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Abstract Masson and Kliegl (Journal of Experimental
Psychology: Learning, Memory, and Cognition, 39, 898–
914, 2013) reported evidence that the nature of the target stim-
ulus on the previous trial of a lexical decision task modulates
the effects of independent variables on the current trial, includ-
ing additive versus interactive effects of word frequency and
stimulus quality. In contrast, recent reanalyses of previously
published data from experiments that, unlike the Masson and
Kliegl experiments, did not include semantic priming as a
factor, found no evidence for modulation of additive effects
of frequency and stimulus quality by trial history (Balota,
Aschenbrenner, & Yap, Journal of Experimental
Psychology: Learning, Memory, and Cognition, 39, 1563–
1571, 2013; O’Malley & Besner, Journal of Experimental
Psychology: Learning, Memory, and Cognition, 34, 1400–
1411, 2013). We report two experiments that included seman-
tic priming as a factor and that attempted to replicate the mod-
ulatory effects found by Masson and Kliegl. In neither exper-
iment was additivity of frequency and stimulus quality mod-
ulated by trial history, converging with the findings reported
by Balota et al. and O’Malley and Besner. Other modulatory
influences of trial history, however, were replicated in the new
experiments and reflect potential trial-by-trial alterations in
decision processes.

Keywords Additive and interactive effects . Effects of trial
history . Lexical decision .Data transformation . Linearmixed
models

Various accounts of word reading include assumptions about
the potential for dynamic adjustments to component process-
es. At a general level, it has been shown that correct responses
leading up to an error are progressively faster, but a correct
response following an error is slow (Allain, Burle, Hasbroucq,
& Vidal, 2009; Rabbitt, 1966, 1989). A more specific adjust-
ment to reading subprocesses was put forward by Besner,
O’Malley, and Robidoux (2010), who proposed that when
stimulus quality is low, the nonlexical route to pronunciation
is less active, thereby allowing more efficient naming of ex-
ception words (items whose correct pronunciation conflicts
with output from the nonlexical route; e.g., pint). Similarly,
the application of a checking strategy in the lexical decision
task has been shown to be differentially applied to low- and
high-frequency word targets in a mixed list (Yap, Balota, Tse,
& Besner, 2008). In addition, the level of difficulty in process-
ing the target item on one trial can influence processing speed
on the subsequent trial (Kinoshita, Mozer, & Forster, 2011).

Building on these ideas, we examined in an earlier article
the possibility that characteristics of the target stimulus on the
immediately preceding trial could affect the processing oper-
ations applied on the current lexical decision trial (Masson &
Kliegl, 2013). In particular, we demonstrated five such influ-
ences when subjects were responding to word targets: (a)
faster responses following a trial with a word target; (b) faster
responses when the stimulus quality on the previous and cur-
rent trials was the same, but only if the previous target was a
word; (c) over- or underadditive interactions between word
frequency and semantic priming depending on the nature of
the previous target; (d) over- or underadditive interactions
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between word frequency and stimulus quality depending on
the nature of the previous target; and (e) speed-up across trials
was found only when the previous target was a word.

The finding of nonadditivity between word frequency and
stimulus quality that is modulated by trial history is of partic-
ular theoretical interest because of previous demonstrations of
additivity between these factors (e.g., Becker & Killion, 1977;
Yap & Balota, 2007) and the implications of this additivity for
computational accounts of word reading (e.g., Besner,Wartak,
& Robidoux, 2008; Plaut & Booth, 2000, 2006). Besner and
colleagues (e.g., Besner et al., 2008; Borowsky & Besner,
2006) have argued that connectionist models of word reading,
because of their inherently interactive modules, cannot ac-
count for additive effects using realistic parameter values.
They instead argued that separate processing stages may be
involved, at least in some word-reading contexts, and that
additivity between factors such as stimulus quality and word
frequency arises from serial processing across stages rather
than interactions between them. Masson and Kliegl (2013)
suggested the possibility that additivity between two factors,
such as word frequency and stimulus quality, may be gener-
ated by two opposing patterns of interaction (one overadditive
and one underadditive) that occur under different conditions
of trial history—specifically, the characteristics of the target
on the previous trial. This idea was encouraged by previous
demonstrations of opposing patterns of interaction between
word frequency and stimulus quality obtained in a lexical-
decision task using pseudohomophones (e.g., brane) as non-
words, whereby overadditivity occurred on trials with short
response times but underadditivity was observed on trials with
long response times (Yap et al., 2008).

Indeed, in two experiments, Masson and Kliegl (2013) ob-
served that the additive effects of frequency and stimulus qual-
ity seen in aggregate data emerged from opposite-going inter-
actions between these factors that were associated with differ-
ent attributes of trial history. In their first experiment, stimulus
quality of the previous target was correlated with the interac-
tion pattern. In their second experiment, stimulus quality was
manipulated in separate blocks so it could not participate in
trial-to-trial variations in processing. Nevertheless, in that ex-
periment over- and underadditive effects of frequency and
stimulus quality were correlated with the lexical status of the
previous target.

