = 213.000, p< .001, ηp

2 = .747, confirmed that
participants in theRBconditions performedmore accurately.
The significant reinforcementmain effect,F(1, 72) =23.883,
p < .001, ηp

2 = .248, confirmed that 0-Back reinforcement
produced stronger category learning. The significant Task ×
Reinforcement interaction,F(1, 72) = 10.635, p< .001,ηp

2 =
.128, suggested that the effect of reinforcement type on accu-
racy was different depending on whether participants were
“correctly”best fit by theprocedural learningor theX-dimen-
sion rule model. Planned comparisons found that RB perfor-
mance levelswerenot statisticallydifferent, t(46)=1.375,p=
.173,Cohen’sd=0.485.As seen inFig. 4, both 0-Back and1-
Back X-rule participants showed equivalently accurate per-
formance and similarly correct placement of the rule bound-
ary (.968, 95%CI [.978, .957] and .941, 95%CI [.972, .910]
for 0-Back and 1-Back, respectively). However, II perfor-
mance levels were statistically different, t(26) = 5.050, p <
.001, Cohen’s d = 1.640. Even for participants best fit by an
II model, 1-Back reinforcement significantly impaired their
ability to learn the correct decision boundary (.779, 95% CI
[.823, .735] and .644, 95% CI [.698, .590] for 0-Back and 1-
Back, respectively).

Indeed, the modeling results strengthen the study’s theoret-
ical interpretation beyond the accuracy-based analyses. The
.65 accuracy achieved by II 1-Back participants definitely
does not signify 65% successful and appropriate II learning.
It signifies heavy dependence on adventitious rules, and it
signifies heavy dependence on the wrong information-
processing strategy for the II task. Really, there was almost
no successful II learning in this condition. Implicit-procedural
learning was disabled by 1-Back reinforcement.

General discussion

Cognitive science often expresses its preference for unitary
codes in knowledge representation and for single, all-
explanatory learning/memory systems. It is a central issue
whether minds are parsimonious in this way, or whether minds
have accumulated many useful, nonparsimonious apps during
cognitive evolution. The debate over multiple categorization
systems reflects this tension again. Thus, categorization re-
searchers continue to seek strong dissociative paradigms to
determine whether multiple, qualitatively different processes
are suggested. We introduced a new paradigm here.

We predicted that 1-Back reinforcement would disable as-
sociative, reinforcement-driven learning and the II category-
learning processes that depend on it. This disabling seems to
have been complete.

We predicted that RB participants could hold their provi-
sional category rule in working memory, making it accessible
for evaluation under 0-Back or 1-Back reinforcement. RB
learning survived 1-Back reinforcement. The dissociation
from these two results combined provides new support for a
multiple-process conception of human categorization.
Different category tasks foster different category-learning
processes.

We predicted that participants might fall back, by
information-processing necessity, to rule strategies when 1-
Back reinforcement disabled implicit-procedural learning.
This implicit system cannot bridge between a past stimulus–
response pair and future reinforcement. Workingmemory can,
but it has been known since Bruner, Goodnow, and Austin
(1956) that humans’ explicit classificatory rules are low-
dimensional or one-dimensional. In fact, II 1-Back partici-
pants largely turned toward one-dimensional rules.

A broader class of learning paradigms

Our paradigm is complementary to others pursuing a similar
theoretical goal—to block the influence of immediate rein-
forcement and foster the recruitment of explicit-declarative
learning processes instead. These complementary tasks lie
along a spectrum. Our task here separated the trial from its
reinforcement through a one-trial lag. It minimally separated
trials from reinforcement, it maximally integrated reinforce-
ment into the steady-state trial environment, and it let
reinforcement maximally energize and motivate task
participation.

In an intermediate manipulation, Smith et al. (2014) created
a trial block of separation. Participants completed a block of
trials before feedback. At block’s end, they received all their
rewards clustered and then all their penalty time-outs clus-
tered. Feedback was temporally displaced and scrambled out
of trial-by-trial order, doubly defeating stimulus–response
learning. However, now reinforcement could only
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sporadically motivate performance. And now, the instruction-
al set communicated to the participant, and their self-control in
executing it, carried a heavier burden.