Subsequently, Balota, Aschenbrenner, and Yap (2013) and
O’Malley and Besner (2013) reexamined data from previous-
ly published word identification experiments to test for possi-
ble influences of trial history on the joint effects of word
frequency and stimulus quality. Besner and O’Malley found
no evidence for modulation of the additivity of these effects by
trial history in a word-naming task. Balota et al. also found no
modulation of additivity when they reanalyzed data from three
lexical-decision experiments. Unlike the Masson and Kliegl
(2013) experiments, however, none of the experiments

reanalyzed by Balota et al. or by O’Malley and Besner includ-
ed semantic priming as a factor, and only the Balota et al.
experiments used the lexical decision task. Moreover,
Scaltritti, Balota, and Peressotti (2013) obtained an
overadditive interaction between frequency and stimulus qual-
ity that was restricted to trials following an unrelated semantic
prime. This result was attributed to a retrospective checking
process that was especially time-consuming for the most dif-
ficult condition of low-frequencywords presented in degraded
form. When only unrelated primes were included in an addi-
tional experiment, then Scaltritti et al. obtained an additive
pattern. These findings indicate that the relationship between
the effects of word frequency and stimulus quality depend on
the nature of semantic primes presented in advance of target
items. It is plausible, then, that the modulation of the frequen-
cy by stimulus-quality interaction by trial history reported by
Masson and Kliegl is restricted to a particular set of conditions
(e.g., when semantic priming is manipulated) and does not
generalize. Even so, cross-trial dependencies of this kind
would be important to understand because they potentially
could impact other manipulations.

Alternatively, given that the modulation effects observed
by Masson and Kliegl (2013) were small, it is possible that
they likely require substantial power to detect. Whereas
Masson and Kliegl used sample sizes of about 70 in each
experiment, the experiments reanalyzed by Balota et al.
(2013) either manipulated stimulus quality between subjects
or used smaller sample sizes (28 for one experiment and 56 for
the other). O’Malley and Besner (2013) aggregated data
across multiple experiments for a total sample size of 96, but
these subjects performed a naming task rather than lexical
decision.

We also considered the possibility that the modulation of
the frequency by stimulus-quality interaction reported by
Masson and Kliegl (2013), particularly given the small effect
size of that interaction, might have been produced by a Type I
error. Consequently, we conducted two further replications
with sample sizes greater than 70 in each case (comparable
to the sample sizes used by Masson & Kliegl). In our first
replication experiment, we used the same materials as in
Masson and Kliegl and in the second experiment we used a
new set of nonwords carefully matched to the target words.
Our primary interest was in assessing which of the trial-history
effects reported in the Masson and Kliegl study could be con-
sistently replicated. Although the modulation of the joint ef-
fects of word frequency and stimulus quality was of central
importance, other influences of trial history, such as the mod-
ulation of the effect of stimulus quality and of speed-up across
trials, were of interest as well.

In analyzing the data from these two new experiments, we
also considered another issue raised by Balota et al. (2013)
related to the application of transformations to response time
data. Masson and Kliegl (2013) applied a reciprocal
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transformation to response times so that the raw data would
approximate a normal distribution, as required by the assump-
tions of the linear mixed-model analyses they applied. Balota
et al. demonstrated that nonlinear transformations such as the
reciprocal transformation may distort relationships between
factors that are additive in the original response-time metric.
AlthoughMasson and Kliegl showed that the influence of trial
history on the effects of their manipulated variables was
virtually unchanged by the application of the reciprocal
t ransformat ion , the fac t remains that nonl inear
transformations have the potential to distort the pattern of
interaction between factors. Therefore, we included in our
analyses an approach recently recommended by Lo and
Andrews (2015) in which a generalized linear mixed-model
analysis is applied, assuming a skewed (e.g., inverse
Gaussian) rather than normal distribution of response times.
In this analysis, a linear relationship is assumed to hold be-
tween the independent variables and response time, so there is
no risk of effects being distorted through data transformation,
but at the same time the requirement of a normal distribution
of residuals can bemaintained (see Lo&Andrews for details).

Experiment 1

Method

Subjects Seventy-three students at the University of Victoria
participated in the experiment in return for extra credit in an
undergraduate psychology course.

Materials The same word and nonword targets and word
primes were used as in Experiment 1 of Masson and Kliegl
(2013). The 240 word targets were classified as high frequen-
cy (M = 170,438) or low frequency (M = 16,594) based on the
norms from the English Lexicon Project database (Balota
et al., 2007). The words were four to seven letters in length.
The related primes for high- and low-frequency target words
had a similar average degree of forward association strength to
their targets (.222 and .226, respectively; Nelson, McEvoy, &
Schreiber, 2004). The backward associative strength for all
but one related prime–target pair was zero, and the remaining
item had a backward strength of .048. Unrelated primes were
designated by reassigning primes to targets with the constraint
that the new pairing appeared to be unrelated. This reassign-
ment was done within sublists of 30 items. Assignment of
these eight sublists (four each of high- and low-frequency
targets) to the four experimental conditions (prime relatedness
crossed with stimulus quality) was counterbalanced across
subjects. Thus, among word targets presented to each subject,
half were primed by a related word and half by an unrelated
word.

The 240 nonword targets were pronounceable and were of
similar length to the word targets. Their mean orthographic
neighborhood size was 4.3 (range: 0–17). An English word
was selected to serve as a prime for each of these items. An
additional set of 32 prime–target pairs (half word targets and
half nonword targets) was used for practice trials.

Procedure Subjects were tested individually using a
Macintosh computer with items presented in black font on a
white background. Subjects were instructed to classify upper-
case letter strings as words or nonwords as quickly as possible
while maintaining accuracy. On each trial, a fixation cross was
presented for 250 ms, followed by a blank screen for 250 ms
and a lowercase word prime for 200 ms. The target then ap-
peared either in full contrast or in low contrast (20 % of max-
imum darkness) until a response was made. In case of an error,
the message ERRORwas presented for 1 s. The session began
with 32 practice trials followed by a randomly ordered presen-
tation of 480 critical trials.

Results and discussion

We present a standard analysis of variance (ANOVA) for the
response-time and error data from trials with word targets,
followed by linear mixed-model (LMM) analyses of response
times. In the ANOVA, each subject’s response time for a given
condition was based on the mean response time across trials in
that condition. In the LMM analysis, data from individual
trials (subject–item combinations) were considered. The sig-
nificance criterion was set at .05 for the ANOVA, and a
Bayesian evaluation of effects was used for the LMM analy-
ses. We excluded from the response-time analyses those trials
on which response time fell outside the range of 300 to
3,000 ms (0.1 %). These boundaries were established so that
no more that 0.5 % of the observations would be excluded
(Ulrich & Miller, 1994). We also excluded trials on which a
response error was made.

Analysis of varianceMean response time to word targets for
each condition is shown in Fig. 1. The ANOVA indicated
significant main effects of priming, F(1, 72) = 20.01, MSE =
1,495, word frequency, F(1, 72) = 35.97, MSE = 993, and
stimulus quality, F(1, 72) = 55.52,MSE = 2,290, with shorter
response times associated with related primes, high-frequency
words, and clear stimulus quality. In addition, there was a
significant interaction between priming and word frequency,
indicating a larger priming effect among low-frequency rela-
tive to high-frequency words (21 ms vs. 7 ms), F(1, 72) =
5.97, MSE = 1,209. No other interactions were significant
(Fs < 1).

The mean percentage error for word targets is shown for
each condition in Table 1. An ANOVA applied to the error
data indicated significant main effects (Fs > 10)
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corresponding to those found in the response-time analysis,
and no significant interactions (Fs < 1.8); there was no indi-
cation of speed–accuracy trade-offs. For nonwords, the mean
response times for clear and degraded conditions were 710 ms
and 736 ms, respectively, and the overall error rate was 4.8 %.

These analyses provide evidence for the expected additive
relationship between word frequency and stimulus quality.
Furthermore, the additivity between priming and stimulus
quality is consistent with the findings of Stolz and Neely
(1995), who observed a similar result with weakly associated
pairs (mean forward strength = .175) using the same stimulus
onset asynchrony and relatedness proportion as we applied.
The mean forward associative strength for our pairs was .224,
which is much more similar to their weak pairs than to the
strongly associated pairs they used (mean = .560). Unlike the
results reported by Masson and Kliegl (2013), the interaction
between priming and word frequency appeared in the
response-time data and was not restricted to error rates.

Linear mixed-model analysis Following Masson and Kliegl
(2013), for the LMM analysis of word-target response times
we applied a reciprocal transformation to reaction time (–1/
RT, where RT = response time in seconds) tomeet the assump-
tion of normally distributed residuals. The analysis was run
using the lmer function in the lme4 package in R (Bates,
Mächler, Bolker, & Walker, 2015) and the rePCA function
in the RePsychLing package (Bates, Kliegl, Vasishth, &

Baayen, 2015). Because of concerns regarding how patterns
of interactions between factors might be influenced by non-
linear data transformations (e.g., Balota et al., 2013), parallel
analyses using raw response time as the dependent measure
were also performed, one using LMM and another using gen-
eralized linear mixed models (GLMM) in which we assumed
an inverse Gaussian distribution of the data (cf. Lo &
Andrews, 2015). We report the results of those two additional
analyses only where they differ substantially from the analysis
of the transformed data. Degrees of freedom are generally not
precisely known for t ratios in LMMs, making significance
testing problematic. Moreover, given the recent discussions of
shortcomings of null-hypothesis significance testing in gener-
al (e.g., Kruschke, 2013; Morey, Hoekstra, Rouder, Lee, &
Wagenmakers, 2016), we report the 95 % highest posterior
density interval (computed using the profile function in the
lme4 package) for each fixed effect. We were restricted to
using t tests to evaluate the results of the GLMM, however,
because the R function available for that analysis (glmer) does
not yet allow for application of Bayesian tests when an inverse
Gaussian distribution is assumed. A t ratio with absolute value
greater than 2 was deemed to be significant (e.g., Kliegl,
Masson, & Richter, 2010).

Fitting the maximal LMM for this experiment requires the
estimation of 697 parameters (32 fixed effects, including the
intercept; 32 variance components and 496 correlation param-
eters for the subjects random factor; 16 variance components
and 120 correlation parameters for the items random factor; 1
residual variance). To break this number down: The subjects
factor yields 32 (i.e., 25) variance components, consisting of
the mean reciprocal RT (intercept) plus one for each of the
main effects and interactions of the five within-subject facto-
rial design. The items factor yields 16 variance components
(i.e., 24) for the four-factor within-item factorial design (word
frequency is a between-word factor). In addition, the maximal
model includes 496 correlation parameters for the subject fac-
tor (i.e., (32)(31)/2) and 120 correlation parameters for the
item factor (i.e., (16)(15)/2).