In an extrememanipulation,Ashby, Isen, et al. (1999;Ashby,
Queller, et al., 1999) created ultimate separation by eliminating
feedback entirely through an unsupervised-learning paradigm.
Now, the burden on the communicated instructional set and its
self-managementwas very heavy.No reinforcement helpedmo-
tivate performance. Nonetheless, this technique powerfully elic-
ited explicit-declarative processes in category learning from
adult, cognitively sophisticated humans.

These tasks share a goal and a family resemblance, while dif-
fering in how far they distance reinforcement, howwell they still
let reinforcementenergizeperformance,andhowdemanding they
are that participants receive, accept, and execute an elaborate cog-
nitive set. Using varied means, they all disrupt the temporal con-
tiguity of the reinforcement signal, disable the reinforcement-
binding properties, and prompt a transition to alternative, explicit
learning processes. In a sense, these paradigms all seek to replace
concrete reinforcementwith feedback (or self-feedback) that has a
purely informational function, so that it supports learning at an
explicit level even if it can no longer support learning at an asso-
ciative level. The cruxof all these paradigms is to keep immediate
reinforcement at a “safe”methodological and theoretical distance
that rules out associative learning. Then, feedback provides food
for thought, not fuel for habit formation. Collectively, these para-
digms are progressively combining into a persuasive and conclu-
sive dissociative frameworkwithin the categorization literature.

Empirical and theoretical extensions

As specific paradigms, these techniques naturally have their
different strengths and weaknesses. For example, unsuper-
vised learning is a powerful way to dissociate away associa-
tive learning—it eliminates concrete reinforcement entirely.
However, it demands sophisticated participants. In contrast,
the 1-Back technique would suit other populations. It inte-
grates reinforcement more thoroughly. It energizes perfor-
mance more encouragingly. It depends less on the
experimenter-participant instructional/social contract.
Accordingly, the 1-Back technique shows promise for less
sophisticated, less verbal populations. For instance,
developmentalists could use it to explore the earliest roots of
explicit-declarative cognition in children. It is not known at
what age children can first supply their own hypotheses and
cognitive construals when reinforcement-driven learning is
disallowed. Yet this is an important developmental step be-
cause self-directed, self-construed learning is an essential hu-
man capacity. Young childrenmight not self-sustain interest or
effort without ongoing reinforcement (stickers!) such as the 1-
Back task would provide.

Our paradigm also has implications for comparative psy-
chology. A problem faced in behavioral research is that

animals’ performances might reflect their higher level cogni-
tive processes or their reinforcement-driven behavioral reac-
tions. There is always the possibility that immediate reinforce-
ment is the true underlying engine of behavior and the inte-
grator of stimulus–response (SR) bonds during learning.
Moreover, this problem has often been considered inexorable,
given the broad belief that immediate reinforcement is indis-
pensable because it is the reason that animals perform and
learn. However, our approach shows that simple dissociative
paradigms can be developed that transcend reinforcement-
driven learning while sustaining interest and motivation.
One can then ask whether animals, in that circumstance, have
another level and kind of learning that can replace this.

Ourparadigmcouldbeappliedtoanyspecies that iscapableof
discrimination learning in simple two-response tasks. Therefore,
onecouldalsoprovide tocomparative theoryaphylogeneticmap
ofexplicit-declarativecognition.Onecouldaskwhichvertebrate
lines are capable of engaging in something like explicit-
declarative cognition by asking which lines learn successfully
under1-Backreinforcement.Thiscouldberelated to theirknown
evolutionary histories and to their frontal-cortical development,
also tracing the neuroscientific emergence of explicit cognition
during cognitive evolution.

Thus, we believe that the present dissociative paradigm—the
1-Backmethodology—represents acomplementarymethodolo-
gy of interest to cognitive, comparative, and developmental psy-
chologists, and to many biobehavioral researchers, too. Indeed,
the empirical power to qualitatively unplug and shut down asso-
ciative learning, using techniques like 1-Back feedback that re-
quire feedback to be interpreted informationally and explicitly,
could become a powerful tool in the next epoch of theoretical
development inbiobehavioral research (Smith&Church, 2017).
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