Fitting this maximal LMM with 697 parameters took
103 hours and 50 minutes on a computer cluster (3.5 GHz)
at the University of Potsdam, running R 3.3.0 on Scientific
Linux 6.5. We also had to choose a simpler optimization so-
lution to obtain the result (i.e., we did not compute the gradient
and Hessian of nonlinear optimization solution; rather, we
specified the argument Bcontrol = lmerControl(calc.derivs =
F)^ in the lmer function call). The fit yielded a convergence
warning, but estimates looked reasonable. Nevertheless, such
a complex model is highly likely to be overidentified
(degenerate); that is, parameters are not supported by the data
(Bates, Kliegl, et al., 2015). One way to check for model
overparameterization is to determine the dimensionality of
the variance–covariance matrix of random effects, specifically
to determine the number of principle components (PCs)

Table 1 Mean percentage error for word targets in Experiment 1 as a
function of word frequency, stimulus quality, and prime relatedness

Word freq. Clear Degraded

Related Unrelated Related Unrelated

High 2.3 3.0 3.1 4.3

Low 3.8 5.0 4.8 6.9

Fig. 1 Mean response time to word targets in Experiment 1 as a function
of word frequency, prime, and stimulus quality. Error bars are 95 %
within-subject confidence intervals appropriate for comparing condition
means within a particular stimulus quality condition (Loftus & Masson,
1994; Masson & Loftus, 2003)
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accounting for some nonzero amount of variance. We used the
rePCA() function of the RePsychLing package (Bates, Kliegl,
et al., 2015) to this end. For the subjects random factor, the
first 16 PCs accounted for 99 % of the variance, but, some-
what surprisingly, all of the 32 PCs were different from zero
(even if only slightly so). For the items random factor, the first
eight PCs accounted for 99.5 % of the variance and 15 of the
1 6 PC s we r e d i f f e r e n t f r om z e r o . T hu s , t h e
overparameterization was nominally much smaller than
expected.

Even if the maximal LMM is (barely) identified, a large
number of model parameters may contribute negligibly to the
goodness of fit of the model. In the long run, removing redun-
dant parameters (i.e., fixing them at zero) yields better statis-
tical power for fixed effects, even if the true value of these
parameters is different from zero (Matuschek, Kliegl,
Vasishth, Baayen, & Bates, 2015; for a different perspective
on this issue, i.e., a preference to keep it maximal rather than
parsimonious, see Barr, Levy, Scheepers, & Tily, 2013). A
reasonable first step is to check whether the correlation param-
eters contribute to the goodness of fit. The estimation of the
zero-correlation-parameter (zcp) LMM took 139 hours and
43 minutes when computing the gradient and Hessian of non-
linear optimization solution. For the subjects random factor,
the first 11 PCs accounted for 99% of the variance and the last
15 PCs were very close zero (i.e., < 0.02 %). For the items
random factor, the first six PCs accounted for 99.7 % of the
variance and the last seven of the 16 PCs were zero. Thus, the
overparameterization was actually much more pronounced in
this less complex zcp LMM than the maximal LMM. This
could be due to the less precise optimization routine in the
latter. Nevertheless, in a likelihood ratio test, there was no
evidence for a loss of goodness of fit of the zcp LMM relative
to the maximal LMM due to dropping 616 correlation param-
eters, Δχ2(616) = 281.

In the next step, we compared the zcp LMMwith the LMM
reported in Masson and Kliegl (2013). Similar to recommen-
dations in Bates, Kliegl, et al. (2015), Masson and Kliegl had
used an iterative procedure to arrive at a parsimonious LMM.
This model included three variance components and one cor-
relation parameter for the subjects random factor and two
variance components for the items random factor.
Obviously, this LMM was not overparameterized. A likeli-
hood ratio test for the difference between the zcp LMM and
the parsimonious LMM yielded a Δχ2(42) = 9.2 – indicating
no loss of goodness of fit. In a separate test, we ascertained
that the correlation parameter (which is not estimated in the
zcp LMM) was significant,Δχ2(1) = 9.06, p < .01. Thus, the
39-parameter parsimonious LMM accounts for the data as
well as the 697-parameter maximal LMM.

The estimates of variance components for the random ef-
fects of subjects and items generated by the parsimonious
LMM are listed in the upper section of Fig. 2. These values

are quite similar in magnitude to those reported by Masson
and Kliegl (2013, Exp. 1). In addition, the parameter for the
correlation between the intercept (mean) and the effect of
stimulus quality (-.42) was very similar to the value found
by Masson and Kliegl.

The results for fixed effects are shown in the lower part of
Fig. 2. The intercept for fixed effects was –1.64, and is not
depicted in Fig. 2 because it is beyond the limits of the scale
used to show the other fixed effects. The estimates did not
depend on the random-effect structure (i.e., the same pattern
of significance was obtained for maximal, zero-correlation,
and parsimonious LMM specifications). As in the ANOVA,
all three primary main effects (frequency, priming, and stim-
ulus quality) were reliable using the criterion of the 95 %
highest probability density interval (HPDI) not including zero,
and there was an interaction between frequency and priming.
This interaction is shown in Fig. 3, where it can be seen that it
takes the same form as in the raw score means (see Fig. 1).
Two other two-way interactions were reliable: stimulus qual-
ity interacted with both trial-history factors (stimulus quality
and lexical status of the previous target). The three-way inter-
action between stimulus quality and the two trial-history fac-
tors was also reliable, and this interaction is plotted in Fig. 4.
The pattern of this interaction was the same as in Experiment 1
of Masson and Kliegl (2013), whereby subjects responded
faster if the stimulus quality on the current trial matched that
of the previous trial, but only if the previous target was a word.
Exactly the same pattern of fixed effects was found when raw
response time rather than the transformed measure was ana-
lyzed and when GLMMwas applied with an inverse Gaussian
distribution of scores assumed.

To help readers interpret the three-way interaction between
stimulus quality and the two trial history factors, we present in
Table 2 the mean response time in ms for each of the relevant
conditions. It can be seen that when the previous trial’s target
was a word, there is an average benefit of about 13 ms in
responding on the current trial if stimulus quality is the same
on the previous and current trials. In addition, we provide the
percentage error for each of those conditions to verify that the
interaction is not the product of a speed–accuracy trade-off.1

Differences in response time that favor repetition of stimulus
quality across trials are accompanied by small differences in
percentage error that also favor such repetition.

Two fixed-effect interactions reported by Masson and
Kliegl (2013) failed to materialize in this experiment. One
was a four-way interaction between frequency, prime, and
the trial-history factors. In this experiment, we instead obtain-
ed the standard interaction between frequency and prime, with
no evidence that that interaction was modulated by trial

1 We thank Derek Besner for suggesting that we present this information
and check for a possible speed–accuracy trade-off, here and in
Experiment 2.
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history. Similarly, the three-way interaction between frequen-
cy, stimulus quality, and previous trial stimulus quality that
Masson and Kliegl obtained was not replicated here. Instead,
we observed additivity between frequency and stimulus
quality, unmodulated by trial history. This outcome is
consistent with the reanalyses of data reported by Balota
et al. (2013) and by O’Malley and Besner (2013). We were
mindful of the Scaltritti et al. (2013) finding that frequency
and stimulus quality interacted when unrelated semantic
primes were used. We tested for this possibility in our data
by analyzing separately related and unrelated prime trials, but
still no frequency by stimulus-quality interaction emerged in
either case. There are a number possible reasons that we did
not replicate the Scaltritti et al. finding. First, we used a
lexical-decision task, whereas their task was speeded pronun-
ciation. It is known that pure word lists used in the pronunci-
ation task can produce an interaction between frequency and

stimulus quality (O’Malley & Besner, 2008). Second,
Scaltritti et al. attributed their result to retrospective checking
that was especially time-consuming for low-frequency words
presented in degraded form. Such a process would be less
likely in our experiment because we used a much shorter
stimulus onset asynchrony than Scaltritti et al. (200 ms vs.
800 ms), and our manipulation of degradation was apparently
much weaker than theirs; response time to degraded targets in
their experiment was about 100 ms longer than in our study,
despite the fact that pronunciation response times are usually
noticeably shorter than lexical-decision times.

An additional LMM analysis included trial as a covariate to
investigate the change in response time over the course of the
testing session. Masson and Kliegl (2013) reported that re-
sponse time to word targets decreased across trials, but only
in cases where the preceding trial’s target was a word. For this
analysis, we included centered trial number as a factor along

Fig. 2 Parameter estimates and 95 % highest posterior density intervals
(HPDIs) for square root of variance components (standard deviations)
and fixed effects produced by the parsimonious LMM for Experiment
1. Not shown are the estimates of the mean (intercept): -1.64 [-1.68, -
1.60], the residual: 0.294 [0.291, 0.297], and the correlation parameter for

the subject-related mean and the effect of stimulus quality: -0.42 [-0.64, -
0.16]. Symbol sizes are in proportion to the precision of the estimates.
The plot is based on the forest function of the metafor package in R
(Viechtbauer, 2010)
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with its interactions with all other fixed effects. Overall, sub-
jects’ response times decreased over the course of the exper-
iment (coefficient = –2.02, 95 % HPDI: [–2.60, –1.44]). The
modulation of this speed-up effect by the previous target’s
lexical status was reliable for transformed response time (co-
efficient = 0.00008, 95 % HPDI: [0.00001, 0.00014]), but not
for raw response time. The pattern of the modulation was
similar to that found by Masson and Kliegl, with greater im-
provement across trials when the previous target was a word
rather than a nonword (see Fig. 5).

Experiment 2

Given the failure to replicate the modulation of the rela-
tionship between word frequency and stimulus quality in
Experiment 1, we attempted an additional replication in

Experiment 2. For this experiment, we modified the non-
word items to make them more similar to the target words
with respect to letter length, length of subsyllabic seg-
ments, and bigram transition frequencies. This change
was made to further examine the influence of trial history
on the reduction of response time to words across trials
seen in Experiment 1 and in Masson and Kliegl (2013).
Less improvement was seen if the previous trial’s target
was a nonword (see Fig. 5). Yap, Sibley, Balota, Ratcliff,
and Rueckl (2015) have shown that lexical-decision re-
sponses to nonword targets are systematically affected
by orthographic characteristics and base-word frequency
in the case of nonwords derived from a specific base
word. Our interest in Experiment 2 was to determine
whether nonwords that were more word-like would mod-
ulate the improvement in responses to word targets in the
same way that the less well controlled nonwords did in
Experiment 1.

Method

Subjects A new sample of 72 students from the same source
as in Experiment 1 participated in the experiment.

Materials and procedure The samematerials were used as in
Experiment 1 except that the nonword targets were replaced
by items matched to the word targets using the Wuggy appli-
cation (Keuleers & Brysbaert, 2010). Items were matched on
letter length, length of subsyllabic segments, and bigram tran-
sition frequencies, making this set of nonwords more word-
like than those used in Experiment 1, although their mean
orthographic neighborhood size, 5.4 (range: 0–20), was sim-
ilar to that of the nonwords used in Experiment 1. Subjects
were tested using the same procedure as in Experiment 1.

Table 2 Mean response time (ms) and percentage error for word targets
in Experiment 1 as a function of stimulus quality and trial history

Stimulus Trial history

Word Nonword

quality Clear Degraded Clear Degraded

Resp. time

Clear 627 634 635 639

Degraded 670 651 661 667

% error

Clear 3.6 3.7 3.6 3.1

Degraded 4.5 4.3 4.3 6.0

Note. Trial history refers to the lexical status and stimulus quality of the
target on the previous trial

Fig. 3 Mean transformed response time to word targets in Experiment 1
as a function of word frequency and prime. Error bars are 95 % within-
subject confidence intervals appropriate for comparing all condition
means (Morey, 2008)

Fig. 4 Mean transformed response time to word targets in Experiment 1
as a function of stimulus quality and lexical status and stimulus quality of
the target on the previous trial. Error bars are 95 % within-subject confi-
dence intervals appropriate for comparing all condition means (Morey,
2008)
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Results and discussion

The same upper and lower bounds for response times were set
as in Experiment 1 (300 ms and 3,000 ms), which led to the
exclusion of less than 0.1 % of trials with correct responses.

Analysis of varianceMean response time for word targets in
each condition is shown in Fig. 6. In general, the pattern of
means was quite similar to that found in Experiment 1. An
ANOVA indicated that all three main effects were significant,
priming, F(1, 71) = 41.87,MSE = 1,319, word frequency, F(1,
71) = 43.32, MSE = 1,026, and stimulus quality, F(1, 71) =
58.70, MSE = 4,235. Unlike Experiment 1, the interaction
between priming and word frequency was not significant,
F(1, 71) = 2.02, MSE = 790, although there was a significant
interaction between priming and stimulus quality, F(1, 71) =
5.28, MSE = 1,014, with larger priming for degraded targets
(25 ms vs. 14ms). This interaction was not expected, based on
previous studies using the short prime duration and weak as-
sociative strength between primes and targets employed here
(Masson &Kliegl, 2013; Stolz &Neely, 1995). Its appearance
in this experiment, but not in previous work, might be due to

lower power to detect a small effect in earlier experiments. It is
also possible that differences between samples of subjects
with respect to the experienced associative strength between
primes and targets could be responsible for the variation in
results. Stolz and Neely obtained an interaction between prim-
ing and stimulus quality with strongly, but not weakly, asso-
ciated pairs. Our items were on average somewhat higher in
strength than were those of Stolz and Neely, although not
greatly so (.224 vs. .175). Still, it is possible that subjects in
Experiment 2 experienced the pairs as more strongly related
than implied by the normative data. Thomas, Neely, and
O’Connor (2012) have shown that interactions between prim-
ing and stimulus quality arise from backward associations
between primes and targets. We can be sure, however, that
this factor cannot account for the interaction we obtained be-
cause for our materials, the strength of backward associations
was virtually zero.

The mean percentage error for word targets is shown in
Table 3 for each condition. An ANOVA applied to the error
data indicated significant main effects (Fs > 20) correspond-
ing to those found in the response-time analysis. There was
weak evidence for a priming by frequency interaction, F(1,
71) = 3.62, MSE = 10.95, p < .07, suggesting that in
Experiment 2 that interaction was partly manifest in response
time and partly in error rates rather than concentrated fully in
response times, as in Experiment 1. All other interactions were
nonsignificant (Fs < 2.6).

Linear mixed-model analysis The LMM analysis on
reciprocal-transformed response times was carried out on
word targets, as described for Experiment 1. Again, the max-
imal LMM (time for estimation: 103 hours, 23 minutes) and
zcp LMM (time for estimation: 135 hours, 11 minutes) were
overparameterized, as determined with the rePCA function.
For the parsimonious LMM, we started as in Experiment 1,
but the model fit improved after dropping the parameter for
the correlation of intercept and stimulus quality for subjects,
and this was the only difference in the final model for
Experiment 2 relative to the model used for Experiment 1.
Once more, there was neither a difference in goodness of fit
between maximal LMM and zcp LMM,Δχ2(616) = 291, nor
a difference in goodness of fit between zcp LMM and parsi-
monious LMM, Δχ2(42) = 26.4. Thus, the 38-parameter

Fig. 5 Mean transformed response time to word targets in Experiment 1
as a function of trial number and lexical status of the target on the previous
trial. Continuous error bars (shown as gray bands) are 95 % confidence
intervals for the regression lines

Table 3 Mean percentage error for word targets in Experiment 2 as a
function of word frequency, stimulus quality, and prime relatedness

Word freq. Clear Degraded

Related Unrelated Related Unrelated

High 1.3 2.5 2.8 3.1

Low 3.2 4.5 4.3 6.5

Fig. 6 Mean response time to word targets in Experiment 2 as a function
of word frequency, prime, and stimulus quality. Error bars are 95 %
within-subject confidence intervals appropriate for comparing condition
means within a particular stimulus quality condition
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parsimonious LMM accounted for the data as well as the 697-
parameter maximal LMM.

The variance components for the parsimonious LMM ap-
pear in the upper part of Fig. 7. Item-related variance compo-
nents were very similar to what was reported by Masson and
Kliegl (2013, Exp. 1) and to those in the present Experiment 1.
The fixed effects are shown in the lower part of Fig. 7. The
estimates did not depend on the random-effect structure (i.e.,
the same pattern of significance was obtained for maximal,
zero-correlation, and parsimonious LMM specifications). All
three main effects were reliable, as in Experiment 1. In addi-
tion, responses were faster if the previous trial’s target was a
word, and there was a priming by stimulus-quality interaction,
which is shown in Fig. 8. Priming was somewhat larger for
degraded targets, as discussed in the ANOVA results. As in
Experiment 1, stimulus quality interacted with both trial his-
tory factors, and in addition, this effect was modulated by the
priming factor, as shown in Fig. 9. This four-way interaction
indicates that maintaining the same level of stimulus quality
from the previous trial reduced response time, but only if the
previous target was a word and the current prime was related
to its target. Relative to Experiment 1, then, prime relatedness
was added as a new constraint on the benefit of repeating
stimulus quality across trials. In the two analyses of raw re-
sponse time (LMM and GLMM assuming an inverse
Gaussian distribution), this four-way interaction was not sig-
nificant, but otherwise the pattern of significant effects was the
same across all three analyses. As in Experiment 1, to assist
with interpretation of the clearly reliable three-way interaction
between stimulus quality and the two trial history factors
(which appeared in all three analyses), we present the corre-
spondingmean response times in ms in Table 4, along with the
percentage error for each condition. Once again, the response-
time benefit (9 ms) of repeating stimulus quality from one trial
to the next when word targets appear on both trials was not a
consequence of a speed–accuracy trade-off; the benefit is also
apparent in small differences in percentage error that favor
repetition of stimulus quality.

We conducted separate analyses for trials with related ver-
sus unrelated primes, as in Experiment 1, to check for a pos-
sible replication of the frequency by stimulus-quality interac-
tion reported by Scaltritti et al. (2013). Once again, neither
analysis obtained an interaction between these factors.

When trial was included as a covariate, we found that re-
sponse times decreased across trials (coefficient = –2.83, 95%
HPDI: [–3.40, –2.25]). Unlike Experiment 1, there was no
reliable evidence that this effect was modulated by the lexical
status of the previous trial’s target (see Fig. 10), despite the
fact that responses were generally faster following a trial with
a word target, as described above. The same pattern of results
was found when raw response time was used as the dependent
variable. The use of nonwords that more closely conform to
orthographic rules may have prevented the influence of the

previous trial’s target on the general speed up in responding
over the course of the experiment. Alternatively, given the
relatively small size of the influence of the previous target
on speed-up over trials in Experiment 1, the lack of an effect
here may simply have been due to low power. In support of
this latter possibility, we note that this interaction was signif-
icant in the two experiments in Masson and Kliegl (2013).
Moreover, for nonword targets, Experiments 1 and 2 showed
very comparable effects of trial speed up and modulation of
that enhancement by the previous target. Figure 11 shows the
nature of this modulation for each experiment, whereby a
significantly greater speed-up over the course of the experi-
ment was observed when the previous target was a nonword
(Exp. 1: coefficient = .00015; Exp. 2: coefficient = .00011),
although responding was slower overall in that case.

General discussion

The two replication experiments reported here found no evi-
dence for modulation of the joint effects of word frequency
and stimulus quality due to trial history. This outcome is not
consistent with the original modulation effect reported by
Masson and Kliegl (2013), but converges with the re-
analyses of previously published data reported by O’Malley
and Besner (2013) and by Balota et al. (2013). Taken together,
these results, coupled with the relatively small size of the
modulation of additivity found byMasson and Kliegl, suggest
that that effect should be attributed to a Type I error. Another
feature of the modulation of additivity that Masson and Kliegl
obtained that supports the validity of this conclusion is the
inconsistency across their two experiments with respect to
the factors that produced the modulation. In their
Experiment 1, the modulating factor was the previous trial’s
stimulus quality, whereas in their second experiment both
prime relatedness and the lexical status of the previous target
modulated the frequency by stimulus-quality interaction. In
retrospect, this inconsistency in the modulating factors across
experiments might be taken as grounds for doubting that the
modulation is genuine. Thus, the additivity between word
frequency and stimulus quality appears to continue to stand
as a benchmark result to be accounted for by models of word
reading.

Masson and Kliegl (2013) also reported an influence of the
lexical status and stimulus quality of the previous trial’s target
on the effect of stimulus quality on the current trial, whereby
maintaining the level of stimulus quality across trials when
both targets were words led to faster responding. This effect
was replicated in both experiments here, and a similar result
has recently been reported by Balota, Aschenbrenner, and Yap
(in press). Masson and Kliegl proposed an explanation for this
effect based on an account of stimulus learning and classifi-
cation developed by Turner, Van Zandt, and Brown (2011).
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On that account, subjects generate signal-to-noise likelihood
ratios for different points on a stimulus strength axis. These
ratios are modified by experience, such that presentation of a
stimulus occupying a particular point on the strength axis and
belonging to the signal category will increase the likelihood
ratio for any stimulus with a similar strength value. Therefore,
when two signal stimuli have similar strength values (e.g., two
degraded word targets), the presentation of one will strengthen
the signal-to-noise likelihood ratio of the other.

Another possible interpretation of the modulation of
stimulus-quality effects by trial history draws upon the

diffusion model of lexical decision (Ratcliff, Gomez, &
McKoon, 2004; Wagenmakers, Ratcliff, Gomez, &
McKoon, 2008). In this model, evidence accumulation fol-
lows a random walk toward one of two possible response
boundaries (word and nonword in the case of a lexical-
decision task). When a boundary is reached, the correspond-
ing response is made. The distance between response bound-
aries can vary across trials, and this provides a mechanism for
explaining speed–accuracy trade-offs. Bringing boundaries
closer together means that less evidence is required to make
a response, but possibly at the expense of a higher risk of error.

Fig. 7 Parameter estimates and 95 % highest posterior density intervals
(HPDIs) for square root of variance components (standard deviations)
and fixed effects produced by the parsimonious LMM for Experiment
2. Not shown are estimates of the mean (intercept): -1.64 [-1.68, -1.61]

and the residual: 0.289 [0.286, 0.292]. Symbol sizes are in proportion to
the precision of the estimates. The plot is based on forest function of
metafor package in R (Viechtbauer, 2010)
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In one application of this idea, Dufau, Grainger, and Zielger
(2012) proposed a leaky competing accumulator model of
lexical decision in which trial-by-trial adjustments to response
boundaries in a random walk process can be made. In this
model, each correct response leads to a small reduction in
the response thresholds for word and nonword responses.
We suggest that there may be separate response thresholds
for clear and degraded stimuli, and that an adjustment process

of sort described by Dufau et al. might be specific to the
stimulus quality of the target. Thus, when a correctly classified
word target is followed by another target of the same stimulus
quality, response boundaries are moved closer together, en-
abling a faster word response. It is noteworthy that improved
response speed found on trials where stimulus quality was
repeated did not incur a cost with respect to accuracy (see
Tables 2 and 4). This finding implies that subjects were ini-
tially operating with a relatively conservative set of thresholds
that they could afford modestly to reduce without an elevated
risk of error.

These experiments also showed that modulation of im-
proved response times across trials by the lexical status of
the previous target may depend on the type of nonword used.
In Experiment 1, we used the same nonwords as Masson and
Kliegl (2013) and replicated the general effect of trial history
on response speed-up across trials. These nonwords
conformed to English rules of pronounceability, but unlike
the nonwords used in Experiment 2, they were not quantita-
tively matched to the word set with respect to orthographic

Fig. 9 Mean transformed response time to word targets in Experiment 2
as a function of prime, stimulus quality, and lexical status and stimulus
quality of the previous target. Error bars are 95 % within-subject confi-
dence intervals appropriate for comparing all condition means (Morey,
2008)

Table 4 Mean response time (ms) and percentage error for word targets
in Experiment 2 as a function of stimulus quality and trial history

Stimulus Trial history

Word Nonword

quality Clear Degraded Clear Degraded

Resp. time

Clear 611 626 632 626

Degraded 663 660 664 669

% error

Clear 2.8 3.3 2.8 2.6

Degraded 5.1 3.9 3.4 4.3

Note. Trial history refers to the lexical status and stimulus quality of the
target on the previous trial

Fig. 8 Mean transformed response time to word targets in Experiment 2
as a function of stimulus quality and prime. Error bars are 95 % within-
subject confidence intervals appropriate for comparing all condition
means (Morey, 2008)

Fig. 10 Mean transformed response time to word targets in Experiment 2
as a function of trial number and lexical status of the target on the previous
trial. Continuous error bars (shown as gray bands) are 95 % confidence
intervals for the regression lines
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patterns such as bigram transition frequencies. Masson and
Kliegl suggested that the influence of the previous target’s
lexical status on increased speed across trials was a result of
fluctuating response thresholds, with caution being applied
after a nonword target. This type of adjustment might be cap-
tured in the Ratcliff et al. (2004) diffusion model.
Wagenmakers et al. (2008) showed that manipulations that
affect response criteria, such as speed–accuracy instructions
or the proportion of word versus nonword items in the stimu-
lus set, are captured by adjustments of the decision boundaries
in the model. We suggest that the speed-up in responding
across trials can be viewed as improved stimulus discrimina-
tion with continuing practice at the lexical decision task. The
modulation of this speed-up by the lexical status of the previ-
ous target (see Fig. 5) can be attributed to changes in response
boundaries. Specifically, for word targets in Experiment 1, as
trials progressed, the decision boundary for Bword^ responses
was moved further away from the starting point (requiring
more evidence for a response) when the previous target was
a nonword, or closer to the starting point when the previous
target was a word. Experiment 2, however, did not replicate
this type of boundary shift for word targets. For nonword
targets, a boundary adjustment due to the nature of the previ-
ous target appears to have been in effect for early trials, but it
dissipated as trials progressed. This adjustment could involve
moving the boundary for Bnonword^ responses further away
from the starting point after experiencing a nonword target
and/or closer to the starting point after a word target.

Finally, we note that the results of our linear mixed-model
analyses were quite consistent across the two variants of the
dependent measure that we examined, reciprocal and raw
response time. As Balota et al. (2013) pointed out, nonlinear
transformations such as the reciprocal transformation have the
potential to modify the pattern of additivity and interaction
between independent variables. The present results, coupled
with the consistency of effects across reciprocal and raw re-
sponse times reported by Masson and Kliegl (2013), suggest
that the use of a nonlinear transformation was not responsible
for the effects they reported. TheMasson and Kliegl finding of
modulation of the joint effects of word frequency and stimulus

quality by trial history, however, was clearly not replicated
with either dependent measure in our experiments. As a result,
we conclude that the additive effects of these two factors in the
lexical-decision task appears to be a robust phenomenon.
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